mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-11-26 15:59:10 +00:00
Compare commits
60 Commits
v1.7.0-rc.
...
tracing-fi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d96577d441 | ||
|
|
e64ff1fa0c | ||
|
|
173aad6090 | ||
|
|
0b1bb42753 | ||
|
|
c668906047 | ||
|
|
392b98f3f8 | ||
|
|
aaab867476 | ||
|
|
3a0847771d | ||
|
|
474934e79f | ||
|
|
5daa6be0e4 | ||
|
|
f57c7825c2 | ||
|
|
cfb27adb3e | ||
|
|
79cabb1e79 | ||
|
|
7230ed4bb2 | ||
|
|
b5db926dbf | ||
|
|
f839c8e61d | ||
|
|
4f9539d91e | ||
|
|
15579667d4 | ||
|
|
32529d7442 | ||
|
|
6f3420f114 | ||
|
|
86bad58c9a | ||
|
|
a874dbc841 | ||
|
|
6e772effcb | ||
|
|
3331995976 | ||
|
|
35d8546fc3 | ||
|
|
53a0daf018 | ||
|
|
1ab9d9bdf2 | ||
|
|
e2b2c55c79 | ||
|
|
40487194a7 | ||
|
|
995d6ee81d | ||
|
|
ba838d1759 | ||
|
|
e3be095617 | ||
|
|
ab9ecb28cc | ||
|
|
98e946cc6c | ||
|
|
362ead123a | ||
|
|
9ca4db6ef0 | ||
|
|
2f484b7382 | ||
|
|
a144ae10d2 | ||
|
|
8b3e0b3826 | ||
|
|
9507a20d8b | ||
|
|
31df954aa5 | ||
|
|
894c92cd5a | ||
|
|
279c56a665 | ||
|
|
9736424142 | ||
|
|
2224548add | ||
|
|
7f7b1b9269 | ||
|
|
75a17bd065 | ||
|
|
20c75aa85c | ||
|
|
07263bc0d7 | ||
|
|
eb5c725931 | ||
|
|
ef49ae7d6f | ||
|
|
879aa786a5 | ||
|
|
33cbbfbe68 | ||
|
|
b72146eee4 | ||
|
|
803f5a7936 | ||
|
|
b177ed5696 | ||
|
|
789e5a9aff | ||
|
|
f48fc2e425 | ||
|
|
34a4a0520f | ||
|
|
117e43a9ec |
2
.github/workflows/publish-docker-images.yml
vendored
2
.github/workflows/publish-docker-images.yml
vendored
@@ -97,7 +97,7 @@ jobs:
|
||||
- name: Send CI information to Cloud team
|
||||
# Do not send if nightly build (i.e. 'schedule' or 'workflow_dispatch' event)
|
||||
if: github.event_name == 'push'
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
uses: peter-evans/repository-dispatch@v2
|
||||
with:
|
||||
token: ${{ secrets.MEILI_BOT_GH_PAT }}
|
||||
repository: meilisearch/meilisearch-cloud
|
||||
|
||||
1071
Cargo.lock
generated
1071
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -21,7 +21,7 @@ members = [
|
||||
]
|
||||
|
||||
[workspace.package]
|
||||
version = "1.7.0"
|
||||
version = "1.6.0"
|
||||
authors = [
|
||||
"Quentin de Quelen <quentin@dequelen.me>",
|
||||
"Clément Renault <clement@meilisearch.com>",
|
||||
|
||||
@@ -41,10 +41,10 @@ Meilisearch helps you shape a delightful search experience in a snap, offering f
|
||||
## ✨ Features
|
||||
|
||||
- **Search-as-you-type:** find search results in less than 50 milliseconds
|
||||
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/configuration/typo_tolerance?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
|
||||
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/getting_started/customizing_relevancy?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features#typo-tolerance):** get relevant matches even when queries contain typos and misspellings
|
||||
- **[Filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) and [faceted search](https://www.meilisearch.com/docs/learn/fine_tuning_results/faceted_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** enhance your users' search experience with custom filters and build a faceted search interface in a few lines of code
|
||||
- **[Sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** sort results based on price, date, or pretty much anything else your users need
|
||||
- **[Synonym support](https://www.meilisearch.com/docs/learn/configuration/synonyms?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** configure synonyms to include more relevant content in your search results
|
||||
- **[Synonym support](https://www.meilisearch.com/docs/learn/getting_started/customizing_relevancy?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features#synonyms):** configure synonyms to include more relevant content in your search results
|
||||
- **[Geosearch](https://www.meilisearch.com/docs/learn/fine_tuning_results/geosearch?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** filter and sort documents based on geographic data
|
||||
- **[Extensive language support](https://www.meilisearch.com/docs/learn/what_is_meilisearch/language?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** search datasets in any language, with optimized support for Chinese, Japanese, Hebrew, and languages using the Latin alphabet
|
||||
- **[Security management](https://www.meilisearch.com/docs/learn/security/master_api_keys?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** control which users can access what data with API keys that allow fine-grained permissions handling
|
||||
@@ -61,6 +61,8 @@ You can consult Meilisearch's documentation at [https://www.meilisearch.com/docs
|
||||
|
||||
For basic instructions on how to set up Meilisearch, add documents to an index, and search for documents, take a look at our [Quick Start](https://www.meilisearch.com/docs/learn/getting_started/quick_start?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=get-started) guide.
|
||||
|
||||
You may also want to check out [Meilisearch 101](https://www.meilisearch.com/docs/learn/getting_started/filtering_and_sorting?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=get-started) for an introduction to some of Meilisearch's most popular features.
|
||||
|
||||
## ⚡ Supercharge your Meilisearch experience
|
||||
|
||||
Say goodbye to server deployment and manual updates with [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=oss&utm_source=github&utm_medium=meilisearch). No credit card required.
|
||||
@@ -99,7 +101,7 @@ Meilisearch is a search engine created by [Meili](https://www.welcometothejungle
|
||||
|
||||
- For feature requests, please visit our [product repository](https://github.com/meilisearch/product/discussions)
|
||||
- Found a bug? Open an [issue](https://github.com/meilisearch/meilisearch/issues)!
|
||||
- Want to be part of our Discord community? [Join us!](https://discord.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=contact)
|
||||
- Want to be part of our Discord community? [Join us!](https://discord.gg/meilisearch)
|
||||
|
||||
Thank you for your support!
|
||||
|
||||
|
||||
@@ -30,6 +30,19 @@ impl RoFeatures {
|
||||
self.runtime
|
||||
}
|
||||
|
||||
pub fn check_score_details(&self) -> Result<()> {
|
||||
if self.runtime.score_details {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(FeatureNotEnabledError {
|
||||
disabled_action: "Computing score details",
|
||||
feature: "score details",
|
||||
issue_link: "https://github.com/meilisearch/product/discussions/674",
|
||||
}
|
||||
.into())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_metrics(&self) -> Result<()> {
|
||||
if self.runtime.metrics {
|
||||
Ok(())
|
||||
@@ -48,7 +61,7 @@ impl RoFeatures {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(FeatureNotEnabledError {
|
||||
disabled_action: "Modifying logs through the `/logs/*` routes",
|
||||
disabled_action: "getting logs through the `/logs/stream` route",
|
||||
feature: "logs route",
|
||||
issue_link: "https://github.com/orgs/meilisearch/discussions/721",
|
||||
}
|
||||
|
||||
@@ -54,5 +54,3 @@ thai = ["milli/thai"]
|
||||
greek = ["milli/greek"]
|
||||
# allow khmer specialized tokenization
|
||||
khmer = ["milli/khmer"]
|
||||
# allow vietnamese specialized tokenization
|
||||
vietnamese = ["milli/vietnamese"]
|
||||
|
||||
@@ -349,9 +349,6 @@ impl ErrorCode for milli::Error {
|
||||
UserError::InvalidFieldForSource { .. }
|
||||
| UserError::MissingFieldForSource { .. }
|
||||
| UserError::InvalidOpenAiModel { .. }
|
||||
| UserError::InvalidOpenAiModelDimensions { .. }
|
||||
| UserError::InvalidOpenAiModelDimensionsMax { .. }
|
||||
| UserError::InvalidSettingsDimensions { .. }
|
||||
| UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
|
||||
|
||||
@@ -3,6 +3,7 @@ use serde::{Deserialize, Serialize};
|
||||
#[derive(Serialize, Deserialize, Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
#[serde(rename_all = "camelCase", default)]
|
||||
pub struct RuntimeTogglableFeatures {
|
||||
pub score_details: bool,
|
||||
pub vector_store: bool,
|
||||
pub metrics: bool,
|
||||
pub logs_route: bool,
|
||||
|
||||
@@ -104,7 +104,7 @@ serde_urlencoded = "0.7.1"
|
||||
termcolor = "1.4.1"
|
||||
url = { version = "2.5.0", features = ["serde"] }
|
||||
tracing = "0.1.40"
|
||||
tracing-subscriber = { version = "0.3.18", features = ["json"] }
|
||||
tracing-subscriber = "0.3.18"
|
||||
tracing-trace = { version = "0.1.0", path = "../tracing-trace" }
|
||||
tracing-actix-web = "0.7.9"
|
||||
|
||||
@@ -154,8 +154,7 @@ japanese = ["meilisearch-types/japanese"]
|
||||
thai = ["meilisearch-types/thai"]
|
||||
greek = ["meilisearch-types/greek"]
|
||||
khmer = ["meilisearch-types/khmer"]
|
||||
vietnamese = ["meilisearch-types/vietnamese"]
|
||||
|
||||
[package.metadata.mini-dashboard]
|
||||
assets-url = "https://github.com/meilisearch/mini-dashboard/releases/download/v0.2.13/build.zip"
|
||||
sha1 = "e20cc9b390003c6c844f4b8bcc5c5013191a77ff"
|
||||
assets-url = "https://github.com/meilisearch/mini-dashboard/releases/download/v0.2.12/build.zip"
|
||||
sha1 = "acfe9a018c93eb0604ea87ee87bff7df5474e18e"
|
||||
|
||||
@@ -28,9 +28,7 @@ use super::{
|
||||
config_user_id_path, DocumentDeletionKind, DocumentFetchKind, MEILISEARCH_CONFIG_PATH,
|
||||
};
|
||||
use crate::analytics::Analytics;
|
||||
use crate::option::{
|
||||
default_http_addr, IndexerOpts, LogMode, MaxMemory, MaxThreads, ScheduleSnapshot,
|
||||
};
|
||||
use crate::option::{default_http_addr, IndexerOpts, MaxMemory, MaxThreads, ScheduleSnapshot};
|
||||
use crate::routes::indexes::documents::UpdateDocumentsQuery;
|
||||
use crate::routes::indexes::facet_search::FacetSearchQuery;
|
||||
use crate::routes::tasks::TasksFilterQuery;
|
||||
@@ -252,7 +250,6 @@ impl super::Analytics for SegmentAnalytics {
|
||||
struct Infos {
|
||||
env: String,
|
||||
experimental_enable_metrics: bool,
|
||||
experimental_logs_mode: LogMode,
|
||||
experimental_enable_logs_route: bool,
|
||||
experimental_reduce_indexing_memory_usage: bool,
|
||||
experimental_max_number_of_batched_tasks: usize,
|
||||
@@ -291,7 +288,6 @@ impl From<Opt> for Infos {
|
||||
let Opt {
|
||||
db_path,
|
||||
experimental_enable_metrics,
|
||||
experimental_logs_mode,
|
||||
experimental_enable_logs_route,
|
||||
experimental_reduce_indexing_memory_usage,
|
||||
experimental_max_number_of_batched_tasks,
|
||||
@@ -339,7 +335,6 @@ impl From<Opt> for Infos {
|
||||
Self {
|
||||
env,
|
||||
experimental_enable_metrics,
|
||||
experimental_logs_mode,
|
||||
experimental_enable_logs_route,
|
||||
experimental_reduce_indexing_memory_usage,
|
||||
db_path: db_path != PathBuf::from("./data.ms"),
|
||||
|
||||
@@ -38,7 +38,7 @@ use meilisearch_types::versioning::{check_version_file, create_version_file};
|
||||
use meilisearch_types::{compression, milli, VERSION_FILE_NAME};
|
||||
pub use option::Opt;
|
||||
use option::ScheduleSnapshot;
|
||||
use tracing::{error, info_span};
|
||||
use tracing::error;
|
||||
use tracing_subscriber::filter::Targets;
|
||||
|
||||
use crate::error::MeilisearchHttpError;
|
||||
@@ -97,25 +97,11 @@ pub type LogRouteType = tracing_subscriber::filter::Filtered<
|
||||
tracing_subscriber::Registry,
|
||||
>;
|
||||
|
||||
pub type SubscriberForSecondLayer = tracing_subscriber::layer::Layered<
|
||||
tracing_subscriber::reload::Layer<LogRouteType, tracing_subscriber::Registry>,
|
||||
tracing_subscriber::Registry,
|
||||
>;
|
||||
|
||||
pub type LogStderrHandle =
|
||||
tracing_subscriber::reload::Handle<LogStderrType, SubscriberForSecondLayer>;
|
||||
|
||||
pub type LogStderrType = tracing_subscriber::filter::Filtered<
|
||||
Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>,
|
||||
Targets,
|
||||
SubscriberForSecondLayer,
|
||||
>;
|
||||
|
||||
pub fn create_app(
|
||||
index_scheduler: Data<IndexScheduler>,
|
||||
auth_controller: Data<AuthController>,
|
||||
opt: Opt,
|
||||
logs: (LogRouteHandle, LogStderrHandle),
|
||||
logs: LogRouteHandle,
|
||||
analytics: Arc<dyn Analytics>,
|
||||
enable_dashboard: bool,
|
||||
) -> actix_web::App<
|
||||
@@ -150,49 +136,11 @@ pub fn create_app(
|
||||
.allow_any_method()
|
||||
.max_age(86_400), // 24h
|
||||
)
|
||||
.wrap(tracing_actix_web::TracingLogger::<AwebTracingLogger>::new())
|
||||
.wrap(tracing_actix_web::TracingLogger::default())
|
||||
.wrap(actix_web::middleware::Compress::default())
|
||||
.wrap(actix_web::middleware::NormalizePath::new(actix_web::middleware::TrailingSlash::Trim))
|
||||
}
|
||||
|
||||
struct AwebTracingLogger;
|
||||
|
||||
impl tracing_actix_web::RootSpanBuilder for AwebTracingLogger {
|
||||
fn on_request_start(request: &actix_web::dev::ServiceRequest) -> tracing::Span {
|
||||
use tracing::field::Empty;
|
||||
|
||||
let conn_info = request.connection_info();
|
||||
let headers = request.headers();
|
||||
let user_agent = headers
|
||||
.get(http::header::USER_AGENT)
|
||||
.map(|value| String::from_utf8_lossy(value.as_bytes()).into_owned())
|
||||
.unwrap_or_default();
|
||||
info_span!("HTTP request", method = %request.method(), host = conn_info.host(), route = %request.path(), query_parameters = %request.query_string(), %user_agent, status_code = Empty, error = Empty)
|
||||
}
|
||||
|
||||
fn on_request_end<B: MessageBody>(
|
||||
span: tracing::Span,
|
||||
outcome: &Result<ServiceResponse<B>, actix_web::Error>,
|
||||
) {
|
||||
match &outcome {
|
||||
Ok(response) => {
|
||||
let code: i32 = response.response().status().as_u16().into();
|
||||
span.record("status_code", code);
|
||||
|
||||
if let Some(error) = response.response().error() {
|
||||
// use the status code already constructed for the outgoing HTTP response
|
||||
span.record("error", &tracing::field::display(error.as_response_error()));
|
||||
}
|
||||
}
|
||||
Err(error) => {
|
||||
let code: i32 = error.error_response().status().as_u16().into();
|
||||
span.record("status_code", code);
|
||||
span.record("error", &tracing::field::display(error.as_response_error()));
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
enum OnFailure {
|
||||
RemoveDb,
|
||||
KeepDb,
|
||||
@@ -458,7 +406,7 @@ pub fn configure_data(
|
||||
index_scheduler: Data<IndexScheduler>,
|
||||
auth: Data<AuthController>,
|
||||
opt: &Opt,
|
||||
(logs_route, logs_stderr): (LogRouteHandle, LogStderrHandle),
|
||||
logs: LogRouteHandle,
|
||||
analytics: Arc<dyn Analytics>,
|
||||
) {
|
||||
let http_payload_size_limit = opt.http_payload_size_limit.get_bytes() as usize;
|
||||
@@ -466,8 +414,7 @@ pub fn configure_data(
|
||||
.app_data(index_scheduler)
|
||||
.app_data(auth)
|
||||
.app_data(web::Data::from(analytics))
|
||||
.app_data(web::Data::new(logs_route))
|
||||
.app_data(web::Data::new(logs_stderr))
|
||||
.app_data(web::Data::new(logs))
|
||||
.app_data(
|
||||
web::JsonConfig::default()
|
||||
.limit(http_payload_size_limit)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use std::env;
|
||||
use std::io::{stderr, LineWriter, Write};
|
||||
use std::io::{stderr, Write};
|
||||
use std::path::PathBuf;
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
@@ -10,10 +10,8 @@ use actix_web::HttpServer;
|
||||
use index_scheduler::IndexScheduler;
|
||||
use is_terminal::IsTerminal;
|
||||
use meilisearch::analytics::Analytics;
|
||||
use meilisearch::option::LogMode;
|
||||
use meilisearch::{
|
||||
analytics, create_app, prototype_name, setup_meilisearch, LogRouteHandle, LogRouteType,
|
||||
LogStderrHandle, LogStderrType, Opt, SubscriberForSecondLayer,
|
||||
analytics, create_app, prototype_name, setup_meilisearch, LogRouteHandle, LogRouteType, Opt,
|
||||
};
|
||||
use meilisearch_auth::{generate_master_key, AuthController, MASTER_KEY_MIN_SIZE};
|
||||
use mimalloc::MiMalloc;
|
||||
@@ -25,44 +23,28 @@ use tracing_subscriber::Layer;
|
||||
#[global_allocator]
|
||||
static ALLOC: MiMalloc = MiMalloc;
|
||||
|
||||
fn default_log_route_layer() -> LogRouteType {
|
||||
fn default_layer() -> LogRouteType {
|
||||
None.with_filter(tracing_subscriber::filter::Targets::new().with_target("", LevelFilter::OFF))
|
||||
}
|
||||
|
||||
fn default_log_stderr_layer(opt: &Opt) -> LogStderrType {
|
||||
let layer = tracing_subscriber::fmt::layer()
|
||||
.with_writer(|| LineWriter::new(std::io::stderr()))
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE);
|
||||
|
||||
let layer = match opt.experimental_logs_mode {
|
||||
LogMode::Human => Box::new(layer)
|
||||
as Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>,
|
||||
LogMode::Json => Box::new(layer.json())
|
||||
as Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>,
|
||||
};
|
||||
|
||||
layer.with_filter(
|
||||
tracing_subscriber::filter::Targets::new()
|
||||
.with_target("", LevelFilter::from_str(&opt.log_level.to_string()).unwrap()),
|
||||
)
|
||||
}
|
||||
|
||||
/// does all the setup before meilisearch is launched
|
||||
fn setup(opt: &Opt) -> anyhow::Result<(LogRouteHandle, LogStderrHandle)> {
|
||||
let (route_layer, route_layer_handle) =
|
||||
tracing_subscriber::reload::Layer::new(default_log_route_layer());
|
||||
fn setup(opt: &Opt) -> anyhow::Result<LogRouteHandle> {
|
||||
let (route_layer, route_layer_handle) = tracing_subscriber::reload::Layer::new(default_layer());
|
||||
let route_layer: tracing_subscriber::reload::Layer<_, _> = route_layer;
|
||||
|
||||
let (stderr_layer, stderr_layer_handle) =
|
||||
tracing_subscriber::reload::Layer::new(default_log_stderr_layer(opt));
|
||||
let route_layer: tracing_subscriber::reload::Layer<_, _> = route_layer;
|
||||
|
||||
let subscriber = tracing_subscriber::registry().with(route_layer).with(stderr_layer);
|
||||
let subscriber = tracing_subscriber::registry().with(route_layer).with(
|
||||
tracing_subscriber::fmt::layer()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::NEW)
|
||||
.with_filter(
|
||||
tracing_subscriber::filter::LevelFilter::from_str(&opt.log_level.to_string())
|
||||
.unwrap(),
|
||||
),
|
||||
);
|
||||
|
||||
// set the subscriber as the default for the application
|
||||
tracing::subscriber::set_global_default(subscriber).unwrap();
|
||||
|
||||
Ok((route_layer_handle, stderr_layer_handle))
|
||||
Ok(route_layer_handle)
|
||||
}
|
||||
|
||||
fn on_panic(info: &std::panic::PanicInfo) {
|
||||
@@ -128,7 +110,7 @@ async fn run_http(
|
||||
index_scheduler: Arc<IndexScheduler>,
|
||||
auth_controller: Arc<AuthController>,
|
||||
opt: Opt,
|
||||
logs: (LogRouteHandle, LogStderrHandle),
|
||||
logs: LogRouteHandle,
|
||||
analytics: Arc<dyn Analytics>,
|
||||
) -> anyhow::Result<()> {
|
||||
let enable_dashboard = &opt.env == "development";
|
||||
|
||||
@@ -51,7 +51,6 @@ const MEILI_IGNORE_MISSING_DUMP: &str = "MEILI_IGNORE_MISSING_DUMP";
|
||||
const MEILI_IGNORE_DUMP_IF_DB_EXISTS: &str = "MEILI_IGNORE_DUMP_IF_DB_EXISTS";
|
||||
const MEILI_DUMP_DIR: &str = "MEILI_DUMP_DIR";
|
||||
const MEILI_LOG_LEVEL: &str = "MEILI_LOG_LEVEL";
|
||||
const MEILI_EXPERIMENTAL_LOGS_MODE: &str = "MEILI_EXPERIMENTAL_LOGS_MODE";
|
||||
const MEILI_EXPERIMENTAL_ENABLE_LOGS_ROUTE: &str = "MEILI_EXPERIMENTAL_ENABLE_LOGS_ROUTE";
|
||||
const MEILI_EXPERIMENTAL_ENABLE_METRICS: &str = "MEILI_EXPERIMENTAL_ENABLE_METRICS";
|
||||
const MEILI_EXPERIMENTAL_REDUCE_INDEXING_MEMORY_USAGE: &str =
|
||||
@@ -80,39 +79,6 @@ const DEFAULT_LOG_EVERY_N: usize = 100_000;
|
||||
pub const INDEX_SIZE: u64 = 2 * 1024 * 1024 * 1024 * 1024; // 2 TiB
|
||||
pub const TASK_DB_SIZE: u64 = 20 * 1024 * 1024 * 1024; // 20 GiB
|
||||
|
||||
#[derive(Debug, Default, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "UPPERCASE")]
|
||||
pub enum LogMode {
|
||||
#[default]
|
||||
Human,
|
||||
Json,
|
||||
}
|
||||
|
||||
impl Display for LogMode {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match self {
|
||||
LogMode::Human => Display::fmt("HUMAN", f),
|
||||
LogMode::Json => Display::fmt("JSON", f),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FromStr for LogMode {
|
||||
type Err = LogModeError;
|
||||
|
||||
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||
match s.trim().to_lowercase().as_str() {
|
||||
"human" => Ok(LogMode::Human),
|
||||
"json" => Ok(LogMode::Json),
|
||||
_ => Err(LogModeError(s.to_owned())),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("Unsupported log mode level `{0}`. Supported values are `HUMAN` and `JSON`.")]
|
||||
pub struct LogModeError(String);
|
||||
|
||||
#[derive(Debug, Default, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "UPPERCASE")]
|
||||
pub enum LogLevel {
|
||||
@@ -344,16 +310,9 @@ pub struct Opt {
|
||||
#[serde(default)]
|
||||
pub experimental_enable_metrics: bool,
|
||||
|
||||
/// Experimental logs mode feature. For more information, see: <https://github.com/orgs/meilisearch/discussions/723>
|
||||
///
|
||||
/// Change the mode of the logs on the console.
|
||||
#[clap(long, env = MEILI_EXPERIMENTAL_LOGS_MODE, default_value_t)]
|
||||
#[serde(default)]
|
||||
pub experimental_logs_mode: LogMode,
|
||||
|
||||
/// Experimental logs route feature. For more information, see: <https://github.com/orgs/meilisearch/discussions/721>
|
||||
///
|
||||
/// Enables the log routes on the `POST /logs/stream`, `POST /logs/stderr` endpoints, and the `DELETE /logs/stream` to stop receiving logs.
|
||||
/// Enables the log route on the `POST /logs/stream` endpoint and the `DELETE /logs/stream` to stop receiving logs.
|
||||
#[clap(long, env = MEILI_EXPERIMENTAL_ENABLE_LOGS_ROUTE)]
|
||||
#[serde(default)]
|
||||
pub experimental_enable_logs_route: bool,
|
||||
@@ -463,7 +422,6 @@ impl Opt {
|
||||
#[cfg(feature = "analytics")]
|
||||
no_analytics,
|
||||
experimental_enable_metrics,
|
||||
experimental_logs_mode,
|
||||
experimental_enable_logs_route,
|
||||
experimental_reduce_indexing_memory_usage,
|
||||
} = self;
|
||||
@@ -521,10 +479,6 @@ impl Opt {
|
||||
MEILI_EXPERIMENTAL_ENABLE_METRICS,
|
||||
experimental_enable_metrics.to_string(),
|
||||
);
|
||||
export_to_env_if_not_present(
|
||||
MEILI_EXPERIMENTAL_LOGS_MODE,
|
||||
experimental_logs_mode.to_string(),
|
||||
);
|
||||
export_to_env_if_not_present(
|
||||
MEILI_EXPERIMENTAL_ENABLE_LOGS_ROUTE,
|
||||
experimental_enable_logs_route.to_string(),
|
||||
|
||||
@@ -41,6 +41,8 @@ async fn get_features(
|
||||
#[derive(Debug, Deserr)]
|
||||
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct RuntimeTogglableFeatures {
|
||||
#[deserr(default)]
|
||||
pub score_details: Option<bool>,
|
||||
#[deserr(default)]
|
||||
pub vector_store: Option<bool>,
|
||||
#[deserr(default)]
|
||||
@@ -65,6 +67,7 @@ async fn patch_features(
|
||||
|
||||
let old_features = features.runtime_features();
|
||||
let new_features = meilisearch_types::features::RuntimeTogglableFeatures {
|
||||
score_details: new_features.0.score_details.unwrap_or(old_features.score_details),
|
||||
vector_store: new_features.0.vector_store.unwrap_or(old_features.vector_store),
|
||||
metrics: new_features.0.metrics.unwrap_or(old_features.metrics),
|
||||
logs_route: new_features.0.logs_route.unwrap_or(old_features.logs_route),
|
||||
@@ -78,6 +81,7 @@ async fn patch_features(
|
||||
// the it renames to camelCase, which we don't want for analytics.
|
||||
// **Do not** ignore fields with `..` or `_` here, because we want to add them in the future.
|
||||
let meilisearch_types::features::RuntimeTogglableFeatures {
|
||||
score_details,
|
||||
vector_store,
|
||||
metrics,
|
||||
logs_route,
|
||||
@@ -87,6 +91,7 @@ async fn patch_features(
|
||||
analytics.publish(
|
||||
"Experimental features Updated".to_string(),
|
||||
json!({
|
||||
"score_details": score_details,
|
||||
"vector_store": vector_store,
|
||||
"metrics": metrics,
|
||||
"logs_route": logs_route,
|
||||
|
||||
@@ -22,23 +22,21 @@ use crate::error::MeilisearchHttpError;
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::{LogRouteHandle, LogStderrHandle};
|
||||
use crate::LogRouteHandle;
|
||||
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
cfg.service(
|
||||
web::resource("stream")
|
||||
.route(web::post().to(SeqHandler(get_logs)))
|
||||
.route(web::delete().to(SeqHandler(cancel_logs))),
|
||||
)
|
||||
.service(web::resource("stderr").route(web::post().to(SeqHandler(update_stderr_target))));
|
||||
);
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone, Copy, Deserr, PartialEq, Eq)]
|
||||
#[deserr(rename_all = camelCase)]
|
||||
#[deserr(rename_all = lowercase)]
|
||||
pub enum LogMode {
|
||||
#[default]
|
||||
Human,
|
||||
Json,
|
||||
Fmt,
|
||||
Profile,
|
||||
}
|
||||
|
||||
@@ -52,7 +50,7 @@ enum MyParseError {
|
||||
#[error(transparent)]
|
||||
ParseError(#[from] tracing_subscriber::filter::ParseError),
|
||||
#[error(
|
||||
"Empty string is not a valid target. If you want to get no logs use `OFF`. Usage: `info`, `meilisearch=info`, or you can write multiple filters in one target: `index_scheduler=info,milli=trace`"
|
||||
"Empty string is not a valid target. If you want to get no logs use `OFF`. Usage: `info`, `info:meilisearch`, or you can write multiple filters in one target: `index_scheduler=info,milli=trace`"
|
||||
)]
|
||||
Example,
|
||||
}
|
||||
@@ -162,23 +160,12 @@ fn make_layer<
|
||||
) -> (Box<dyn Layer<S> + Send + Sync>, PinnedByteStream) {
|
||||
let guard = HandleGuard { logs: logs.into_inner() };
|
||||
match opt.mode {
|
||||
LogMode::Human => {
|
||||
LogMode::Fmt => {
|
||||
let (sender, receiver) = tokio::sync::mpsc::unbounded_channel();
|
||||
|
||||
let fmt_layer = tracing_subscriber::fmt::layer()
|
||||
.with_writer(move || LogWriter { sender: sender.clone() })
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE);
|
||||
|
||||
let stream = byte_stream(receiver, guard);
|
||||
(Box::new(fmt_layer) as Box<dyn Layer<S> + Send + Sync>, Box::pin(stream))
|
||||
}
|
||||
LogMode::Json => {
|
||||
let (sender, receiver) = tokio::sync::mpsc::unbounded_channel();
|
||||
|
||||
let fmt_layer = tracing_subscriber::fmt::layer()
|
||||
.with_writer(move || LogWriter { sender: sender.clone() })
|
||||
.json()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE);
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::ACTIVE);
|
||||
|
||||
let stream = byte_stream(receiver, guard);
|
||||
(Box::new(fmt_layer) as Box<dyn Layer<S> + Send + Sync>, Box::pin(stream))
|
||||
@@ -292,27 +279,3 @@ pub async fn cancel_logs(
|
||||
|
||||
Ok(HttpResponse::NoContent().finish())
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserr)]
|
||||
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct UpdateStderrLogs {
|
||||
#[deserr(default = "info".parse().unwrap(), try_from(&String) = MyTargets::from_str -> DeserrJsonError<BadRequest>)]
|
||||
target: MyTargets,
|
||||
}
|
||||
|
||||
pub async fn update_stderr_target(
|
||||
index_scheduler: GuardedData<ActionPolicy<{ actions::METRICS_GET }>, Data<IndexScheduler>>,
|
||||
logs: Data<LogStderrHandle>,
|
||||
body: AwebJson<UpdateStderrLogs, DeserrJsonError>,
|
||||
) -> Result<HttpResponse, ResponseError> {
|
||||
index_scheduler.features().check_logs_route()?;
|
||||
|
||||
let opt = body.into_inner();
|
||||
|
||||
logs.modify(|layer| {
|
||||
*layer.filter_mut() = opt.target.0.clone();
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
Ok(HttpResponse::NoContent().finish())
|
||||
}
|
||||
|
||||
@@ -441,6 +441,10 @@ fn prepare_search<'t>(
|
||||
ScoringStrategy::Skip
|
||||
});
|
||||
|
||||
if query.show_ranking_score_details {
|
||||
features.check_score_details()?;
|
||||
}
|
||||
|
||||
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
|
||||
search.embedder_name(embedder);
|
||||
}
|
||||
|
||||
@@ -9,7 +9,7 @@ use actix_web::http::StatusCode;
|
||||
use byte_unit::{Byte, ByteUnit};
|
||||
use clap::Parser;
|
||||
use meilisearch::option::{IndexerOpts, MaxMemory, Opt};
|
||||
use meilisearch::{analytics, create_app, setup_meilisearch, SubscriberForSecondLayer};
|
||||
use meilisearch::{analytics, create_app, setup_meilisearch};
|
||||
use once_cell::sync::Lazy;
|
||||
use tempfile::TempDir;
|
||||
use tokio::time::sleep;
|
||||
@@ -87,20 +87,12 @@ impl Server {
|
||||
tracing_subscriber::reload::Layer::new(None.with_filter(
|
||||
tracing_subscriber::filter::Targets::new().with_target("", LevelFilter::OFF),
|
||||
));
|
||||
let (_stderr_layer, stderr_layer_handle) = tracing_subscriber::reload::Layer::new(
|
||||
(Box::new(
|
||||
tracing_subscriber::fmt::layer()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE),
|
||||
)
|
||||
as Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>)
|
||||
.with_filter(tracing_subscriber::filter::Targets::new()),
|
||||
);
|
||||
|
||||
actix_web::test::init_service(create_app(
|
||||
self.service.index_scheduler.clone().into(),
|
||||
self.service.auth.clone().into(),
|
||||
self.service.options.clone(),
|
||||
(route_layer_handle, stderr_layer_handle),
|
||||
route_layer_handle,
|
||||
analytics::MockAnalytics::new(&self.service.options),
|
||||
true,
|
||||
))
|
||||
|
||||
@@ -5,7 +5,7 @@ use actix_web::http::StatusCode;
|
||||
use actix_web::test;
|
||||
use actix_web::test::TestRequest;
|
||||
use index_scheduler::IndexScheduler;
|
||||
use meilisearch::{analytics, create_app, Opt, SubscriberForSecondLayer};
|
||||
use meilisearch::{analytics, create_app, Opt};
|
||||
use meilisearch_auth::AuthController;
|
||||
use tracing::level_filters::LevelFilter;
|
||||
use tracing_subscriber::Layer;
|
||||
@@ -111,20 +111,12 @@ impl Service {
|
||||
tracing_subscriber::reload::Layer::new(None.with_filter(
|
||||
tracing_subscriber::filter::Targets::new().with_target("", LevelFilter::OFF),
|
||||
));
|
||||
let (_stderr_layer, stderr_layer_handle) = tracing_subscriber::reload::Layer::new(
|
||||
(Box::new(
|
||||
tracing_subscriber::fmt::layer()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE),
|
||||
)
|
||||
as Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>)
|
||||
.with_filter(tracing_subscriber::filter::Targets::new()),
|
||||
);
|
||||
|
||||
let app = test::init_service(create_app(
|
||||
self.index_scheduler.clone().into(),
|
||||
self.auth.clone().into(),
|
||||
self.options.clone(),
|
||||
(route_layer_handle, stderr_layer_handle),
|
||||
route_layer_handle,
|
||||
analytics::MockAnalytics::new(&self.options),
|
||||
true,
|
||||
))
|
||||
|
||||
@@ -1845,6 +1845,7 @@ async fn import_dump_v6_containing_experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": false,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
|
||||
@@ -18,6 +18,7 @@ async fn experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": false,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -30,6 +31,7 @@ async fn experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -42,6 +44,7 @@ async fn experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -55,6 +58,7 @@ async fn experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -68,6 +72,7 @@ async fn experimental_features() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -88,6 +93,7 @@ async fn experimental_feature_metrics() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": false,
|
||||
"metrics": true,
|
||||
"logsRoute": false,
|
||||
@@ -146,7 +152,7 @@ async fn errors() {
|
||||
meili_snap::snapshot!(code, @"400 Bad Request");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"message": "Unknown field `NotAFeature`: expected one of `vectorStore`, `metrics`, `logsRoute`, `exportPuffinReports`",
|
||||
"message": "Unknown field `NotAFeature`: expected one of `scoreDetails`, `vectorStore`, `metrics`, `logsRoute`, `exportPuffinReports`",
|
||||
"code": "bad_request",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#bad_request"
|
||||
|
||||
@@ -36,7 +36,7 @@ async fn logs_stream_bad_target() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value at `.target`: Empty string is not a valid target. If you want to get no logs use `OFF`. Usage: `info`, `meilisearch=info`, or you can write multiple filters in one target: `index_scheduler=info,milli=trace`",
|
||||
"message": "Invalid value at `.target`: Empty string is not a valid target. If you want to get no logs use `OFF`. Usage: `info`, `info:meilisearch`, or you can write multiple filters in one target: `index_scheduler=info,milli=trace`",
|
||||
"code": "bad_request",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#bad_request"
|
||||
@@ -89,7 +89,7 @@ async fn logs_stream_bad_mode() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Unknown value `tamo` at `.mode`: expected one of `human`, `json`, `profile`",
|
||||
"message": "Unknown value `tamo` at `.mode`: expected one of `fmt`, `profile`",
|
||||
"code": "bad_request",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#bad_request"
|
||||
@@ -133,7 +133,7 @@ async fn logs_stream_bad_profile_memory() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value: `profile_memory` can only be used while profiling code and is not compatible with the Human mode.",
|
||||
"message": "Invalid value: `profile_memory` can only be used while profiling code and is not compatible with the Fmt mode.",
|
||||
"code": "invalid_settings_typo_tolerance",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_settings_typo_tolerance"
|
||||
@@ -146,10 +146,10 @@ async fn logs_stream_bad_profile_memory() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Unknown value `fmt` at `.mode`: expected one of `human`, `json`, `profile`",
|
||||
"code": "bad_request",
|
||||
"message": "Invalid value: `profile_memory` can only be used while profiling code and is not compatible with the Fmt mode.",
|
||||
"code": "invalid_settings_typo_tolerance",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#bad_request"
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_settings_typo_tolerance"
|
||||
}
|
||||
"###);
|
||||
}
|
||||
@@ -162,7 +162,7 @@ async fn logs_stream_without_enabling_the_route() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Modifying logs through the `/logs/*` routes requires enabling the `logs route` experimental feature. See https://github.com/orgs/meilisearch/discussions/721",
|
||||
"message": "getting logs through the `/logs/stream` route requires enabling the `logs route` experimental feature. See https://github.com/orgs/meilisearch/discussions/721",
|
||||
"code": "feature_not_enabled",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
|
||||
@@ -173,18 +173,7 @@ async fn logs_stream_without_enabling_the_route() {
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Modifying logs through the `/logs/*` routes requires enabling the `logs route` experimental feature. See https://github.com/orgs/meilisearch/discussions/721",
|
||||
"code": "feature_not_enabled",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = server.service.post("/logs/stderr", json!({})).await;
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Modifying logs through the `/logs/*` routes requires enabling the `logs route` experimental feature. See https://github.com/orgs/meilisearch/discussions/721",
|
||||
"message": "getting logs through the `/logs/stream` route requires enabling the `logs route` experimental feature. See https://github.com/orgs/meilisearch/discussions/721",
|
||||
"code": "feature_not_enabled",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
|
||||
|
||||
@@ -5,7 +5,7 @@ use std::str::FromStr;
|
||||
|
||||
use actix_web::http::header::ContentType;
|
||||
use meili_snap::snapshot;
|
||||
use meilisearch::{analytics, create_app, Opt, SubscriberForSecondLayer};
|
||||
use meilisearch::{analytics, create_app, Opt};
|
||||
use tracing::level_filters::LevelFilter;
|
||||
use tracing_subscriber::layer::SubscriberExt;
|
||||
use tracing_subscriber::Layer;
|
||||
@@ -27,25 +27,18 @@ async fn basic_test_log_stream_route() {
|
||||
tracing_subscriber::reload::Layer::new(None.with_filter(
|
||||
tracing_subscriber::filter::Targets::new().with_target("", LevelFilter::OFF),
|
||||
));
|
||||
let (_stderr_layer, stderr_layer_handle) = tracing_subscriber::reload::Layer::new(
|
||||
(Box::new(
|
||||
tracing_subscriber::fmt::layer()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::CLOSE),
|
||||
) as Box<dyn tracing_subscriber::Layer<SubscriberForSecondLayer> + Send + Sync>)
|
||||
.with_filter(tracing_subscriber::filter::Targets::new()),
|
||||
);
|
||||
|
||||
let subscriber = tracing_subscriber::registry().with(route_layer).with(
|
||||
tracing_subscriber::fmt::layer()
|
||||
.with_span_events(tracing_subscriber::fmt::format::FmtSpan::ACTIVE)
|
||||
.with_filter(tracing_subscriber::filter::LevelFilter::from_str("OFF").unwrap()),
|
||||
.with_filter(tracing_subscriber::filter::LevelFilter::from_str("INFO").unwrap()),
|
||||
);
|
||||
|
||||
let app = actix_web::test::init_service(create_app(
|
||||
server.service.index_scheduler.clone().into(),
|
||||
server.service.auth.clone().into(),
|
||||
server.service.options.clone(),
|
||||
(route_layer_handle, stderr_layer_handle),
|
||||
route_layer_handle,
|
||||
analytics::MockAnalytics::new(&server.service.options),
|
||||
true,
|
||||
))
|
||||
@@ -64,7 +57,7 @@ async fn basic_test_log_stream_route() {
|
||||
.insert_header(ContentType::json())
|
||||
.set_payload(
|
||||
serde_json::to_vec(&json!({
|
||||
"mode": "human",
|
||||
"mode": "fmt",
|
||||
"target": "info",
|
||||
}))
|
||||
.unwrap(),
|
||||
|
||||
@@ -13,6 +13,7 @@ async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Inde
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"logsRoute": false,
|
||||
@@ -87,52 +88,6 @@ async fn simple_search() {
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_semanticScore":0.9472136}]"###);
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn highlighter() {
|
||||
let server = Server::new().await;
|
||||
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
|
||||
"hybrid": {"semanticRatio": 0.2},
|
||||
"attributesToHighlight": [
|
||||
"desc"
|
||||
],
|
||||
"highlightPreTag": "**BEGIN**",
|
||||
"highlightPostTag": "**END**"
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}}}]"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
|
||||
"hybrid": {"semanticRatio": 0.8},
|
||||
"attributesToHighlight": [
|
||||
"desc"
|
||||
],
|
||||
"highlightPreTag": "**BEGIN**",
|
||||
"highlightPostTag": "**END**"
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_semanticScore":0.9472136}]"###);
|
||||
|
||||
// no highlighting on full semantic
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
|
||||
"hybrid": {"semanticRatio": 1.0},
|
||||
"attributesToHighlight": [
|
||||
"desc"
|
||||
],
|
||||
"highlightPreTag": "**BEGIN**",
|
||||
"highlightPostTag": "**END**"
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}}]"###);
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn invalid_semantic_ratio() {
|
||||
let server = Server::new().await;
|
||||
|
||||
@@ -766,14 +766,38 @@ async fn faceting_max_values_per_facet() {
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn test_score_details() {
|
||||
async fn experimental_feature_score_details() {
|
||||
let server = Server::new().await;
|
||||
let index = server.index("test");
|
||||
|
||||
let documents = DOCUMENTS.clone();
|
||||
|
||||
let res = index.add_documents(json!(documents), None).await;
|
||||
index.wait_task(res.0.uid()).await;
|
||||
index.add_documents(json!(documents), None).await;
|
||||
index.wait_task(0).await;
|
||||
|
||||
index
|
||||
.search(
|
||||
json!({
|
||||
"q": "train dragon",
|
||||
"showRankingScoreDetails": true,
|
||||
}),
|
||||
|response, code| {
|
||||
meili_snap::snapshot!(code, @"400 Bad Request");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"message": "Computing score details requires enabling the `score details` experimental feature. See https://github.com/meilisearch/product/discussions/674",
|
||||
"code": "feature_not_enabled",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
|
||||
}
|
||||
"###);
|
||||
},
|
||||
)
|
||||
.await;
|
||||
|
||||
let (response, code) = server.set_features(json!({"scoreDetails": true})).await;
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(response["scoreDetails"], @"true");
|
||||
|
||||
index
|
||||
.search(
|
||||
|
||||
@@ -17,7 +17,7 @@ bincode = "1.3.3"
|
||||
bstr = "1.9.0"
|
||||
bytemuck = { version = "1.14.0", features = ["extern_crate_alloc"] }
|
||||
byteorder = "1.5.0"
|
||||
charabia = { version = "0.8.7", default-features = false }
|
||||
charabia = { version = "0.8.5", default-features = false }
|
||||
concat-arrays = "0.1.2"
|
||||
crossbeam-channel = "0.5.11"
|
||||
deserr = "0.6.1"
|
||||
@@ -102,16 +102,7 @@ meili-snap = { path = "../meili-snap" }
|
||||
rand = { version = "0.8.5", features = ["small_rng"] }
|
||||
|
||||
[features]
|
||||
all-tokenizations = [
|
||||
"charabia/chinese",
|
||||
"charabia/hebrew",
|
||||
"charabia/japanese",
|
||||
"charabia/thai",
|
||||
"charabia/korean",
|
||||
"charabia/greek",
|
||||
"charabia/khmer",
|
||||
"charabia/vietnamese",
|
||||
]
|
||||
all-tokenizations = ["charabia/chinese", "charabia/hebrew", "charabia/japanese", "charabia/thai", "charabia/korean", "charabia/greek", "charabia/khmer"]
|
||||
|
||||
# Use POSIX semaphores instead of SysV semaphores in LMDB
|
||||
# For more information on this feature, see heed's Cargo.toml
|
||||
@@ -139,7 +130,5 @@ greek = ["charabia/greek"]
|
||||
# allow khmer specialized tokenization
|
||||
khmer = ["charabia/khmer"]
|
||||
|
||||
vietnamese = ["charabia/vietnamese"]
|
||||
|
||||
# allow CUDA support, see <https://github.com/meilisearch/meilisearch/issues/4306>
|
||||
cuda = ["candle-core/cuda"]
|
||||
|
||||
@@ -227,22 +227,6 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
|
||||
source_: crate::vector::settings::EmbedderSource,
|
||||
embedder_name: String,
|
||||
},
|
||||
#[error("`.embedders.{embedder_name}.dimensions`: Model `{model}` does not support overriding its native dimensions of {expected_dimensions}. Found {dimensions}")]
|
||||
InvalidOpenAiModelDimensions {
|
||||
embedder_name: String,
|
||||
model: &'static str,
|
||||
dimensions: usize,
|
||||
expected_dimensions: usize,
|
||||
},
|
||||
#[error("`.embedders.{embedder_name}.dimensions`: Model `{model}` does not support overriding its dimensions to a value higher than {max_dimensions}. Found {dimensions}")]
|
||||
InvalidOpenAiModelDimensionsMax {
|
||||
embedder_name: String,
|
||||
model: &'static str,
|
||||
dimensions: usize,
|
||||
max_dimensions: usize,
|
||||
},
|
||||
#[error("`.embedders.{embedder_name}.dimensions`: `dimensions` cannot be zero")]
|
||||
InvalidSettingsDimensions { embedder_name: String },
|
||||
}
|
||||
|
||||
impl From<crate::vector::Error> for Error {
|
||||
|
||||
@@ -102,7 +102,7 @@ impl ScoreWithRatioResult {
|
||||
}
|
||||
|
||||
SearchResult {
|
||||
matching_words: right.matching_words,
|
||||
matching_words: left.matching_words,
|
||||
candidates: left.candidates | right.candidates,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
|
||||
use grenad::{CompressionType, Merger};
|
||||
use grenad::CompressionType;
|
||||
use heed::types::Bytes;
|
||||
use heed::{BytesDecode, BytesEncode, Error, PutFlags, RoTxn, RwTxn};
|
||||
use roaring::RoaringBitmap;
|
||||
@@ -14,7 +14,6 @@ use crate::heed_codec::facet::{
|
||||
use crate::heed_codec::BytesRefCodec;
|
||||
use crate::update::del_add::{DelAdd, KvReaderDelAdd};
|
||||
use crate::update::index_documents::{create_writer, valid_lmdb_key, writer_into_reader};
|
||||
use crate::update::MergeFn;
|
||||
use crate::{CboRoaringBitmapCodec, CboRoaringBitmapLenCodec, FieldId, Index, Result};
|
||||
|
||||
/// Algorithm to insert elememts into the `facet_id_(string/f64)_docids` databases
|
||||
@@ -29,7 +28,7 @@ pub struct FacetsUpdateBulk<'i> {
|
||||
facet_type: FacetType,
|
||||
field_ids: Vec<FieldId>,
|
||||
// None if level 0 does not need to be updated
|
||||
delta_data: Option<Merger<BufReader<File>, MergeFn>>,
|
||||
delta_data: Option<grenad::Reader<BufReader<File>>>,
|
||||
}
|
||||
|
||||
impl<'i> FacetsUpdateBulk<'i> {
|
||||
@@ -37,7 +36,7 @@ impl<'i> FacetsUpdateBulk<'i> {
|
||||
index: &'i Index,
|
||||
field_ids: Vec<FieldId>,
|
||||
facet_type: FacetType,
|
||||
delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
delta_data: grenad::Reader<BufReader<File>>,
|
||||
group_size: u8,
|
||||
min_level_size: u8,
|
||||
) -> FacetsUpdateBulk<'i> {
|
||||
@@ -66,7 +65,7 @@ impl<'i> FacetsUpdateBulk<'i> {
|
||||
}
|
||||
}
|
||||
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::facets::bulk")]
|
||||
#[logging_timer::time("FacetsUpdateBulk::{}")]
|
||||
pub fn execute(self, wtxn: &mut heed::RwTxn) -> Result<()> {
|
||||
let Self { index, field_ids, group_size, min_level_size, facet_type, delta_data } = self;
|
||||
|
||||
@@ -90,7 +89,7 @@ impl<'i> FacetsUpdateBulk<'i> {
|
||||
/// Implementation of `FacetsUpdateBulk` that is independent of milli's `Index` type
|
||||
pub(crate) struct FacetsUpdateBulkInner<R: std::io::Read + std::io::Seek> {
|
||||
pub db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
|
||||
pub delta_data: Option<Merger<R, MergeFn>>,
|
||||
pub delta_data: Option<grenad::Reader<R>>,
|
||||
pub group_size: u8,
|
||||
pub min_level_size: u8,
|
||||
}
|
||||
@@ -130,8 +129,8 @@ impl<R: std::io::Read + std::io::Seek> FacetsUpdateBulkInner<R> {
|
||||
if self.db.is_empty(wtxn)? {
|
||||
let mut buffer = Vec::new();
|
||||
let mut database = self.db.iter_mut(wtxn)?.remap_types::<Bytes, Bytes>();
|
||||
let mut iter = delta_data.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = delta_data.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
if !valid_lmdb_key(key) {
|
||||
continue;
|
||||
}
|
||||
@@ -155,8 +154,8 @@ impl<R: std::io::Read + std::io::Seek> FacetsUpdateBulkInner<R> {
|
||||
let mut buffer = Vec::new();
|
||||
let database = self.db.remap_types::<Bytes, Bytes>();
|
||||
|
||||
let mut iter = delta_data.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = delta_data.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
if !valid_lmdb_key(key) {
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
|
||||
use grenad::Merger;
|
||||
use heed::types::{Bytes, DecodeIgnore};
|
||||
use heed::{BytesDecode, Error, RoTxn, RwTxn};
|
||||
use obkv::KvReader;
|
||||
@@ -15,7 +14,6 @@ use crate::heed_codec::BytesRefCodec;
|
||||
use crate::search::facet::get_highest_level;
|
||||
use crate::update::del_add::DelAdd;
|
||||
use crate::update::index_documents::valid_lmdb_key;
|
||||
use crate::update::MergeFn;
|
||||
use crate::{CboRoaringBitmapCodec, Index, Result};
|
||||
|
||||
enum InsertionResult {
|
||||
@@ -33,14 +31,14 @@ enum DeletionResult {
|
||||
/// `facet_id_(string/f64)_docids` databases.
|
||||
pub struct FacetsUpdateIncremental {
|
||||
inner: FacetsUpdateIncrementalInner,
|
||||
delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
delta_data: grenad::Reader<BufReader<File>>,
|
||||
}
|
||||
|
||||
impl FacetsUpdateIncremental {
|
||||
pub fn new(
|
||||
index: &Index,
|
||||
facet_type: FacetType,
|
||||
delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
delta_data: grenad::Reader<BufReader<File>>,
|
||||
group_size: u8,
|
||||
min_level_size: u8,
|
||||
max_group_size: u8,
|
||||
@@ -63,18 +61,16 @@ impl FacetsUpdateIncremental {
|
||||
}
|
||||
}
|
||||
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::facets::incremental")]
|
||||
pub fn execute(self, wtxn: &mut RwTxn) -> crate::Result<()> {
|
||||
let mut iter = self.delta_data.into_stream_merger_iter()?;
|
||||
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = self.delta_data.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
if !valid_lmdb_key(key) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let key = FacetGroupKeyCodec::<BytesRefCodec>::bytes_decode(key)
|
||||
.map_err(heed::Error::Encoding)?;
|
||||
let value = KvReader::new(value);
|
||||
|
||||
let docids_to_delete = value
|
||||
.get(DelAdd::Deletion)
|
||||
.map(CboRoaringBitmapCodec::bytes_decode)
|
||||
|
||||
@@ -79,9 +79,12 @@ pub const FACET_MIN_LEVEL_SIZE: u8 = 5;
|
||||
use std::collections::BTreeSet;
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::iter::FromIterator;
|
||||
|
||||
use grenad::Merger;
|
||||
use heed::types::{Bytes, DecodeIgnore};
|
||||
use charabia::normalizer::{Normalize, NormalizerOption};
|
||||
use grenad::{CompressionType, SortAlgorithm};
|
||||
use heed::types::{Bytes, DecodeIgnore, SerdeJson};
|
||||
use heed::BytesEncode;
|
||||
use time::OffsetDateTime;
|
||||
use tracing::debug;
|
||||
|
||||
@@ -90,9 +93,9 @@ use super::FacetsUpdateBulk;
|
||||
use crate::facet::FacetType;
|
||||
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupKeyCodec, FacetGroupValueCodec};
|
||||
use crate::heed_codec::BytesRefCodec;
|
||||
use crate::update::del_add::{DelAdd, KvReaderDelAdd};
|
||||
use crate::update::MergeFn;
|
||||
use crate::{try_split_array_at, FieldId, Index, Result};
|
||||
use crate::update::index_documents::create_sorter;
|
||||
use crate::update::merge_btreeset_string;
|
||||
use crate::{BEU16StrCodec, Index, Result, MAX_FACET_VALUE_LENGTH};
|
||||
|
||||
pub mod bulk;
|
||||
pub mod incremental;
|
||||
@@ -105,20 +108,16 @@ pub struct FacetsUpdate<'i> {
|
||||
index: &'i Index,
|
||||
database: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
|
||||
facet_type: FacetType,
|
||||
delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
normalized_delta_data: Option<Merger<BufReader<File>, MergeFn>>,
|
||||
delta_data: grenad::Reader<BufReader<File>>,
|
||||
group_size: u8,
|
||||
max_group_size: u8,
|
||||
min_level_size: u8,
|
||||
data_size: u64,
|
||||
}
|
||||
impl<'i> FacetsUpdate<'i> {
|
||||
pub fn new(
|
||||
index: &'i Index,
|
||||
facet_type: FacetType,
|
||||
delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
normalized_delta_data: Option<Merger<BufReader<File>, MergeFn>>,
|
||||
data_size: u64,
|
||||
delta_data: grenad::Reader<BufReader<File>>,
|
||||
) -> Self {
|
||||
let database = match facet_type {
|
||||
FacetType::String => {
|
||||
@@ -136,20 +135,18 @@ impl<'i> FacetsUpdate<'i> {
|
||||
min_level_size: FACET_MIN_LEVEL_SIZE,
|
||||
facet_type,
|
||||
delta_data,
|
||||
normalized_delta_data,
|
||||
data_size,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn execute(self, wtxn: &mut heed::RwTxn) -> Result<()> {
|
||||
if self.data_size == 0 {
|
||||
if self.delta_data.is_empty() {
|
||||
return Ok(());
|
||||
}
|
||||
debug!("Computing and writing the facet values levels docids into LMDB on disk...");
|
||||
self.index.set_updated_at(wtxn, &OffsetDateTime::now_utc())?;
|
||||
|
||||
// See self::comparison_bench::benchmark_facet_indexing
|
||||
if self.data_size >= (self.database.len(wtxn)? / 50) {
|
||||
if self.delta_data.len() >= (self.database.len(wtxn)? / 50) {
|
||||
let field_ids =
|
||||
self.index.faceted_fields_ids(wtxn)?.iter().copied().collect::<Vec<_>>();
|
||||
let bulk_update = FacetsUpdateBulk::new(
|
||||
@@ -173,108 +170,94 @@ impl<'i> FacetsUpdate<'i> {
|
||||
incremental_update.execute(wtxn)?;
|
||||
}
|
||||
|
||||
match self.normalized_delta_data {
|
||||
Some(data) => index_facet_search(wtxn, data, self.index),
|
||||
None => Ok(()),
|
||||
}
|
||||
}
|
||||
}
|
||||
// We clear the list of normalized-for-search facets
|
||||
// and the previous FSTs to compute everything from scratch
|
||||
self.index.facet_id_normalized_string_strings.clear(wtxn)?;
|
||||
self.index.facet_id_string_fst.clear(wtxn)?;
|
||||
|
||||
fn index_facet_search(
|
||||
wtxn: &mut heed::RwTxn,
|
||||
normalized_delta_data: Merger<BufReader<File>, MergeFn>,
|
||||
index: &Index,
|
||||
) -> Result<()> {
|
||||
let mut iter = normalized_delta_data.into_stream_merger_iter()?;
|
||||
while let Some((key_bytes, delta_bytes)) = iter.next()? {
|
||||
let deladd_reader = KvReaderDelAdd::new(delta_bytes);
|
||||
// As we can't use the same write transaction to read and write in two different databases
|
||||
// we must create a temporary sorter that we will write into LMDB afterward.
|
||||
// As multiple unnormalized facet values can become the same normalized facet value
|
||||
// we must merge them together.
|
||||
let mut sorter = create_sorter(
|
||||
SortAlgorithm::Unstable,
|
||||
merge_btreeset_string,
|
||||
CompressionType::None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let database_set = index
|
||||
.facet_id_normalized_string_strings
|
||||
.remap_key_type::<Bytes>()
|
||||
.get(wtxn, key_bytes)?
|
||||
.unwrap_or_default();
|
||||
|
||||
let add_set = deladd_reader
|
||||
.get(DelAdd::Addition)
|
||||
.and_then(|bytes| serde_json::from_slice::<BTreeSet<String>>(bytes).ok())
|
||||
.unwrap_or_default();
|
||||
|
||||
let del_set = match deladd_reader
|
||||
.get(DelAdd::Deletion)
|
||||
.and_then(|bytes| serde_json::from_slice::<BTreeSet<String>>(bytes).ok())
|
||||
{
|
||||
Some(del_set) => {
|
||||
let (field_id_bytes, _) = try_split_array_at(key_bytes).unwrap();
|
||||
let field_id = FieldId::from_be_bytes(field_id_bytes);
|
||||
let mut set = BTreeSet::new();
|
||||
for facet in del_set {
|
||||
let key = FacetGroupKey { field_id, level: 0, left_bound: facet.as_str() };
|
||||
// Check if the referenced value doesn't exist anymore before deleting it.
|
||||
if index
|
||||
.facet_id_string_docids
|
||||
.remap_data_type::<DecodeIgnore>()
|
||||
.get(wtxn, &key)?
|
||||
.is_none()
|
||||
{
|
||||
set.insert(facet);
|
||||
}
|
||||
// We iterate on the list of original, semi-normalized, facet values
|
||||
// and normalize them for search, inserting them in LMDB in any given order.
|
||||
let options = NormalizerOption { lossy: true, ..Default::default() };
|
||||
let database = self.index.facet_id_string_docids.remap_data_type::<DecodeIgnore>();
|
||||
for result in database.iter(wtxn)? {
|
||||
let (facet_group_key, ()) = result?;
|
||||
if let FacetGroupKey { field_id, level: 0, left_bound } = facet_group_key {
|
||||
let mut normalized_facet = left_bound.normalize(&options);
|
||||
let normalized_truncated_facet: String;
|
||||
if normalized_facet.len() > MAX_FACET_VALUE_LENGTH {
|
||||
normalized_truncated_facet = normalized_facet
|
||||
.char_indices()
|
||||
.take_while(|(idx, _)| *idx < MAX_FACET_VALUE_LENGTH)
|
||||
.map(|(_, c)| c)
|
||||
.collect();
|
||||
normalized_facet = normalized_truncated_facet.into();
|
||||
}
|
||||
set
|
||||
let set = BTreeSet::from_iter(std::iter::once(left_bound));
|
||||
let key = (field_id, normalized_facet.as_ref());
|
||||
let key = BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
|
||||
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
|
||||
sorter.insert(key, val)?;
|
||||
}
|
||||
None => BTreeSet::new(),
|
||||
};
|
||||
|
||||
let set: BTreeSet<_> =
|
||||
database_set.difference(&del_set).chain(add_set.iter()).cloned().collect();
|
||||
|
||||
if set.is_empty() {
|
||||
index
|
||||
.facet_id_normalized_string_strings
|
||||
.remap_key_type::<Bytes>()
|
||||
.delete(wtxn, key_bytes)?;
|
||||
} else {
|
||||
index
|
||||
.facet_id_normalized_string_strings
|
||||
.remap_key_type::<Bytes>()
|
||||
.put(wtxn, key_bytes, &set)?;
|
||||
}
|
||||
}
|
||||
|
||||
// We clear the FST of normalized-for-search to compute everything from scratch.
|
||||
index.facet_id_string_fst.clear(wtxn)?;
|
||||
// We compute one FST by string facet
|
||||
let mut text_fsts = vec![];
|
||||
let mut current_fst: Option<(u16, fst::SetBuilder<Vec<u8>>)> = None;
|
||||
let database = index.facet_id_normalized_string_strings.remap_data_type::<DecodeIgnore>();
|
||||
for result in database.iter(wtxn)? {
|
||||
let ((field_id, normalized_facet), _) = result?;
|
||||
current_fst = match current_fst.take() {
|
||||
Some((fid, fst_builder)) if fid != field_id => {
|
||||
let fst = fst_builder.into_set();
|
||||
text_fsts.push((fid, fst));
|
||||
Some((field_id, fst::SetBuilder::memory()))
|
||||
// In this loop we don't need to take care of merging bitmaps
|
||||
// as the grenad sorter already merged them for us.
|
||||
let mut merger_iter = sorter.into_stream_merger_iter()?;
|
||||
while let Some((key_bytes, btreeset_bytes)) = merger_iter.next()? {
|
||||
self.index.facet_id_normalized_string_strings.remap_types::<Bytes, Bytes>().put(
|
||||
wtxn,
|
||||
key_bytes,
|
||||
btreeset_bytes,
|
||||
)?;
|
||||
}
|
||||
|
||||
// We compute one FST by string facet
|
||||
let mut text_fsts = vec![];
|
||||
let mut current_fst: Option<(u16, fst::SetBuilder<Vec<u8>>)> = None;
|
||||
let database =
|
||||
self.index.facet_id_normalized_string_strings.remap_data_type::<DecodeIgnore>();
|
||||
for result in database.iter(wtxn)? {
|
||||
let ((field_id, normalized_facet), _) = result?;
|
||||
current_fst = match current_fst.take() {
|
||||
Some((fid, fst_builder)) if fid != field_id => {
|
||||
let fst = fst_builder.into_set();
|
||||
text_fsts.push((fid, fst));
|
||||
Some((field_id, fst::SetBuilder::memory()))
|
||||
}
|
||||
Some((field_id, fst_builder)) => Some((field_id, fst_builder)),
|
||||
None => Some((field_id, fst::SetBuilder::memory())),
|
||||
};
|
||||
|
||||
if let Some((_, fst_builder)) = current_fst.as_mut() {
|
||||
fst_builder.insert(normalized_facet)?;
|
||||
}
|
||||
Some((field_id, fst_builder)) => Some((field_id, fst_builder)),
|
||||
None => Some((field_id, fst::SetBuilder::memory())),
|
||||
};
|
||||
|
||||
if let Some((_, fst_builder)) = current_fst.as_mut() {
|
||||
fst_builder.insert(normalized_facet)?;
|
||||
}
|
||||
}
|
||||
|
||||
if let Some((field_id, fst_builder)) = current_fst {
|
||||
let fst = fst_builder.into_set();
|
||||
text_fsts.push((field_id, fst));
|
||||
}
|
||||
if let Some((field_id, fst_builder)) = current_fst {
|
||||
let fst = fst_builder.into_set();
|
||||
text_fsts.push((field_id, fst));
|
||||
}
|
||||
|
||||
// We write those FSTs in LMDB now
|
||||
for (field_id, fst) in text_fsts {
|
||||
index.facet_id_string_fst.put(wtxn, &field_id, &fst)?;
|
||||
}
|
||||
// We write those FSTs in LMDB now
|
||||
for (field_id, fst) in text_fsts {
|
||||
self.index.facet_id_string_fst.put(wtxn, &field_id, &fst)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -285,7 +268,6 @@ pub(crate) mod test_helpers {
|
||||
use std::marker::PhantomData;
|
||||
use std::rc::Rc;
|
||||
|
||||
use grenad::MergerBuilder;
|
||||
use heed::types::Bytes;
|
||||
use heed::{BytesDecode, BytesEncode, Env, RoTxn, RwTxn};
|
||||
use roaring::RoaringBitmap;
|
||||
@@ -298,8 +280,7 @@ pub(crate) mod test_helpers {
|
||||
use crate::search::facet::get_highest_level;
|
||||
use crate::snapshot_tests::display_bitmap;
|
||||
use crate::update::del_add::{DelAdd, KvWriterDelAdd};
|
||||
use crate::update::index_documents::merge_deladd_cbo_roaring_bitmaps;
|
||||
use crate::update::{FacetsUpdateIncrementalInner, MergeFn};
|
||||
use crate::update::FacetsUpdateIncrementalInner;
|
||||
use crate::CboRoaringBitmapCodec;
|
||||
|
||||
/// Utility function to generate a string whose position in a lexicographically
|
||||
@@ -482,13 +463,10 @@ pub(crate) mod test_helpers {
|
||||
}
|
||||
writer.finish().unwrap();
|
||||
let reader = grenad::Reader::new(std::io::Cursor::new(new_data)).unwrap();
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
builder.push(reader.into_cursor().unwrap());
|
||||
let merger = builder.build();
|
||||
|
||||
let update = FacetsUpdateBulkInner {
|
||||
db: self.content,
|
||||
delta_data: Some(merger),
|
||||
delta_data: Some(reader),
|
||||
group_size: self.group_size.get(),
|
||||
min_level_size: self.min_level_size.get(),
|
||||
};
|
||||
|
||||
@@ -26,7 +26,7 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
|
||||
obkv_documents: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
searchable_fields: &Option<HashSet<FieldId>>,
|
||||
stop_words: Option<&fst::Set<Vec<u8>>>,
|
||||
stop_words: Option<&fst::Set<&[u8]>>,
|
||||
allowed_separators: Option<&[&str]>,
|
||||
dictionary: Option<&[&str]>,
|
||||
max_positions_per_attributes: Option<u32>,
|
||||
@@ -181,11 +181,11 @@ fn searchable_fields_changed(
|
||||
|
||||
/// Factorize tokenizer building.
|
||||
fn tokenizer_builder<'a>(
|
||||
stop_words: Option<&'a fst::Set<Vec<u8>>>,
|
||||
stop_words: Option<&'a fst::Set<&[u8]>>,
|
||||
allowed_separators: Option<&'a [&str]>,
|
||||
dictionary: Option<&'a [&str]>,
|
||||
script_language: Option<&'a HashMap<Script, Vec<Language>>>,
|
||||
) -> TokenizerBuilder<'a, Vec<u8>> {
|
||||
) -> TokenizerBuilder<'a, &'a [u8]> {
|
||||
let mut tokenizer_builder = TokenizerBuilder::new();
|
||||
if let Some(stop_words) = stop_words {
|
||||
tokenizer_builder.stop_words(stop_words);
|
||||
@@ -211,7 +211,7 @@ fn lang_safe_tokens_from_document<'a>(
|
||||
obkv: &KvReader<FieldId>,
|
||||
searchable_fields: &Option<HashSet<FieldId>>,
|
||||
tokenizer: &Tokenizer,
|
||||
stop_words: Option<&fst::Set<Vec<u8>>>,
|
||||
stop_words: Option<&fst::Set<&[u8]>>,
|
||||
allowed_separators: Option<&[&str]>,
|
||||
dictionary: Option<&[&str]>,
|
||||
max_positions_per_attributes: u32,
|
||||
|
||||
@@ -1,21 +1,15 @@
|
||||
use std::collections::BTreeSet;
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::iter::FromIterator;
|
||||
use std::{io, str};
|
||||
|
||||
use charabia::normalizer::{Normalize, NormalizerOption};
|
||||
use heed::types::SerdeJson;
|
||||
use heed::BytesEncode;
|
||||
|
||||
use super::helpers::{create_sorter, sorter_into_reader, try_split_array_at, GrenadParameters};
|
||||
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupKeyCodec};
|
||||
use crate::heed_codec::{BEU16StrCodec, StrRefCodec};
|
||||
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
|
||||
use crate::update::index_documents::helpers::{
|
||||
merge_deladd_btreeset_string, merge_deladd_cbo_roaring_bitmaps,
|
||||
};
|
||||
use crate::{FieldId, Result, MAX_FACET_VALUE_LENGTH};
|
||||
use crate::heed_codec::StrRefCodec;
|
||||
use crate::update::del_add::{KvReaderDelAdd, KvWriterDelAdd};
|
||||
use crate::update::index_documents::helpers::merge_deladd_cbo_roaring_bitmaps;
|
||||
use crate::{FieldId, Result};
|
||||
|
||||
/// Extracts the facet string and the documents ids where this facet string appear.
|
||||
///
|
||||
@@ -25,11 +19,10 @@ use crate::{FieldId, Result, MAX_FACET_VALUE_LENGTH};
|
||||
pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
|
||||
docid_fid_facet_string: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
) -> Result<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
puffin::profile_function!();
|
||||
|
||||
let max_memory = indexer.max_memory_by_thread();
|
||||
let options = NormalizerOption { lossy: true, ..Default::default() };
|
||||
|
||||
let mut facet_string_docids_sorter = create_sorter(
|
||||
grenad::SortAlgorithm::Stable,
|
||||
@@ -37,30 +30,12 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
indexer.max_nb_chunks,
|
||||
max_memory.map(|m| m / 2),
|
||||
);
|
||||
|
||||
let mut normalized_facet_string_docids_sorter = create_sorter(
|
||||
grenad::SortAlgorithm::Stable,
|
||||
merge_deladd_btreeset_string,
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
indexer.max_nb_chunks,
|
||||
max_memory.map(|m| m / 2),
|
||||
max_memory,
|
||||
);
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
let mut cursor = docid_fid_facet_string.into_cursor()?;
|
||||
while let Some((key, deladd_original_value_bytes)) = cursor.move_on_next()? {
|
||||
let deladd_reader = KvReaderDelAdd::new(deladd_original_value_bytes);
|
||||
|
||||
// nothing to do if we delete and re-add the value.
|
||||
if deladd_reader.get(DelAdd::Deletion).is_some()
|
||||
&& deladd_reader.get(DelAdd::Addition).is_some()
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
let (field_id_bytes, bytes) = try_split_array_at(key).unwrap();
|
||||
let field_id = FieldId::from_be_bytes(field_id_bytes);
|
||||
|
||||
@@ -69,46 +44,17 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
|
||||
let document_id = u32::from_be_bytes(document_id_bytes);
|
||||
|
||||
let normalized_value = str::from_utf8(normalized_value_bytes)?;
|
||||
|
||||
// Facet search normalization
|
||||
{
|
||||
let mut hyper_normalized_value = normalized_value.normalize(&options);
|
||||
let normalized_truncated_facet: String;
|
||||
if hyper_normalized_value.len() > MAX_FACET_VALUE_LENGTH {
|
||||
normalized_truncated_facet = hyper_normalized_value
|
||||
.char_indices()
|
||||
.take_while(|(idx, _)| *idx < MAX_FACET_VALUE_LENGTH)
|
||||
.map(|(_, c)| c)
|
||||
.collect();
|
||||
hyper_normalized_value = normalized_truncated_facet.into();
|
||||
}
|
||||
let set = BTreeSet::from_iter(std::iter::once(normalized_value));
|
||||
|
||||
buffer.clear();
|
||||
let mut obkv = KvWriterDelAdd::new(&mut buffer);
|
||||
for (deladd_key, _) in deladd_reader.iter() {
|
||||
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
|
||||
obkv.insert(deladd_key, val)?;
|
||||
}
|
||||
obkv.finish()?;
|
||||
|
||||
let key = (field_id, hyper_normalized_value.as_ref());
|
||||
let key_bytes = BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
|
||||
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
|
||||
}
|
||||
|
||||
let key = FacetGroupKey { field_id, level: 0, left_bound: normalized_value };
|
||||
let key_bytes = FacetGroupKeyCodec::<StrRefCodec>::bytes_encode(&key).unwrap();
|
||||
|
||||
buffer.clear();
|
||||
let mut obkv = KvWriterDelAdd::new(&mut buffer);
|
||||
for (deladd_key, _) in deladd_reader.iter() {
|
||||
for (deladd_key, _) in KvReaderDelAdd::new(deladd_original_value_bytes).iter() {
|
||||
obkv.insert(deladd_key, document_id.to_ne_bytes())?;
|
||||
}
|
||||
obkv.finish()?;
|
||||
facet_string_docids_sorter.insert(&key_bytes, &buffer)?;
|
||||
}
|
||||
|
||||
let normalized = sorter_into_reader(normalized_facet_string_docids_sorter, indexer)?;
|
||||
sorter_into_reader(facet_string_docids_sorter, indexer).map(|s| (s, normalized))
|
||||
sorter_into_reader(facet_string_docids_sorter, indexer)
|
||||
}
|
||||
|
||||
@@ -257,7 +257,6 @@ fn push_vectors_diff(
|
||||
key_buffer: &mut Vec<u8>,
|
||||
delta: VectorStateDelta,
|
||||
) -> Result<()> {
|
||||
puffin::profile_function!();
|
||||
let (must_remove, prompt, (mut del_vectors, mut add_vectors)) = delta.into_values();
|
||||
if must_remove {
|
||||
key_buffer.truncate(TRUNCATE_SIZE);
|
||||
@@ -333,15 +332,16 @@ fn extract_vectors(
|
||||
}
|
||||
}
|
||||
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::extract")]
|
||||
#[logging_timer::time]
|
||||
pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
// docid, prompt
|
||||
prompt_reader: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
puffin::profile_function!();
|
||||
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
|
||||
let rt = tokio::runtime::Builder::new_current_thread().enable_io().enable_time().build()?;
|
||||
|
||||
let n_chunks = embedder.chunk_count_hint(); // chunk level parellelism
|
||||
let n_vectors_per_chunk = embedder.prompt_count_in_chunk_hint(); // number of vectors in a single chunk
|
||||
|
||||
// docid, state with embedding
|
||||
@@ -375,8 +375,11 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
current_chunk_ids.push(docid);
|
||||
|
||||
if chunks.len() == chunks.capacity() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)))
|
||||
let chunked_embeds = rt
|
||||
.block_on(
|
||||
embedder
|
||||
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks))),
|
||||
)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
@@ -393,8 +396,8 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
|
||||
// send last chunk
|
||||
if !chunks.is_empty() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::take(&mut chunks))
|
||||
let chunked_embeds = rt
|
||||
.block_on(embedder.embed_chunks(std::mem::take(&mut chunks)))
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
for (docid, embeddings) in chunks_ids
|
||||
@@ -407,15 +410,13 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
}
|
||||
|
||||
if !current_chunk.is_empty() {
|
||||
let embeds = embedder
|
||||
.embed_chunks(vec![std::mem::take(&mut current_chunk)])
|
||||
let embeds = rt
|
||||
.block_on(embedder.embed(std::mem::take(&mut current_chunk)))
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
if let Some(embeds) = embeds.first() {
|
||||
for (docid, embeddings) in current_chunk_ids.iter().zip(embeds.iter()) {
|
||||
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
|
||||
}
|
||||
for (docid, embeddings) in current_chunk_ids.iter().zip(embeds.iter()) {
|
||||
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ use std::io::BufReader;
|
||||
|
||||
use crossbeam_channel::Sender;
|
||||
use rayon::prelude::*;
|
||||
use tracing::debug;
|
||||
|
||||
use self::extract_docid_word_positions::extract_docid_word_positions;
|
||||
use self::extract_facet_number_docids::extract_facet_number_docids;
|
||||
@@ -28,7 +29,10 @@ use self::extract_vector_points::{
|
||||
use self::extract_word_docids::extract_word_docids;
|
||||
use self::extract_word_pair_proximity_docids::extract_word_pair_proximity_docids;
|
||||
use self::extract_word_position_docids::extract_word_position_docids;
|
||||
use super::helpers::{as_cloneable_grenad, CursorClonableMmap, GrenadParameters};
|
||||
use super::helpers::{
|
||||
as_cloneable_grenad, merge_deladd_cbo_roaring_bitmaps, CursorClonableMmap, GrenadParameters,
|
||||
MergeFn, MergeableReader,
|
||||
};
|
||||
use super::{helpers, TypedChunk};
|
||||
use crate::proximity::ProximityPrecision;
|
||||
use crate::vector::EmbeddingConfigs;
|
||||
@@ -48,7 +52,7 @@ pub(crate) fn data_from_obkv_documents(
|
||||
primary_key_id: FieldId,
|
||||
geo_fields_ids: Option<(FieldId, FieldId)>,
|
||||
field_id_map: FieldsIdsMap,
|
||||
stop_words: Option<fst::Set<Vec<u8>>>,
|
||||
stop_words: Option<fst::Set<&[u8]>>,
|
||||
allowed_separators: Option<&[&str]>,
|
||||
dictionary: Option<&[&str]>,
|
||||
max_positions_per_attributes: Option<u32>,
|
||||
@@ -58,154 +62,201 @@ pub(crate) fn data_from_obkv_documents(
|
||||
) -> Result<()> {
|
||||
puffin::profile_function!();
|
||||
|
||||
let (original_pipeline_result, flattened_pipeline_result): (Result<_>, Result<_>) = rayon::join(
|
||||
|| {
|
||||
original_obkv_chunks
|
||||
.par_bridge()
|
||||
.map(|original_documents_chunk| {
|
||||
send_original_documents_data(
|
||||
original_documents_chunk,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
field_id_map.clone(),
|
||||
embedders.clone(),
|
||||
)
|
||||
})
|
||||
.collect::<Result<()>>()
|
||||
},
|
||||
|| {
|
||||
flattened_obkv_chunks
|
||||
.par_bridge()
|
||||
.map(|flattened_obkv_chunks| {
|
||||
send_and_extract_flattened_documents_data(
|
||||
flattened_obkv_chunks,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
&searchable_fields,
|
||||
&faceted_fields,
|
||||
primary_key_id,
|
||||
geo_fields_ids,
|
||||
&stop_words,
|
||||
&allowed_separators,
|
||||
&dictionary,
|
||||
max_positions_per_attributes,
|
||||
)
|
||||
})
|
||||
.map(|result| {
|
||||
if let Ok((
|
||||
ref docid_word_positions_chunk,
|
||||
(ref fid_docid_facet_numbers_chunk, ref fid_docid_facet_strings_chunk),
|
||||
)) = result
|
||||
{
|
||||
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
|
||||
docid_word_positions_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_fid_word_count_docids,
|
||||
TypedChunk::FieldIdWordCountDocids,
|
||||
"field-id-wordcount-docids",
|
||||
);
|
||||
original_obkv_chunks
|
||||
.par_bridge()
|
||||
.map(|original_documents_chunk| {
|
||||
send_original_documents_data(
|
||||
original_documents_chunk,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
field_id_map.clone(),
|
||||
embedders.clone(),
|
||||
)
|
||||
})
|
||||
.collect::<Result<()>>()?;
|
||||
|
||||
let exact_attributes = exact_attributes.clone();
|
||||
run_extraction_task::<
|
||||
_,
|
||||
_,
|
||||
(
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
),
|
||||
>(
|
||||
docid_word_positions_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
move |doc_word_pos, indexer| {
|
||||
extract_word_docids(doc_word_pos, indexer, &exact_attributes)
|
||||
},
|
||||
|(
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
)| {
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
}
|
||||
},
|
||||
"word-docids",
|
||||
);
|
||||
#[allow(clippy::type_complexity)]
|
||||
let result: Result<(Vec<_>, (Vec<_>, (Vec<_>, (Vec<_>, (Vec<_>, Vec<_>)))))> =
|
||||
flattened_obkv_chunks
|
||||
.par_bridge()
|
||||
.map(|flattened_obkv_chunks| {
|
||||
send_and_extract_flattened_documents_data(
|
||||
flattened_obkv_chunks,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
&searchable_fields,
|
||||
&faceted_fields,
|
||||
primary_key_id,
|
||||
geo_fields_ids,
|
||||
&stop_words,
|
||||
&allowed_separators,
|
||||
&dictionary,
|
||||
max_positions_per_attributes,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
|
||||
docid_word_positions_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_word_position_docids,
|
||||
TypedChunk::WordPositionDocids,
|
||||
"word-position-docids",
|
||||
);
|
||||
let (
|
||||
docid_word_positions_chunks,
|
||||
(
|
||||
fid_docid_facet_numbers_chunks,
|
||||
(
|
||||
fid_docid_facet_strings_chunks,
|
||||
(
|
||||
facet_is_null_docids_chunks,
|
||||
(facet_is_empty_docids_chunks, facet_exists_docids_chunks),
|
||||
),
|
||||
),
|
||||
),
|
||||
) = result?;
|
||||
|
||||
run_extraction_task::<
|
||||
_,
|
||||
_,
|
||||
(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>),
|
||||
>(
|
||||
fid_docid_facet_strings_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_facet_string_docids,
|
||||
TypedChunk::FieldIdFacetStringDocids,
|
||||
"field-id-facet-string-docids",
|
||||
);
|
||||
// merge facet_exists_docids and send them as a typed chunk
|
||||
{
|
||||
let lmdb_writer_sx = lmdb_writer_sx.clone();
|
||||
rayon::spawn(move || {
|
||||
debug!(database = "facet-id-exists-docids", "merge");
|
||||
match facet_exists_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
|
||||
Ok(reader) => {
|
||||
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetExistsDocids(reader)));
|
||||
}
|
||||
Err(e) => {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
|
||||
fid_docid_facet_numbers_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_facet_number_docids,
|
||||
TypedChunk::FieldIdFacetNumberDocids,
|
||||
"field-id-facet-number-docids",
|
||||
);
|
||||
// merge facet_is_null_docids and send them as a typed chunk
|
||||
{
|
||||
let lmdb_writer_sx = lmdb_writer_sx.clone();
|
||||
rayon::spawn(move || {
|
||||
debug!(database = "facet-id-is-null-docids", "merge");
|
||||
match facet_is_null_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
|
||||
Ok(reader) => {
|
||||
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsNullDocids(reader)));
|
||||
}
|
||||
Err(e) => {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
if proximity_precision == ProximityPrecision::ByWord {
|
||||
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
|
||||
docid_word_positions_chunk.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_word_pair_proximity_docids,
|
||||
TypedChunk::WordPairProximityDocids,
|
||||
"word-pair-proximity-docids",
|
||||
);
|
||||
}
|
||||
}
|
||||
// merge facet_is_empty_docids and send them as a typed chunk
|
||||
{
|
||||
let lmdb_writer_sx = lmdb_writer_sx.clone();
|
||||
rayon::spawn(move || {
|
||||
debug!(database = "facet-id-is-empty-docids", "merge");
|
||||
match facet_is_empty_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
|
||||
Ok(reader) => {
|
||||
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsEmptyDocids(reader)));
|
||||
}
|
||||
Err(e) => {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.collect::<Result<()>>()
|
||||
},
|
||||
if proximity_precision == ProximityPrecision::ByWord {
|
||||
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
|
||||
docid_word_positions_chunks.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_word_pair_proximity_docids,
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
TypedChunk::WordPairProximityDocids,
|
||||
"word-pair-proximity-docids",
|
||||
);
|
||||
}
|
||||
|
||||
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
|
||||
docid_word_positions_chunks.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_fid_word_count_docids,
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
TypedChunk::FieldIdWordCountDocids,
|
||||
"field-id-wordcount-docids",
|
||||
);
|
||||
|
||||
original_pipeline_result.and(flattened_pipeline_result)
|
||||
spawn_extraction_task::<
|
||||
_,
|
||||
_,
|
||||
Vec<(
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
)>,
|
||||
>(
|
||||
docid_word_positions_chunks.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
move |doc_word_pos, indexer| extract_word_docids(doc_word_pos, indexer, &exact_attributes),
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
|(word_docids_reader, exact_word_docids_reader, word_fid_docids_reader)| {
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
}
|
||||
},
|
||||
"word-docids",
|
||||
);
|
||||
|
||||
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
|
||||
docid_word_positions_chunks.clone(),
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_word_position_docids,
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
TypedChunk::WordPositionDocids,
|
||||
"word-position-docids",
|
||||
);
|
||||
|
||||
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
|
||||
fid_docid_facet_strings_chunks,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
extract_facet_string_docids,
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
TypedChunk::FieldIdFacetStringDocids,
|
||||
"field-id-facet-string-docids",
|
||||
);
|
||||
|
||||
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
|
||||
fid_docid_facet_numbers_chunks,
|
||||
indexer,
|
||||
lmdb_writer_sx,
|
||||
extract_facet_number_docids,
|
||||
merge_deladd_cbo_roaring_bitmaps,
|
||||
TypedChunk::FieldIdFacetNumberDocids,
|
||||
"field-id-facet-number-docidsdexing::details, ",
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Spawn a new task to extract data for a specific DB using extract_fn.
|
||||
/// Generated grenad chunks are merged using the merge_fn.
|
||||
/// The result of merged chunks is serialized as TypedChunk using the serialize_fn
|
||||
/// and sent into lmdb_writer_sx.
|
||||
fn run_extraction_task<FE, FS, M>(
|
||||
chunk: grenad::Reader<CursorClonableMmap>,
|
||||
fn spawn_extraction_task<FE, FS, M>(
|
||||
chunks: Vec<grenad::Reader<CursorClonableMmap>>,
|
||||
indexer: GrenadParameters,
|
||||
lmdb_writer_sx: Sender<Result<TypedChunk>>,
|
||||
extract_fn: FE,
|
||||
merge_fn: MergeFn,
|
||||
serialize_fn: FS,
|
||||
name: &'static str,
|
||||
) where
|
||||
FE: Fn(grenad::Reader<CursorClonableMmap>, GrenadParameters) -> Result<M>
|
||||
FE: Fn(grenad::Reader<CursorClonableMmap>, GrenadParameters) -> Result<M::Output>
|
||||
+ Sync
|
||||
+ Send
|
||||
+ 'static,
|
||||
FS: Fn(M) -> TypedChunk + Sync + Send + 'static,
|
||||
M: Send,
|
||||
FS: Fn(M::Output) -> TypedChunk + Sync + Send + 'static,
|
||||
M: MergeableReader + FromParallelIterator<M::Output> + Send + 'static,
|
||||
M::Output: Send,
|
||||
{
|
||||
let current_span = tracing::Span::current();
|
||||
|
||||
@@ -213,16 +264,25 @@ fn run_extraction_task<FE, FS, M>(
|
||||
let child_span =
|
||||
tracing::trace_span!(target: "", parent: ¤t_span, "extract_multiple_chunks");
|
||||
let _entered = child_span.enter();
|
||||
puffin::profile_scope!("extract_multiple_chunks", name);
|
||||
match extract_fn(chunk, indexer) {
|
||||
Ok(chunk) => {
|
||||
let _ = lmdb_writer_sx.send(Ok(serialize_fn(chunk)));
|
||||
puffin::profile_scope!("extract_multiple_chunksdexing::details, ", name);
|
||||
let chunks: Result<M> =
|
||||
chunks.into_par_iter().map(|chunk| extract_fn(chunk, indexer)).collect();
|
||||
let current_span = tracing::Span::current();
|
||||
|
||||
rayon::spawn(move || match chunks {
|
||||
Ok(chunks) => {
|
||||
let child_span = tracing::trace_span!(target: "", parent: ¤t_span, "merge_multiple_chunks");
|
||||
let _entered = child_span.enter();
|
||||
debug!(database = name, "merge");
|
||||
puffin::profile_scope!("merge_multiple_chunks", name);
|
||||
let reader = chunks.merge(merge_fn, &indexer);
|
||||
let _ = lmdb_writer_sx.send(reader.map(serialize_fn));
|
||||
}
|
||||
Err(e) => {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
/// Extract chunked data and send it into lmdb_writer_sx sender:
|
||||
@@ -280,7 +340,7 @@ fn send_original_documents_data(
|
||||
});
|
||||
|
||||
// TODO: create a custom internal error
|
||||
let _ = lmdb_writer_sx.send(Ok(TypedChunk::Documents(original_documents_chunk)));
|
||||
lmdb_writer_sx.send(Ok(TypedChunk::Documents(original_documents_chunk))).unwrap();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -300,13 +360,22 @@ fn send_and_extract_flattened_documents_data(
|
||||
faceted_fields: &HashSet<FieldId>,
|
||||
primary_key_id: FieldId,
|
||||
geo_fields_ids: Option<(FieldId, FieldId)>,
|
||||
stop_words: &Option<fst::Set<Vec<u8>>>,
|
||||
stop_words: &Option<fst::Set<&[u8]>>,
|
||||
allowed_separators: &Option<&[&str]>,
|
||||
dictionary: &Option<&[&str]>,
|
||||
max_positions_per_attributes: Option<u32>,
|
||||
) -> Result<(
|
||||
grenad::Reader<CursorClonableMmap>,
|
||||
(grenad::Reader<CursorClonableMmap>, grenad::Reader<CursorClonableMmap>),
|
||||
(
|
||||
grenad::Reader<CursorClonableMmap>,
|
||||
(
|
||||
grenad::Reader<CursorClonableMmap>,
|
||||
(
|
||||
grenad::Reader<BufReader<File>>,
|
||||
(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>),
|
||||
),
|
||||
),
|
||||
),
|
||||
)> {
|
||||
let flattened_documents_chunk =
|
||||
flattened_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
|
||||
@@ -377,17 +446,16 @@ fn send_and_extract_flattened_documents_data(
|
||||
fid_docid_facet_strings_chunk.clone(),
|
||||
)));
|
||||
|
||||
let _ = lmdb_writer_sx
|
||||
.send(Ok(TypedChunk::FieldIdFacetIsNullDocids(fid_facet_is_null_docids_chunk)));
|
||||
|
||||
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsEmptyDocids(
|
||||
fid_facet_is_empty_docids_chunk,
|
||||
)));
|
||||
|
||||
let _ = lmdb_writer_sx
|
||||
.send(Ok(TypedChunk::FieldIdFacetExistsDocids(fid_facet_exists_docids_chunk)));
|
||||
|
||||
Ok((fid_docid_facet_numbers_chunk, fid_docid_facet_strings_chunk))
|
||||
Ok((
|
||||
fid_docid_facet_numbers_chunk,
|
||||
(
|
||||
fid_docid_facet_strings_chunk,
|
||||
(
|
||||
fid_facet_is_null_docids_chunk,
|
||||
(fid_facet_is_empty_docids_chunk, fid_facet_exists_docids_chunk),
|
||||
),
|
||||
),
|
||||
))
|
||||
},
|
||||
);
|
||||
|
||||
|
||||
@@ -9,10 +9,6 @@ use super::{ClonableMmap, MergeFn};
|
||||
use crate::update::index_documents::valid_lmdb_key;
|
||||
use crate::Result;
|
||||
|
||||
/// This is something reasonable given the fact
|
||||
/// that there is one grenad sorter by thread.
|
||||
const MAX_GRENAD_SORTER_USAGE: usize = 500 * 1024 * 1024; // 500 MiB
|
||||
|
||||
pub type CursorClonableMmap = io::Cursor<ClonableMmap>;
|
||||
|
||||
pub fn create_writer<R: io::Write>(
|
||||
@@ -28,9 +24,6 @@ pub fn create_writer<R: io::Write>(
|
||||
builder.build(BufWriter::new(file))
|
||||
}
|
||||
|
||||
/// A helper function that creates a grenad sorter
|
||||
/// with the given parameters. The max memory is
|
||||
/// clamped to something reasonable.
|
||||
pub fn create_sorter(
|
||||
sort_algorithm: grenad::SortAlgorithm,
|
||||
merge: MergeFn,
|
||||
@@ -48,7 +41,7 @@ pub fn create_sorter(
|
||||
builder.max_nb_chunks(nb_chunks);
|
||||
}
|
||||
if let Some(memory) = max_memory {
|
||||
builder.dump_threshold(memory.min(MAX_GRENAD_SORTER_USAGE));
|
||||
builder.dump_threshold(memory);
|
||||
builder.allow_realloc(false);
|
||||
}
|
||||
builder.sort_algorithm(sort_algorithm);
|
||||
@@ -90,6 +83,90 @@ pub unsafe fn as_cloneable_grenad(
|
||||
Ok(reader)
|
||||
}
|
||||
|
||||
pub trait MergeableReader
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
type Output;
|
||||
|
||||
fn merge(self, merge_fn: MergeFn, indexer: &GrenadParameters) -> Result<Self::Output>;
|
||||
}
|
||||
|
||||
impl MergeableReader for Vec<grenad::Reader<BufReader<File>>> {
|
||||
type Output = grenad::Reader<BufReader<File>>;
|
||||
|
||||
fn merge(self, merge_fn: MergeFn, params: &GrenadParameters) -> Result<Self::Output> {
|
||||
let mut merger = MergerBuilder::new(merge_fn);
|
||||
self.into_iter().try_for_each(|r| merger.push(r))?;
|
||||
merger.finish(params)
|
||||
}
|
||||
}
|
||||
|
||||
impl MergeableReader for Vec<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
|
||||
type Output = (grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>);
|
||||
|
||||
fn merge(self, merge_fn: MergeFn, params: &GrenadParameters) -> Result<Self::Output> {
|
||||
let mut m1 = MergerBuilder::new(merge_fn);
|
||||
let mut m2 = MergerBuilder::new(merge_fn);
|
||||
for (r1, r2) in self.into_iter() {
|
||||
m1.push(r1)?;
|
||||
m2.push(r2)?;
|
||||
}
|
||||
Ok((m1.finish(params)?, m2.finish(params)?))
|
||||
}
|
||||
}
|
||||
|
||||
impl MergeableReader
|
||||
for Vec<(
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
)>
|
||||
{
|
||||
type Output = (
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
grenad::Reader<BufReader<File>>,
|
||||
);
|
||||
|
||||
fn merge(self, merge_fn: MergeFn, params: &GrenadParameters) -> Result<Self::Output> {
|
||||
let mut m1 = MergerBuilder::new(merge_fn);
|
||||
let mut m2 = MergerBuilder::new(merge_fn);
|
||||
let mut m3 = MergerBuilder::new(merge_fn);
|
||||
for (r1, r2, r3) in self.into_iter() {
|
||||
m1.push(r1)?;
|
||||
m2.push(r2)?;
|
||||
m3.push(r3)?;
|
||||
}
|
||||
Ok((m1.finish(params)?, m2.finish(params)?, m3.finish(params)?))
|
||||
}
|
||||
}
|
||||
|
||||
struct MergerBuilder<R>(grenad::MergerBuilder<R, MergeFn>);
|
||||
|
||||
impl<R: io::Read + io::Seek> MergerBuilder<R> {
|
||||
fn new(merge_fn: MergeFn) -> Self {
|
||||
Self(grenad::MergerBuilder::new(merge_fn))
|
||||
}
|
||||
|
||||
fn push(&mut self, reader: grenad::Reader<R>) -> Result<()> {
|
||||
self.0.push(reader.into_cursor()?);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn finish(self, params: &GrenadParameters) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
let merger = self.0.build();
|
||||
let mut writer = create_writer(
|
||||
params.chunk_compression_type,
|
||||
params.chunk_compression_level,
|
||||
tempfile::tempfile()?,
|
||||
);
|
||||
merger.write_into_stream_writer(&mut writer)?;
|
||||
|
||||
writer_into_reader(writer)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GrenadParameters {
|
||||
pub chunk_compression_type: CompressionType,
|
||||
@@ -111,15 +188,10 @@ impl Default for GrenadParameters {
|
||||
|
||||
impl GrenadParameters {
|
||||
/// This function use the number of threads in the current threadpool to compute the value.
|
||||
///
|
||||
/// This should be called inside of a rayon thread pool,
|
||||
/// otherwise, it will take the global number of threads.
|
||||
///
|
||||
/// The max memory cannot exceed a given reasonable value.
|
||||
/// Otherwise, it will take the global number of threads.
|
||||
pub fn max_memory_by_thread(&self) -> Option<usize> {
|
||||
self.max_memory.map(|max_memory| {
|
||||
(max_memory / rayon::current_num_threads()).min(MAX_GRENAD_SORTER_USAGE)
|
||||
})
|
||||
self.max_memory.map(|max_memory| max_memory / rayon::current_num_threads())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -35,6 +35,27 @@ pub fn merge_roaring_bitmaps<'a>(_key: &[u8], values: &[Cow<'a, [u8]>]) -> Resul
|
||||
}
|
||||
}
|
||||
|
||||
pub fn merge_btreeset_string<'a>(_key: &[u8], values: &[Cow<'a, [u8]>]) -> Result<Cow<'a, [u8]>> {
|
||||
if values.len() == 1 {
|
||||
Ok(values[0].clone())
|
||||
} else {
|
||||
// TODO improve the perf by using a `#[borrow] Cow<str>`.
|
||||
let strings: BTreeSet<String> = values
|
||||
.iter()
|
||||
.map(AsRef::as_ref)
|
||||
.map(serde_json::from_slice::<BTreeSet<String>>)
|
||||
.map(StdResult::unwrap)
|
||||
.reduce(|mut current, new| {
|
||||
for x in new {
|
||||
current.insert(x);
|
||||
}
|
||||
current
|
||||
})
|
||||
.unwrap();
|
||||
Ok(Cow::Owned(serde_json::to_vec(&strings).unwrap()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn keep_first<'a>(_key: &[u8], values: &[Cow<'a, [u8]>]) -> Result<Cow<'a, [u8]>> {
|
||||
Ok(values[0].clone())
|
||||
}
|
||||
@@ -222,40 +243,3 @@ pub fn merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap<'a>(
|
||||
buffer,
|
||||
)?)
|
||||
}
|
||||
|
||||
/// Do a union of BtreeSet on both sides of a DelAdd obkv
|
||||
/// separately and outputs a new DelAdd with both unions.
|
||||
pub fn merge_deladd_btreeset_string<'a>(
|
||||
_key: &[u8],
|
||||
values: &[Cow<'a, [u8]>],
|
||||
) -> Result<Cow<'a, [u8]>> {
|
||||
if values.len() == 1 {
|
||||
Ok(values[0].clone())
|
||||
} else {
|
||||
// Retrieve the bitmaps from both sides
|
||||
let mut del_set = BTreeSet::new();
|
||||
let mut add_set = BTreeSet::new();
|
||||
for value in values {
|
||||
let obkv = KvReaderDelAdd::new(value);
|
||||
if let Some(bytes) = obkv.get(DelAdd::Deletion) {
|
||||
let set = serde_json::from_slice::<BTreeSet<String>>(bytes).unwrap();
|
||||
for value in set {
|
||||
del_set.insert(value);
|
||||
}
|
||||
}
|
||||
if let Some(bytes) = obkv.get(DelAdd::Addition) {
|
||||
let set = serde_json::from_slice::<BTreeSet<String>>(bytes).unwrap();
|
||||
for value in set {
|
||||
add_set.insert(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut output_deladd_obkv = KvWriterDelAdd::memory();
|
||||
let del = serde_json::to_vec(&del_set).unwrap();
|
||||
output_deladd_obkv.insert(DelAdd::Deletion, &del)?;
|
||||
let add = serde_json::to_vec(&add_set).unwrap();
|
||||
output_deladd_obkv.insert(DelAdd::Addition, &add)?;
|
||||
output_deladd_obkv.into_inner().map(Cow::from).map_err(Into::into)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -10,10 +10,10 @@ use fst::{IntoStreamer, Streamer};
|
||||
pub use grenad_helpers::{
|
||||
as_cloneable_grenad, create_sorter, create_writer, grenad_obkv_into_chunks,
|
||||
merge_ignore_values, sorter_into_reader, write_sorter_into_database, writer_into_reader,
|
||||
GrenadParameters,
|
||||
GrenadParameters, MergeableReader,
|
||||
};
|
||||
pub use merge_functions::{
|
||||
keep_first, keep_latest_obkv, merge_cbo_roaring_bitmaps, merge_deladd_btreeset_string,
|
||||
keep_first, keep_latest_obkv, merge_btreeset_string, merge_cbo_roaring_bitmaps,
|
||||
merge_deladd_cbo_roaring_bitmaps, merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
merge_roaring_bitmaps, obkvs_keep_last_addition_merge_deletions,
|
||||
obkvs_merge_additions_and_deletions, MergeFn,
|
||||
|
||||
@@ -5,29 +5,29 @@ mod transform;
|
||||
mod typed_chunk;
|
||||
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::io::{Read, Seek};
|
||||
use std::io::{Cursor, Read, Seek};
|
||||
use std::iter::FromIterator;
|
||||
use std::num::NonZeroU32;
|
||||
use std::result::Result as StdResult;
|
||||
|
||||
use crossbeam_channel::{Receiver, Sender};
|
||||
use grenad::{Merger, MergerBuilder};
|
||||
use heed::types::Str;
|
||||
use heed::Database;
|
||||
use rand::SeedableRng;
|
||||
use roaring::RoaringBitmap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use slice_group_by::GroupBy;
|
||||
use tracing::debug;
|
||||
use typed_chunk::{write_typed_chunk_into_index, ChunkAccumulator, TypedChunk};
|
||||
use tracing::{debug_span};
|
||||
use typed_chunk::{write_typed_chunk_into_index, TypedChunk};
|
||||
|
||||
use self::enrich::enrich_documents_batch;
|
||||
pub use self::enrich::{extract_finite_float_from_value, DocumentId};
|
||||
pub use self::helpers::{
|
||||
as_cloneable_grenad, create_sorter, create_writer, fst_stream_into_hashset,
|
||||
fst_stream_into_vec, merge_cbo_roaring_bitmaps, merge_deladd_cbo_roaring_bitmaps,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap, merge_roaring_bitmaps,
|
||||
valid_lmdb_key, write_sorter_into_database, writer_into_reader, MergeFn,
|
||||
fst_stream_into_vec, merge_btreeset_string, merge_cbo_roaring_bitmaps,
|
||||
merge_deladd_cbo_roaring_bitmaps, merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
merge_roaring_bitmaps, valid_lmdb_key, write_sorter_into_database, writer_into_reader,
|
||||
ClonableMmap, MergeFn,
|
||||
};
|
||||
use self::helpers::{grenad_obkv_into_chunks, GrenadParameters};
|
||||
pub use self::transform::{Transform, TransformOutput};
|
||||
@@ -95,8 +95,8 @@ pub struct IndexDocumentsConfig {
|
||||
|
||||
impl<'t, 'i, 'a, FP, FA> IndexDocuments<'t, 'i, 'a, FP, FA>
|
||||
where
|
||||
FP: Fn(UpdateIndexingStep) + Sync + Send,
|
||||
FA: Fn() -> bool + Sync + Send,
|
||||
FP: Fn(UpdateIndexingStep) + Sync,
|
||||
FA: Fn() -> bool + Sync,
|
||||
{
|
||||
pub fn new(
|
||||
wtxn: &'t mut heed::RwTxn<'i>,
|
||||
@@ -326,6 +326,9 @@ where
|
||||
}
|
||||
};
|
||||
|
||||
let original_documents = grenad::Reader::new(original_documents)?;
|
||||
let flattened_documents = grenad::Reader::new(flattened_documents)?;
|
||||
|
||||
// create LMDB writer channel
|
||||
let (lmdb_writer_sx, lmdb_writer_rx): (
|
||||
Sender<Result<TypedChunk>>,
|
||||
@@ -364,7 +367,11 @@ where
|
||||
|
||||
let stop_words = self.index.stop_words(self.wtxn)?;
|
||||
let separators = self.index.allowed_separators(self.wtxn)?;
|
||||
let separators: Option<Vec<_>> =
|
||||
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
|
||||
let dictionary = self.index.dictionary(self.wtxn)?;
|
||||
let dictionary: Option<Vec<_>> =
|
||||
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
|
||||
let exact_attributes = self.index.exact_attributes_ids(self.wtxn)?;
|
||||
let proximity_precision = self.index.proximity_precision(self.wtxn)?.unwrap_or_default();
|
||||
|
||||
@@ -374,204 +381,141 @@ where
|
||||
max_memory: self.indexer_config.max_memory,
|
||||
max_nb_chunks: self.indexer_config.max_nb_chunks, // default value, may be chosen.
|
||||
};
|
||||
let documents_chunk_size = match self.indexer_config.documents_chunk_size {
|
||||
Some(chunk_size) => chunk_size,
|
||||
None => {
|
||||
let default_chunk_size = 1024 * 1024 * 4; // 4MiB
|
||||
let min_chunk_size = 1024 * 512; // 512KiB
|
||||
|
||||
// compute the chunk size from the number of available threads and the inputed data size.
|
||||
let total_size = flattened_documents.metadata().map(|m| m.len());
|
||||
let current_num_threads = pool.current_num_threads();
|
||||
// if we have more than 2 thread, create a number of chunk equal to 3/4 threads count
|
||||
let chunk_count = if current_num_threads > 2 {
|
||||
(current_num_threads * 3 / 4).max(2)
|
||||
} else {
|
||||
current_num_threads
|
||||
};
|
||||
total_size
|
||||
.map_or(default_chunk_size, |size| (size as usize) / chunk_count)
|
||||
.max(min_chunk_size)
|
||||
}
|
||||
};
|
||||
|
||||
let original_documents = grenad::Reader::new(original_documents)?;
|
||||
let flattened_documents = grenad::Reader::new(flattened_documents)?;
|
||||
|
||||
let documents_chunk_size =
|
||||
self.indexer_config.documents_chunk_size.unwrap_or(1024 * 1024 * 4); // 4MiB
|
||||
let max_positions_per_attributes = self.indexer_config.max_positions_per_attributes;
|
||||
|
||||
let cloned_embedder = self.embedders.clone();
|
||||
|
||||
let mut final_documents_ids = RoaringBitmap::new();
|
||||
let mut databases_seen = 0;
|
||||
let mut word_position_docids = None;
|
||||
let mut word_fid_docids = None;
|
||||
let mut word_docids = None;
|
||||
let mut exact_word_docids = None;
|
||||
let mut chunk_accumulator = ChunkAccumulator::default();
|
||||
let mut dimension = HashMap::new();
|
||||
let stop_words = stop_words.map(|sw| sw.map_data(Vec::from).unwrap());
|
||||
|
||||
let current_span = tracing::Span::current();
|
||||
|
||||
// Run extraction pipeline in parallel.
|
||||
pool.install(|| {
|
||||
rayon::spawn(move || {
|
||||
let child_span = tracing::trace_span!(target: "indexing::details", parent: ¤t_span, "extract_and_send_grenad_chunks");
|
||||
let child_span = tracing::trace_span!(target: "indexing::details", parent: ¤t_span, "extract_and_send_grenad_chunks");
|
||||
let _enter = child_span.enter();
|
||||
puffin::profile_scope!("extract_and_send_grenad_chunks");
|
||||
// split obkv file into several chunks
|
||||
let original_chunk_iter =
|
||||
grenad_obkv_into_chunks(original_documents, pool_params, documents_chunk_size);
|
||||
// split obkv file into several chunks
|
||||
let original_chunk_iter =
|
||||
grenad_obkv_into_chunks(original_documents, pool_params, documents_chunk_size);
|
||||
|
||||
// split obkv file into several chunks
|
||||
let flattened_chunk_iter =
|
||||
grenad_obkv_into_chunks(flattened_documents, pool_params, documents_chunk_size);
|
||||
// split obkv file into several chunks
|
||||
let flattened_chunk_iter =
|
||||
grenad_obkv_into_chunks(flattened_documents, pool_params, documents_chunk_size);
|
||||
|
||||
let separators: Option<Vec<_>> =
|
||||
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
|
||||
let dictionary: Option<Vec<_>> =
|
||||
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
|
||||
let result = original_chunk_iter.and_then(|original_chunk| {
|
||||
let flattened_chunk = flattened_chunk_iter?;
|
||||
// extract all databases from the chunked obkv douments
|
||||
extract::data_from_obkv_documents(
|
||||
original_chunk,
|
||||
flattened_chunk,
|
||||
pool_params,
|
||||
lmdb_writer_sx.clone(),
|
||||
searchable_fields,
|
||||
faceted_fields,
|
||||
primary_key_id,
|
||||
geo_fields_ids,
|
||||
field_id_map,
|
||||
stop_words,
|
||||
separators.as_deref(),
|
||||
dictionary.as_deref(),
|
||||
max_positions_per_attributes,
|
||||
exact_attributes,
|
||||
proximity_precision,
|
||||
cloned_embedder,
|
||||
)
|
||||
});
|
||||
|
||||
if let Err(e) = result {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
|
||||
// needs to be dropped to avoid channel waiting lock.
|
||||
drop(lmdb_writer_sx);
|
||||
let result = original_chunk_iter.and_then(|original_chunk| {
|
||||
let flattened_chunk = flattened_chunk_iter?;
|
||||
// extract all databases from the chunked obkv douments
|
||||
extract::data_from_obkv_documents(
|
||||
original_chunk,
|
||||
flattened_chunk,
|
||||
pool_params,
|
||||
lmdb_writer_sx.clone(),
|
||||
searchable_fields,
|
||||
faceted_fields,
|
||||
primary_key_id,
|
||||
geo_fields_ids,
|
||||
field_id_map,
|
||||
stop_words,
|
||||
separators.as_deref(),
|
||||
dictionary.as_deref(),
|
||||
max_positions_per_attributes,
|
||||
exact_attributes,
|
||||
proximity_precision,
|
||||
cloned_embedder,
|
||||
)
|
||||
});
|
||||
|
||||
(self.progress)(UpdateIndexingStep::MergeDataIntoFinalDatabase {
|
||||
databases_seen,
|
||||
total_databases: TOTAL_POSTING_DATABASE_COUNT,
|
||||
});
|
||||
|
||||
loop {
|
||||
if (self.should_abort)() {
|
||||
return Err(Error::InternalError(InternalError::AbortedIndexation));
|
||||
}
|
||||
|
||||
match lmdb_writer_rx.clone().recv_timeout(std::time::Duration::from_millis(500)) {
|
||||
Err(status) => {
|
||||
if let Some(typed_chunks) = chunk_accumulator.pop_longest() {
|
||||
let (docids, is_merged_database) =
|
||||
write_typed_chunk_into_index(typed_chunks, self.index, self.wtxn)?;
|
||||
if !docids.is_empty() {
|
||||
final_documents_ids |= docids;
|
||||
let documents_seen_count = final_documents_ids.len();
|
||||
(self.progress)(UpdateIndexingStep::IndexDocuments {
|
||||
documents_seen: documents_seen_count as usize,
|
||||
total_documents: documents_count,
|
||||
});
|
||||
debug!(documents = documents_seen_count, total = documents_count, "Seen");
|
||||
}
|
||||
if is_merged_database {
|
||||
databases_seen += 1;
|
||||
(self.progress)(UpdateIndexingStep::MergeDataIntoFinalDatabase {
|
||||
databases_seen,
|
||||
total_databases: TOTAL_POSTING_DATABASE_COUNT,
|
||||
});
|
||||
}
|
||||
// If no more chunk remains in the chunk accumulator and the channel is disconected, break.
|
||||
} else if status == crossbeam_channel::RecvTimeoutError::Disconnected {
|
||||
break;
|
||||
} else {
|
||||
rayon::yield_now();
|
||||
}
|
||||
}
|
||||
Ok(result) => {
|
||||
let typed_chunk = match result? {
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
} => {
|
||||
let cloneable_chunk =
|
||||
unsafe { as_cloneable_grenad(&word_docids_reader)? };
|
||||
let word_docids = word_docids.get_or_insert_with(|| {
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn)
|
||||
});
|
||||
word_docids.push(cloneable_chunk.into_cursor()?);
|
||||
let cloneable_chunk =
|
||||
unsafe { as_cloneable_grenad(&exact_word_docids_reader)? };
|
||||
let exact_word_docids =
|
||||
exact_word_docids.get_or_insert_with(|| {
|
||||
MergerBuilder::new(
|
||||
merge_deladd_cbo_roaring_bitmaps as MergeFn,
|
||||
)
|
||||
});
|
||||
exact_word_docids.push(cloneable_chunk.into_cursor()?);
|
||||
let cloneable_chunk =
|
||||
unsafe { as_cloneable_grenad(&word_fid_docids_reader)? };
|
||||
let word_fid_docids = word_fid_docids.get_or_insert_with(|| {
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn)
|
||||
});
|
||||
word_fid_docids.push(cloneable_chunk.into_cursor()?);
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
}
|
||||
}
|
||||
TypedChunk::WordPositionDocids(chunk) => {
|
||||
let cloneable_chunk = unsafe { as_cloneable_grenad(&chunk)? };
|
||||
let word_position_docids =
|
||||
word_position_docids.get_or_insert_with(|| {
|
||||
MergerBuilder::new(
|
||||
merge_deladd_cbo_roaring_bitmaps as MergeFn,
|
||||
)
|
||||
});
|
||||
word_position_docids.push(cloneable_chunk.into_cursor()?);
|
||||
TypedChunk::WordPositionDocids(chunk)
|
||||
}
|
||||
TypedChunk::VectorPoints {
|
||||
expected_dimension,
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
} => {
|
||||
dimension.insert(embedder_name.clone(), expected_dimension);
|
||||
TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
}
|
||||
}
|
||||
otherwise => otherwise,
|
||||
};
|
||||
|
||||
chunk_accumulator.insert(typed_chunk);
|
||||
}
|
||||
}
|
||||
if let Err(e) = result {
|
||||
let _ = lmdb_writer_sx.send(Err(e));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
})?;
|
||||
// needs to be dropped to avoid channel waiting lock.
|
||||
drop(lmdb_writer_sx);
|
||||
});
|
||||
|
||||
let index_is_empty = self.index.number_of_documents(self.wtxn)? == 0;
|
||||
let mut final_documents_ids = RoaringBitmap::new();
|
||||
|
||||
let mut databases_seen = 0;
|
||||
(self.progress)(UpdateIndexingStep::MergeDataIntoFinalDatabase {
|
||||
databases_seen,
|
||||
total_databases: TOTAL_POSTING_DATABASE_COUNT,
|
||||
});
|
||||
|
||||
let mut word_position_docids = None;
|
||||
let mut word_fid_docids = None;
|
||||
let mut word_docids = None;
|
||||
let mut exact_word_docids = None;
|
||||
|
||||
let mut dimension = HashMap::new();
|
||||
|
||||
for result in lmdb_writer_rx {
|
||||
if (self.should_abort)() {
|
||||
return Err(Error::InternalError(InternalError::AbortedIndexation));
|
||||
}
|
||||
|
||||
let typed_chunk = match result? {
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
} => {
|
||||
let cloneable_chunk = unsafe { as_cloneable_grenad(&word_docids_reader)? };
|
||||
word_docids = Some(cloneable_chunk);
|
||||
let cloneable_chunk =
|
||||
unsafe { as_cloneable_grenad(&exact_word_docids_reader)? };
|
||||
exact_word_docids = Some(cloneable_chunk);
|
||||
let cloneable_chunk = unsafe { as_cloneable_grenad(&word_fid_docids_reader)? };
|
||||
word_fid_docids = Some(cloneable_chunk);
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
}
|
||||
}
|
||||
TypedChunk::WordPositionDocids(chunk) => {
|
||||
let cloneable_chunk = unsafe { as_cloneable_grenad(&chunk)? };
|
||||
word_position_docids = Some(cloneable_chunk);
|
||||
TypedChunk::WordPositionDocids(chunk)
|
||||
}
|
||||
TypedChunk::VectorPoints {
|
||||
expected_dimension,
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
} => {
|
||||
dimension.insert(embedder_name.clone(), expected_dimension);
|
||||
TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
}
|
||||
}
|
||||
otherwise => otherwise,
|
||||
};
|
||||
|
||||
let (docids, is_merged_database) =
|
||||
write_typed_chunk_into_index(typed_chunk, self.index, self.wtxn, index_is_empty)?;
|
||||
if !docids.is_empty() {
|
||||
final_documents_ids |= docids;
|
||||
let documents_seen_count = final_documents_ids.len();
|
||||
(self.progress)(UpdateIndexingStep::IndexDocuments {
|
||||
documents_seen: documents_seen_count as usize,
|
||||
total_documents: documents_count,
|
||||
});
|
||||
debug_span!("Seen", documents = documents_seen_count, total = documents_count);
|
||||
}
|
||||
if is_merged_database {
|
||||
databases_seen += 1;
|
||||
(self.progress)(UpdateIndexingStep::MergeDataIntoFinalDatabase {
|
||||
databases_seen,
|
||||
total_databases: TOTAL_POSTING_DATABASE_COUNT,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// We write the field distribution into the main database
|
||||
self.index.put_field_distribution(self.wtxn, &field_distribution)?;
|
||||
@@ -604,10 +548,10 @@ where
|
||||
}
|
||||
|
||||
self.execute_prefix_databases(
|
||||
word_docids.map(MergerBuilder::build),
|
||||
exact_word_docids.map(MergerBuilder::build),
|
||||
word_position_docids.map(MergerBuilder::build),
|
||||
word_fid_docids.map(MergerBuilder::build),
|
||||
word_docids,
|
||||
exact_word_docids,
|
||||
word_position_docids,
|
||||
word_fid_docids,
|
||||
)?;
|
||||
|
||||
Ok(number_of_documents)
|
||||
@@ -621,10 +565,10 @@ where
|
||||
)]
|
||||
pub fn execute_prefix_databases(
|
||||
self,
|
||||
word_docids: Option<Merger<CursorClonableMmap, MergeFn>>,
|
||||
exact_word_docids: Option<Merger<CursorClonableMmap, MergeFn>>,
|
||||
word_position_docids: Option<Merger<CursorClonableMmap, MergeFn>>,
|
||||
word_fid_docids: Option<Merger<CursorClonableMmap, MergeFn>>,
|
||||
word_docids: Option<grenad::Reader<CursorClonableMmap>>,
|
||||
exact_word_docids: Option<grenad::Reader<CursorClonableMmap>>,
|
||||
word_position_docids: Option<grenad::Reader<CursorClonableMmap>>,
|
||||
word_fid_docids: Option<grenad::Reader<CursorClonableMmap>>,
|
||||
) -> Result<()>
|
||||
where
|
||||
FP: Fn(UpdateIndexingStep) + Sync,
|
||||
@@ -807,7 +751,7 @@ where
|
||||
)]
|
||||
fn execute_word_prefix_docids(
|
||||
txn: &mut heed::RwTxn,
|
||||
merger: Merger<CursorClonableMmap, MergeFn>,
|
||||
reader: grenad::Reader<Cursor<ClonableMmap>>,
|
||||
word_docids_db: Database<Str, CboRoaringBitmapCodec>,
|
||||
word_prefix_docids_db: Database<Str, CboRoaringBitmapCodec>,
|
||||
indexer_config: &IndexerConfig,
|
||||
@@ -817,12 +761,13 @@ fn execute_word_prefix_docids(
|
||||
) -> Result<()> {
|
||||
puffin::profile_function!();
|
||||
|
||||
let cursor = reader.into_cursor()?;
|
||||
let mut builder = WordPrefixDocids::new(txn, word_docids_db, word_prefix_docids_db);
|
||||
builder.chunk_compression_type = indexer_config.chunk_compression_type;
|
||||
builder.chunk_compression_level = indexer_config.chunk_compression_level;
|
||||
builder.max_nb_chunks = indexer_config.max_nb_chunks;
|
||||
builder.max_memory = indexer_config.max_memory;
|
||||
builder.execute(merger, new_prefix_fst_words, common_prefix_fst_words, del_prefix_fst_words)?;
|
||||
builder.execute(cursor, new_prefix_fst_words, common_prefix_fst_words, del_prefix_fst_words)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
||||
@@ -5,64 +5,27 @@ use std::io::{self, BufReader};
|
||||
|
||||
use bytemuck::allocation::pod_collect_to_vec;
|
||||
use charabia::{Language, Script};
|
||||
use grenad::{Merger, MergerBuilder};
|
||||
use grenad::MergerBuilder;
|
||||
use heed::types::Bytes;
|
||||
use heed::RwTxn;
|
||||
use heed::{PutFlags, RwTxn};
|
||||
use obkv::{KvReader, KvWriter};
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::helpers::{
|
||||
self, keep_first, merge_deladd_btreeset_string, merge_deladd_cbo_roaring_bitmaps,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap, merge_ignore_values, valid_lmdb_key,
|
||||
CursorClonableMmap,
|
||||
self, merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap, merge_ignore_values,
|
||||
valid_lmdb_key, CursorClonableMmap,
|
||||
};
|
||||
use super::MergeFn;
|
||||
use super::{ClonableMmap, MergeFn};
|
||||
use crate::external_documents_ids::{DocumentOperation, DocumentOperationKind};
|
||||
use crate::facet::FacetType;
|
||||
use crate::index::db_name::DOCUMENTS;
|
||||
use crate::update::del_add::{deladd_serialize_add_side, DelAdd, KvReaderDelAdd};
|
||||
use crate::update::facet::FacetsUpdate;
|
||||
use crate::update::index_documents::helpers::{
|
||||
as_cloneable_grenad, keep_latest_obkv, try_split_array_at,
|
||||
};
|
||||
use crate::update::index_documents::helpers::{as_cloneable_grenad, try_split_array_at};
|
||||
use crate::{
|
||||
lat_lng_to_xyz, DocumentId, FieldId, GeoPoint, Index, InternalError, Result, SerializationError,
|
||||
};
|
||||
|
||||
/// This struct accumulates and group the TypedChunks
|
||||
/// and is able to give the biggest accumulated group to index them all together
|
||||
/// with a merger.
|
||||
#[derive(Default)]
|
||||
pub(crate) struct ChunkAccumulator {
|
||||
inner: Vec<Vec<TypedChunk>>,
|
||||
}
|
||||
|
||||
impl ChunkAccumulator {
|
||||
pub fn pop_longest(&mut self) -> Option<Vec<TypedChunk>> {
|
||||
match self.inner.iter().max_by_key(|v| v.len()) {
|
||||
Some(left) => {
|
||||
let position = self.inner.iter().position(|right| left.len() == right.len());
|
||||
position.map(|p| self.inner.remove(p)).filter(|v| !v.is_empty())
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn insert(&mut self, chunk: TypedChunk) {
|
||||
match self
|
||||
.inner
|
||||
.iter()
|
||||
.position(|right| right.first().map_or(false, |right| chunk.mergeable_with(right)))
|
||||
{
|
||||
Some(position) => {
|
||||
let v = self.inner.get_mut(position).unwrap();
|
||||
v.push(chunk);
|
||||
}
|
||||
None => self.inner.push(vec![chunk]),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) enum TypedChunk {
|
||||
FieldIdDocidFacetStrings(grenad::Reader<CursorClonableMmap>),
|
||||
FieldIdDocidFacetNumbers(grenad::Reader<CursorClonableMmap>),
|
||||
@@ -75,7 +38,7 @@ pub(crate) enum TypedChunk {
|
||||
},
|
||||
WordPositionDocids(grenad::Reader<BufReader<File>>),
|
||||
WordPairProximityDocids(grenad::Reader<BufReader<File>>),
|
||||
FieldIdFacetStringDocids((grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)),
|
||||
FieldIdFacetStringDocids(grenad::Reader<BufReader<File>>),
|
||||
FieldIdFacetNumberDocids(grenad::Reader<BufReader<File>>),
|
||||
FieldIdFacetExistsDocids(grenad::Reader<BufReader<File>>),
|
||||
FieldIdFacetIsNullDocids(grenad::Reader<BufReader<File>>),
|
||||
@@ -91,33 +54,6 @@ pub(crate) enum TypedChunk {
|
||||
ScriptLanguageDocids(HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>),
|
||||
}
|
||||
|
||||
impl TypedChunk {
|
||||
fn mergeable_with(&self, other: &Self) -> bool {
|
||||
use TypedChunk::*;
|
||||
match (self, other) {
|
||||
(FieldIdDocidFacetStrings(_), FieldIdDocidFacetStrings(_))
|
||||
| (FieldIdDocidFacetNumbers(_), FieldIdDocidFacetNumbers(_))
|
||||
| (Documents(_), Documents(_))
|
||||
| (FieldIdWordCountDocids(_), FieldIdWordCountDocids(_))
|
||||
| (WordDocids { .. }, WordDocids { .. })
|
||||
| (WordPositionDocids(_), WordPositionDocids(_))
|
||||
| (WordPairProximityDocids(_), WordPairProximityDocids(_))
|
||||
| (FieldIdFacetStringDocids(_), FieldIdFacetStringDocids(_))
|
||||
| (FieldIdFacetNumberDocids(_), FieldIdFacetNumberDocids(_))
|
||||
| (FieldIdFacetExistsDocids(_), FieldIdFacetExistsDocids(_))
|
||||
| (FieldIdFacetIsNullDocids(_), FieldIdFacetIsNullDocids(_))
|
||||
| (FieldIdFacetIsEmptyDocids(_), FieldIdFacetIsEmptyDocids(_))
|
||||
| (GeoPoints(_), GeoPoints(_))
|
||||
| (ScriptLanguageDocids(_), ScriptLanguageDocids(_)) => true,
|
||||
(
|
||||
VectorPoints { embedder_name: left, expected_dimension: left_dim, .. },
|
||||
VectorPoints { embedder_name: right, expected_dimension: right_dim, .. },
|
||||
) => left == right && left_dim == right_dim,
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl TypedChunk {
|
||||
pub fn to_debug_string(&self) -> String {
|
||||
match self {
|
||||
@@ -149,7 +85,7 @@ impl TypedChunk {
|
||||
TypedChunk::WordPairProximityDocids(grenad) => {
|
||||
format!("WordPairProximityDocids {{ number_of_entries: {} }}", grenad.len())
|
||||
}
|
||||
TypedChunk::FieldIdFacetStringDocids((grenad, _)) => {
|
||||
TypedChunk::FieldIdFacetStringDocids(grenad) => {
|
||||
format!("FieldIdFacetStringDocids {{ number_of_entries: {} }}", grenad.len())
|
||||
}
|
||||
TypedChunk::FieldIdFacetNumberDocids(grenad) => {
|
||||
@@ -181,32 +117,23 @@ impl TypedChunk {
|
||||
/// Return new documents seen.
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::write_db")]
|
||||
pub(crate) fn write_typed_chunk_into_index(
|
||||
typed_chunks: Vec<TypedChunk>,
|
||||
typed_chunk: TypedChunk,
|
||||
index: &Index,
|
||||
wtxn: &mut RwTxn,
|
||||
index_is_empty: bool,
|
||||
) -> Result<(RoaringBitmap, bool)> {
|
||||
puffin::profile_function!(typed_chunks[0].to_debug_string());
|
||||
puffin::profile_function!(typed_chunk.to_debug_string());
|
||||
|
||||
let mut is_merged_database = false;
|
||||
match typed_chunks[0] {
|
||||
TypedChunk::Documents(_) => {
|
||||
match typed_chunk {
|
||||
TypedChunk::Documents(obkv_documents_iter) => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "documents");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(keep_latest_obkv as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::Documents(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
let mut operations: Vec<DocumentOperation> = Default::default();
|
||||
|
||||
let mut docids = index.documents_ids(wtxn)?;
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, reader)) = iter.next()? {
|
||||
let mut cursor = obkv_documents_iter.into_cursor()?;
|
||||
while let Some((key, reader)) = cursor.move_on_next()? {
|
||||
let mut writer: KvWriter<_, FieldId> = KvWriter::memory();
|
||||
let reader: KvReader<FieldId> = KvReader::new(reader);
|
||||
|
||||
@@ -247,91 +174,59 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
external_documents_docids.apply(wtxn, operations)?;
|
||||
index.put_documents_ids(wtxn, &docids)?;
|
||||
}
|
||||
TypedChunk::FieldIdWordCountDocids(_) => {
|
||||
TypedChunk::FieldIdWordCountDocids(fid_word_count_docids_iter) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_word_count_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdWordCountDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
fid_word_count_docids_iter,
|
||||
&index.field_id_word_count_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::WordDocids { .. } => {
|
||||
TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
} => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "word_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut word_docids_builder =
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
let mut exact_word_docids_builder =
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
let mut word_fid_docids_builder =
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
let mut fst_merger_builder = MergerBuilder::new(merge_ignore_values as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::WordDocids {
|
||||
word_docids_reader,
|
||||
exact_word_docids_reader,
|
||||
word_fid_docids_reader,
|
||||
} = typed_chunk
|
||||
else {
|
||||
unreachable!();
|
||||
};
|
||||
let clonable_word_docids = unsafe { as_cloneable_grenad(&word_docids_reader) }?;
|
||||
let clonable_exact_word_docids =
|
||||
unsafe { as_cloneable_grenad(&exact_word_docids_reader) }?;
|
||||
|
||||
word_docids_builder.push(word_docids_reader.into_cursor()?);
|
||||
exact_word_docids_builder.push(exact_word_docids_reader.into_cursor()?);
|
||||
word_fid_docids_builder.push(word_fid_docids_reader.into_cursor()?);
|
||||
fst_merger_builder.push(clonable_word_docids.into_cursor()?);
|
||||
fst_merger_builder.push(clonable_exact_word_docids.into_cursor()?);
|
||||
}
|
||||
|
||||
let word_docids_merger = word_docids_builder.build();
|
||||
write_entries_into_database(
|
||||
word_docids_merger,
|
||||
let word_docids_iter = unsafe { as_cloneable_grenad(&word_docids_reader) }?;
|
||||
append_entries_into_database(
|
||||
word_docids_iter.clone(),
|
||||
&index.word_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
|
||||
let exact_word_docids_merger = exact_word_docids_builder.build();
|
||||
write_entries_into_database(
|
||||
exact_word_docids_merger,
|
||||
let exact_word_docids_iter = unsafe { as_cloneable_grenad(&exact_word_docids_reader) }?;
|
||||
append_entries_into_database(
|
||||
exact_word_docids_iter.clone(),
|
||||
&index.exact_word_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
|
||||
let word_fid_docids_merger = word_fid_docids_builder.build();
|
||||
write_entries_into_database(
|
||||
word_fid_docids_merger,
|
||||
let word_fid_docids_iter = unsafe { as_cloneable_grenad(&word_fid_docids_reader) }?;
|
||||
append_entries_into_database(
|
||||
word_fid_docids_iter,
|
||||
&index.word_fid_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
|
||||
// create fst from word docids
|
||||
let fst_merger = fst_merger_builder.build();
|
||||
let fst = merge_word_docids_reader_into_fst(fst_merger)?;
|
||||
let fst = merge_word_docids_reader_into_fst(word_docids_iter, exact_word_docids_iter)?;
|
||||
let db_fst = index.words_fst(wtxn)?;
|
||||
|
||||
// merge new fst with database fst
|
||||
@@ -342,202 +237,98 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
index.put_words_fst(wtxn, &fst)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::WordPositionDocids(_) => {
|
||||
TypedChunk::WordPositionDocids(word_position_docids_iter) => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "word_position_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::WordPositionDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
word_position_docids_iter,
|
||||
&index.word_position_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdFacetNumberDocids(_) => {
|
||||
TypedChunk::FieldIdFacetNumberDocids(facet_id_number_docids_iter) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db","field_id_facet_number_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
let mut data_size = 0;
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdFacetNumberDocids(facet_id_number_docids) = typed_chunk
|
||||
else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
data_size += facet_id_number_docids.len();
|
||||
builder.push(facet_id_number_docids.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
let indexer = FacetsUpdate::new(index, FacetType::Number, merger, None, data_size);
|
||||
let indexer = FacetsUpdate::new(index, FacetType::Number, facet_id_number_docids_iter);
|
||||
indexer.execute(wtxn)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdFacetStringDocids(_) => {
|
||||
TypedChunk::FieldIdFacetStringDocids(facet_id_string_docids_iter) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_facet_string_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut facet_id_string_builder =
|
||||
MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
let mut normalized_facet_id_string_builder =
|
||||
MergerBuilder::new(merge_deladd_btreeset_string as MergeFn);
|
||||
let mut data_size = 0;
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdFacetStringDocids((
|
||||
facet_id_string_docids,
|
||||
normalized_facet_id_string_docids,
|
||||
)) = typed_chunk
|
||||
else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
data_size += facet_id_string_docids.len();
|
||||
facet_id_string_builder.push(facet_id_string_docids.into_cursor()?);
|
||||
normalized_facet_id_string_builder
|
||||
.push(normalized_facet_id_string_docids.into_cursor()?);
|
||||
}
|
||||
let facet_id_string_merger = facet_id_string_builder.build();
|
||||
let normalized_facet_id_string_merger = normalized_facet_id_string_builder.build();
|
||||
|
||||
let indexer = FacetsUpdate::new(
|
||||
index,
|
||||
FacetType::String,
|
||||
facet_id_string_merger,
|
||||
Some(normalized_facet_id_string_merger),
|
||||
data_size,
|
||||
);
|
||||
let indexer = FacetsUpdate::new(index, FacetType::String, facet_id_string_docids_iter);
|
||||
indexer.execute(wtxn)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdFacetExistsDocids(_) => {
|
||||
TypedChunk::FieldIdFacetExistsDocids(facet_id_exists_docids) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_facet_exists_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdFacetExistsDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
facet_id_exists_docids,
|
||||
&index.facet_id_exists_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdFacetIsNullDocids(_) => {
|
||||
TypedChunk::FieldIdFacetIsNullDocids(facet_id_is_null_docids) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_facet_is_null_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdFacetIsNullDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
facet_id_is_null_docids,
|
||||
&index.facet_id_is_null_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdFacetIsEmptyDocids(_) => {
|
||||
TypedChunk::FieldIdFacetIsEmptyDocids(facet_id_is_empty_docids) => {
|
||||
let span = tracing::trace_span!(target: "profile::indexing::write_db", "field_id_facet_is_empty_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdFacetIsEmptyDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
facet_id_is_empty_docids,
|
||||
&index.facet_id_is_empty_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::WordPairProximityDocids(_) => {
|
||||
TypedChunk::WordPairProximityDocids(word_pair_proximity_docids_iter) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "word_pair_proximity_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(merge_deladd_cbo_roaring_bitmaps as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::WordPairProximityDocids(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
write_entries_into_database(
|
||||
merger,
|
||||
append_entries_into_database(
|
||||
word_pair_proximity_docids_iter,
|
||||
&index.word_pair_proximity_docids,
|
||||
wtxn,
|
||||
index_is_empty,
|
||||
deladd_serialize_add_side,
|
||||
merge_deladd_cbo_roaring_bitmaps_into_cbo_roaring_bitmap,
|
||||
)?;
|
||||
is_merged_database = true;
|
||||
}
|
||||
TypedChunk::FieldIdDocidFacetNumbers(_) => {
|
||||
TypedChunk::FieldIdDocidFacetNumbers(fid_docid_facet_number) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_docid_facet_numbers");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdDocidFacetNumbers(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
let index_fid_docid_facet_numbers =
|
||||
index.field_id_docid_facet_f64s.remap_types::<Bytes, Bytes>();
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = fid_docid_facet_number.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
let reader = KvReaderDelAdd::new(value);
|
||||
if valid_lmdb_key(key) {
|
||||
match (reader.get(DelAdd::Deletion), reader.get(DelAdd::Addition)) {
|
||||
@@ -553,25 +344,14 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
}
|
||||
}
|
||||
}
|
||||
TypedChunk::FieldIdDocidFacetStrings(_) => {
|
||||
TypedChunk::FieldIdDocidFacetStrings(fid_docid_facet_string) => {
|
||||
let span =
|
||||
tracing::trace_span!(target: "indexing::write_db", "field_id_docid_facet_strings");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::FieldIdDocidFacetStrings(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
let index_fid_docid_facet_strings =
|
||||
index.field_id_docid_facet_strings.remap_types::<Bytes, Bytes>();
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = fid_docid_facet_string.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
let reader = KvReaderDelAdd::new(value);
|
||||
if valid_lmdb_key(key) {
|
||||
match (reader.get(DelAdd::Deletion), reader.get(DelAdd::Addition)) {
|
||||
@@ -587,25 +367,14 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
}
|
||||
}
|
||||
}
|
||||
TypedChunk::GeoPoints(_) => {
|
||||
TypedChunk::GeoPoints(geo_points) => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "geo_points");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::GeoPoints(chunk) = typed_chunk else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
builder.push(chunk.into_cursor()?);
|
||||
}
|
||||
let merger = builder.build();
|
||||
|
||||
let mut rtree = index.geo_rtree(wtxn)?.unwrap_or_default();
|
||||
let mut geo_faceted_docids = index.geo_faceted_documents_ids(wtxn)?;
|
||||
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = geo_points.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
// convert the key back to a u32 (4 bytes)
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
|
||||
@@ -624,38 +393,15 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
index.put_geo_rtree(wtxn, &rtree)?;
|
||||
index.put_geo_faceted_documents_ids(wtxn, &geo_faceted_docids)?;
|
||||
}
|
||||
TypedChunk::VectorPoints { .. } => {
|
||||
TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
manual_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
embedder_name,
|
||||
} => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "vector_points");
|
||||
let _entered = span.enter();
|
||||
|
||||
let mut remove_vectors_builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
let mut manual_vectors_builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
let mut embeddings_builder = MergerBuilder::new(keep_first as MergeFn);
|
||||
let mut params = None;
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
manual_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
embedder_name,
|
||||
} = typed_chunk
|
||||
else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
params = Some((expected_dimension, embedder_name));
|
||||
|
||||
remove_vectors_builder.push(remove_vectors.into_cursor()?);
|
||||
manual_vectors_builder.push(manual_vectors.into_cursor()?);
|
||||
if let Some(embeddings) = embeddings {
|
||||
embeddings_builder.push(embeddings.into_cursor()?);
|
||||
}
|
||||
}
|
||||
|
||||
// typed chunks has always at least 1 chunk.
|
||||
let Some((expected_dimension, embedder_name)) = params else { unreachable!() };
|
||||
|
||||
let embedder_index = index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
|
||||
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
|
||||
)?;
|
||||
@@ -673,9 +419,8 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
let writers = writers?;
|
||||
|
||||
// remove vectors for docids we want them removed
|
||||
let merger = remove_vectors_builder.build();
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, _)) = iter.next()? {
|
||||
let mut cursor = remove_vectors.into_cursor()?;
|
||||
while let Some((key, _)) = cursor.move_on_next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
|
||||
for writer in &writers {
|
||||
@@ -687,39 +432,40 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
}
|
||||
|
||||
// add generated embeddings
|
||||
let merger = embeddings_builder.build();
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
let data = pod_collect_to_vec(value);
|
||||
// it is a code error to have embeddings and not expected_dimension
|
||||
let embeddings = crate::vector::Embeddings::from_inner(data, expected_dimension)
|
||||
// code error if we somehow got the wrong dimension
|
||||
.unwrap();
|
||||
if let Some(embeddings) = embeddings {
|
||||
let mut cursor = embeddings.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
let data = pod_collect_to_vec(value);
|
||||
// it is a code error to have embeddings and not expected_dimension
|
||||
let embeddings =
|
||||
crate::vector::Embeddings::from_inner(data, expected_dimension)
|
||||
// code error if we somehow got the wrong dimension
|
||||
.unwrap();
|
||||
|
||||
if embeddings.embedding_count() > usize::from(u8::MAX) {
|
||||
let external_docid = if let Ok(Some(Ok(index))) = index
|
||||
.external_id_of(wtxn, std::iter::once(docid))
|
||||
.map(|it| it.into_iter().next())
|
||||
{
|
||||
index
|
||||
} else {
|
||||
format!("internal docid={docid}")
|
||||
};
|
||||
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
|
||||
external_docid,
|
||||
embeddings.embedding_count(),
|
||||
)));
|
||||
}
|
||||
for (embedding, writer) in embeddings.iter().zip(&writers) {
|
||||
writer.add_item(wtxn, docid, embedding)?;
|
||||
if embeddings.embedding_count() > usize::from(u8::MAX) {
|
||||
let external_docid = if let Ok(Some(Ok(index))) = index
|
||||
.external_id_of(wtxn, std::iter::once(docid))
|
||||
.map(|it| it.into_iter().next())
|
||||
{
|
||||
index
|
||||
} else {
|
||||
format!("internal docid={docid}")
|
||||
};
|
||||
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
|
||||
external_docid,
|
||||
embeddings.embedding_count(),
|
||||
)));
|
||||
}
|
||||
for (embedding, writer) in embeddings.iter().zip(&writers) {
|
||||
writer.add_item(wtxn, docid, embedding)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// perform the manual diff
|
||||
let merger = manual_vectors_builder.build();
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = manual_vectors.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
// convert the key back to a u32 (4 bytes)
|
||||
let (left, _index) = try_split_array_at(key).unwrap();
|
||||
let docid = DocumentId::from_be_bytes(left);
|
||||
@@ -773,30 +519,26 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
|
||||
tracing::debug!("Finished vector chunk for {}", embedder_name);
|
||||
}
|
||||
TypedChunk::ScriptLanguageDocids(_) => {
|
||||
TypedChunk::ScriptLanguageDocids(sl_map) => {
|
||||
let span = tracing::trace_span!(target: "indexing::write_db", "script_language_docids");
|
||||
let _entered = span.enter();
|
||||
|
||||
for typed_chunk in typed_chunks {
|
||||
let TypedChunk::ScriptLanguageDocids(sl_map) = typed_chunk else { unreachable!() };
|
||||
for (key, (deletion, addition)) in sl_map {
|
||||
let mut db_key_exists = false;
|
||||
let final_value = match index.script_language_docids.get(wtxn, &key)? {
|
||||
Some(db_values) => {
|
||||
db_key_exists = true;
|
||||
(db_values - deletion) | addition
|
||||
}
|
||||
None => addition,
|
||||
};
|
||||
|
||||
if final_value.is_empty() {
|
||||
// If the database entry exists, delete it.
|
||||
if db_key_exists {
|
||||
index.script_language_docids.delete(wtxn, &key)?;
|
||||
}
|
||||
} else {
|
||||
index.script_language_docids.put(wtxn, &key, &final_value)?;
|
||||
for (key, (deletion, addition)) in sl_map {
|
||||
let mut db_key_exists = false;
|
||||
let final_value = match index.script_language_docids.get(wtxn, &key)? {
|
||||
Some(db_values) => {
|
||||
db_key_exists = true;
|
||||
(db_values - deletion) | addition
|
||||
}
|
||||
None => addition,
|
||||
};
|
||||
|
||||
if final_value.is_empty() {
|
||||
// If the database entry exists, delete it.
|
||||
if db_key_exists {
|
||||
index.script_language_docids.delete(wtxn, &key)?;
|
||||
}
|
||||
} else {
|
||||
index.script_language_docids.put(wtxn, &key, &final_value)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -815,9 +557,13 @@ fn extract_geo_point(value: &[u8], docid: DocumentId) -> GeoPoint {
|
||||
}
|
||||
|
||||
fn merge_word_docids_reader_into_fst(
|
||||
merger: Merger<CursorClonableMmap, MergeFn>,
|
||||
word_docids_iter: grenad::Reader<io::Cursor<ClonableMmap>>,
|
||||
exact_word_docids_iter: grenad::Reader<io::Cursor<ClonableMmap>>,
|
||||
) -> Result<fst::Set<Vec<u8>>> {
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
let mut merger_builder = MergerBuilder::new(merge_ignore_values as MergeFn);
|
||||
merger_builder.push(word_docids_iter.into_cursor()?);
|
||||
merger_builder.push(exact_word_docids_iter.into_cursor()?);
|
||||
let mut iter = merger_builder.build().into_stream_merger_iter()?;
|
||||
let mut builder = fst::SetBuilder::memory();
|
||||
|
||||
while let Some((k, _)) = iter.next()? {
|
||||
@@ -831,9 +577,10 @@ fn merge_word_docids_reader_into_fst(
|
||||
/// merge_values function is used if an entry already exist in the database.
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::write_db")]
|
||||
fn write_entries_into_database<R, K, V, FS, FM>(
|
||||
merger: Merger<R, MergeFn>,
|
||||
data: grenad::Reader<R>,
|
||||
database: &heed::Database<K, V>,
|
||||
wtxn: &mut RwTxn,
|
||||
index_is_empty: bool,
|
||||
serialize_value: FS,
|
||||
merge_values: FM,
|
||||
) -> Result<()>
|
||||
@@ -842,17 +589,22 @@ where
|
||||
FS: for<'a> Fn(&'a [u8], &'a mut Vec<u8>) -> Result<&'a [u8]>,
|
||||
FM: for<'a> Fn(&[u8], &[u8], &'a mut Vec<u8>) -> Result<Option<&'a [u8]>>,
|
||||
{
|
||||
puffin::profile_function!();
|
||||
puffin::profile_function!(format!("number of entries: {}", data.len()));
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
let database = database.remap_types::<Bytes, Bytes>();
|
||||
|
||||
let mut iter = merger.into_stream_merger_iter()?;
|
||||
while let Some((key, value)) = iter.next()? {
|
||||
let mut cursor = data.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
if valid_lmdb_key(key) {
|
||||
buffer.clear();
|
||||
let value = match database.get(wtxn, key)? {
|
||||
Some(prev_value) => merge_values(value, prev_value, &mut buffer)?,
|
||||
None => Some(serialize_value(value, &mut buffer)?),
|
||||
let value = if index_is_empty {
|
||||
Some(serialize_value(value, &mut buffer)?)
|
||||
} else {
|
||||
match database.get(wtxn, key)? {
|
||||
Some(prev_value) => merge_values(value, prev_value, &mut buffer)?,
|
||||
None => Some(serialize_value(value, &mut buffer)?),
|
||||
}
|
||||
};
|
||||
match value {
|
||||
Some(value) => database.put(wtxn, key, value)?,
|
||||
@@ -862,5 +614,62 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Write provided entries in database using serialize_value function.
|
||||
/// merge_values function is used if an entry already exist in the database.
|
||||
/// All provided entries must be ordered.
|
||||
/// If the index is not empty, write_entries_into_database is called instead.
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing::write_db")]
|
||||
fn append_entries_into_database<R, K, V, FS, FM>(
|
||||
data: grenad::Reader<R>,
|
||||
database: &heed::Database<K, V>,
|
||||
wtxn: &mut RwTxn,
|
||||
index_is_empty: bool,
|
||||
serialize_value: FS,
|
||||
merge_values: FM,
|
||||
) -> Result<()>
|
||||
where
|
||||
R: io::Read + io::Seek,
|
||||
FS: for<'a> Fn(&'a [u8], &'a mut Vec<u8>) -> Result<&'a [u8]>,
|
||||
FM: for<'a> Fn(&[u8], &[u8], &'a mut Vec<u8>) -> Result<Option<&'a [u8]>>,
|
||||
K: for<'a> heed::BytesDecode<'a>,
|
||||
{
|
||||
puffin::profile_function!(format!("number of entries: {}", data.len()));
|
||||
|
||||
if !index_is_empty {
|
||||
return write_entries_into_database(
|
||||
data,
|
||||
database,
|
||||
wtxn,
|
||||
false,
|
||||
serialize_value,
|
||||
merge_values,
|
||||
);
|
||||
}
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
let mut database = database.iter_mut(wtxn)?.remap_types::<Bytes, Bytes>();
|
||||
|
||||
let mut cursor = data.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
if valid_lmdb_key(key) {
|
||||
debug_assert!(
|
||||
K::bytes_decode(key).is_ok(),
|
||||
"Couldn't decode key with the database decoder, key length: {} - key bytes: {:x?}",
|
||||
key.len(),
|
||||
&key
|
||||
);
|
||||
buffer.clear();
|
||||
let value = serialize_value(value, &mut buffer)?;
|
||||
unsafe {
|
||||
// safety: We do not keep a reference to anything that lives inside the database
|
||||
database.put_current_with_options::<Bytes>(PutFlags::APPEND, key, value)?
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -3,8 +3,9 @@ pub use self::clear_documents::ClearDocuments;
|
||||
pub use self::facet::bulk::FacetsUpdateBulk;
|
||||
pub use self::facet::incremental::FacetsUpdateIncrementalInner;
|
||||
pub use self::index_documents::{
|
||||
merge_cbo_roaring_bitmaps, merge_roaring_bitmaps, DocumentAdditionResult, DocumentId,
|
||||
IndexDocuments, IndexDocumentsConfig, IndexDocumentsMethod, MergeFn,
|
||||
merge_btreeset_string, merge_cbo_roaring_bitmaps, merge_roaring_bitmaps,
|
||||
DocumentAdditionResult, DocumentId, IndexDocuments, IndexDocumentsConfig, IndexDocumentsMethod,
|
||||
MergeFn,
|
||||
};
|
||||
pub use self::indexer_config::IndexerConfig;
|
||||
pub use self::settings::{validate_embedding_settings, Setting, Settings};
|
||||
|
||||
@@ -979,9 +979,6 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
crate::vector::settings::EmbeddingSettings::apply_default_source(
|
||||
&mut setting,
|
||||
);
|
||||
crate::vector::settings::EmbeddingSettings::apply_default_openai_model(
|
||||
&mut setting,
|
||||
);
|
||||
let setting = validate_embedding_settings(setting, &name)?;
|
||||
changed = true;
|
||||
new_configs.insert(name, setting);
|
||||
@@ -1127,14 +1124,6 @@ pub fn validate_embedding_settings(
|
||||
let Setting::Set(settings) = settings else { return Ok(settings) };
|
||||
let EmbeddingSettings { source, model, revision, api_key, dimensions, document_template } =
|
||||
settings;
|
||||
|
||||
if let Some(0) = dimensions.set() {
|
||||
return Err(crate::error::UserError::InvalidSettingsDimensions {
|
||||
embedder_name: name.to_owned(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
|
||||
let Some(inferred_source) = source.set() else {
|
||||
return Ok(Setting::Set(EmbeddingSettings {
|
||||
source,
|
||||
@@ -1148,34 +1137,14 @@ pub fn validate_embedding_settings(
|
||||
match inferred_source {
|
||||
EmbedderSource::OpenAi => {
|
||||
check_unset(&revision, "revision", inferred_source, name)?;
|
||||
check_unset(&dimensions, "dimensions", inferred_source, name)?;
|
||||
if let Setting::Set(model) = &model {
|
||||
let model = crate::vector::openai::EmbeddingModel::from_name(model.as_str())
|
||||
.ok_or(crate::error::UserError::InvalidOpenAiModel {
|
||||
crate::vector::openai::EmbeddingModel::from_name(model.as_str()).ok_or(
|
||||
crate::error::UserError::InvalidOpenAiModel {
|
||||
embedder_name: name.to_owned(),
|
||||
model: model.clone(),
|
||||
})?;
|
||||
if let Setting::Set(dimensions) = dimensions {
|
||||
if !model.supports_overriding_dimensions()
|
||||
&& dimensions != model.default_dimensions()
|
||||
{
|
||||
return Err(crate::error::UserError::InvalidOpenAiModelDimensions {
|
||||
embedder_name: name.to_owned(),
|
||||
model: model.name(),
|
||||
dimensions,
|
||||
expected_dimensions: model.default_dimensions(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
if dimensions > model.default_dimensions() {
|
||||
return Err(crate::error::UserError::InvalidOpenAiModelDimensionsMax {
|
||||
embedder_name: name.to_owned(),
|
||||
model: model.name(),
|
||||
dimensions,
|
||||
max_dimensions: model.default_dimensions(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
}
|
||||
},
|
||||
)?;
|
||||
}
|
||||
}
|
||||
EmbedderSource::HuggingFace => {
|
||||
|
||||
@@ -47,7 +47,7 @@ impl<'t, 'i> WordPrefixDocids<'t, 'i> {
|
||||
)]
|
||||
pub fn execute(
|
||||
self,
|
||||
new_word_docids: grenad::Merger<CursorClonableMmap, MergeFn>,
|
||||
mut new_word_docids_iter: grenad::ReaderCursor<CursorClonableMmap>,
|
||||
new_prefix_fst_words: &[String],
|
||||
common_prefix_fst_words: &[&[String]],
|
||||
del_prefix_fst_words: &HashSet<Vec<u8>>,
|
||||
@@ -68,8 +68,7 @@ impl<'t, 'i> WordPrefixDocids<'t, 'i> {
|
||||
if !common_prefix_fst_words.is_empty() {
|
||||
let mut current_prefixes: Option<&&[String]> = None;
|
||||
let mut prefixes_cache = HashMap::new();
|
||||
let mut new_word_docids_iter = new_word_docids.into_stream_merger_iter()?;
|
||||
while let Some((word, data)) = new_word_docids_iter.next()? {
|
||||
while let Some((word, data)) = new_word_docids_iter.move_on_next()? {
|
||||
current_prefixes = match current_prefixes.take() {
|
||||
Some(prefixes) if word.starts_with(prefixes[0].as_bytes()) => Some(prefixes),
|
||||
_otherwise => {
|
||||
|
||||
@@ -52,7 +52,7 @@ impl<'t, 'i> WordPrefixIntegerDocids<'t, 'i> {
|
||||
)]
|
||||
pub fn execute(
|
||||
self,
|
||||
new_word_integer_docids: grenad::Merger<CursorClonableMmap, MergeFn>,
|
||||
new_word_integer_docids: grenad::Reader<CursorClonableMmap>,
|
||||
new_prefix_fst_words: &[String],
|
||||
common_prefix_fst_words: &[&[String]],
|
||||
del_prefix_fst_words: &HashSet<Vec<u8>>,
|
||||
@@ -69,14 +69,14 @@ impl<'t, 'i> WordPrefixIntegerDocids<'t, 'i> {
|
||||
self.max_memory,
|
||||
);
|
||||
|
||||
let mut new_word_integer_docids_iter = new_word_integer_docids.into_cursor()?;
|
||||
|
||||
if !common_prefix_fst_words.is_empty() {
|
||||
// We fetch all the new common prefixes between the previous and new prefix fst.
|
||||
let mut buffer = Vec::new();
|
||||
let mut current_prefixes: Option<&&[String]> = None;
|
||||
let mut prefixes_cache = HashMap::new();
|
||||
let mut new_word_integer_docids_iter =
|
||||
new_word_integer_docids.into_stream_merger_iter()?;
|
||||
while let Some((key, data)) = new_word_integer_docids_iter.next()? {
|
||||
while let Some((key, data)) = new_word_integer_docids_iter.move_on_next()? {
|
||||
let (word, pos) =
|
||||
StrBEU16Codec::bytes_decode(key).map_err(heed::Error::Decoding)?;
|
||||
|
||||
|
||||
@@ -67,10 +67,6 @@ pub enum EmbedErrorKind {
|
||||
OpenAiUnhandledStatusCode(u16),
|
||||
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
|
||||
ManualEmbed(String),
|
||||
#[error("could not initialize asynchronous runtime: {0}")]
|
||||
OpenAiRuntimeInit(std::io::Error),
|
||||
#[error("initializing web client for sending embedding requests failed: {0}")]
|
||||
InitWebClient(reqwest::Error),
|
||||
}
|
||||
|
||||
impl EmbedError {
|
||||
@@ -121,14 +117,6 @@ impl EmbedError {
|
||||
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_runtime_init(inner: std::io::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiRuntimeInit(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
@@ -195,6 +183,10 @@ impl NewEmbedderError {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
|
||||
}
|
||||
@@ -245,6 +237,8 @@ pub enum NewEmbedderErrorKind {
|
||||
#[error("loading model failed: {0}")]
|
||||
LoadModel(candle_core::Error),
|
||||
// openai
|
||||
#[error("initializing web client for sending embedding requests failed: {0}")]
|
||||
InitWebClient(reqwest::Error),
|
||||
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
|
||||
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
|
||||
}
|
||||
|
||||
@@ -151,8 +151,7 @@ impl Embedder {
|
||||
let token_ids = tokens
|
||||
.iter()
|
||||
.map(|tokens| {
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
tokens.truncate(512);
|
||||
let tokens = tokens.get_ids().to_vec();
|
||||
Tensor::new(tokens.as_slice(), &self.model.device).map_err(EmbedError::tensor_shape)
|
||||
})
|
||||
.collect::<Result<Vec<_>, EmbedError>>()?;
|
||||
|
||||
@@ -163,24 +163,18 @@ impl Embedder {
|
||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
||||
Embedder::OpenAi(embedder) => {
|
||||
let client = embedder.new_client()?;
|
||||
embedder.embed(texts, &client).await
|
||||
}
|
||||
Embedder::OpenAi(embedder) => embedder.embed(texts).await,
|
||||
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
||||
}
|
||||
}
|
||||
|
||||
/// # Panics
|
||||
///
|
||||
/// - if called from an asynchronous context
|
||||
pub fn embed_chunks(
|
||||
pub async fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks).await,
|
||||
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ use super::{DistributionShift, Embedding, Embeddings};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
headers: reqwest::header::HeaderMap,
|
||||
client: reqwest::Client,
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
options: EmbedderOptions,
|
||||
}
|
||||
@@ -17,7 +17,6 @@ pub struct Embedder {
|
||||
pub struct EmbedderOptions {
|
||||
pub api_key: Option<String>,
|
||||
pub embedding_model: EmbeddingModel,
|
||||
pub dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(
|
||||
@@ -42,50 +41,34 @@ pub enum EmbeddingModel {
|
||||
#[serde(rename = "text-embedding-ada-002")]
|
||||
#[deserr(rename = "text-embedding-ada-002")]
|
||||
TextEmbeddingAda002,
|
||||
|
||||
#[serde(rename = "text-embedding-3-small")]
|
||||
#[deserr(rename = "text-embedding-3-small")]
|
||||
TextEmbedding3Small,
|
||||
|
||||
#[serde(rename = "text-embedding-3-large")]
|
||||
#[deserr(rename = "text-embedding-3-large")]
|
||||
TextEmbedding3Large,
|
||||
}
|
||||
|
||||
impl EmbeddingModel {
|
||||
pub fn supported_models() -> &'static [&'static str] {
|
||||
&["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"]
|
||||
&["text-embedding-ada-002"]
|
||||
}
|
||||
|
||||
pub fn max_token(&self) -> usize {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => 8191,
|
||||
EmbeddingModel::TextEmbedding3Large => 8191,
|
||||
EmbeddingModel::TextEmbedding3Small => 8191,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn default_dimensions(&self) -> usize {
|
||||
pub fn dimensions(&self) -> usize {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => 1536,
|
||||
EmbeddingModel::TextEmbedding3Large => 3072,
|
||||
EmbeddingModel::TextEmbedding3Small => 1536,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn name(&self) -> &'static str {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => "text-embedding-ada-002",
|
||||
EmbeddingModel::TextEmbedding3Large => "text-embedding-3-large",
|
||||
EmbeddingModel::TextEmbedding3Small => "text-embedding-3-small",
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_name(name: &str) -> Option<Self> {
|
||||
match name {
|
||||
"text-embedding-ada-002" => Some(EmbeddingModel::TextEmbeddingAda002),
|
||||
"text-embedding-3-large" => Some(EmbeddingModel::TextEmbedding3Large),
|
||||
"text-embedding-3-small" => Some(EmbeddingModel::TextEmbedding3Small),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
@@ -95,20 +78,6 @@ impl EmbeddingModel {
|
||||
EmbeddingModel::TextEmbeddingAda002 => {
|
||||
Some(DistributionShift { current_mean: 0.90, current_sigma: 0.08 })
|
||||
}
|
||||
EmbeddingModel::TextEmbedding3Large => {
|
||||
Some(DistributionShift { current_mean: 0.70, current_sigma: 0.1 })
|
||||
}
|
||||
EmbeddingModel::TextEmbedding3Small => {
|
||||
Some(DistributionShift { current_mean: 0.75, current_sigma: 0.1 })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn supports_overriding_dimensions(&self) -> bool {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => false,
|
||||
EmbeddingModel::TextEmbedding3Large => true,
|
||||
EmbeddingModel::TextEmbedding3Small => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -117,22 +86,15 @@ pub const OPENAI_EMBEDDINGS_URL: &str = "https://api.openai.com/v1/embeddings";
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn with_default_model(api_key: Option<String>) -> Self {
|
||||
Self { api_key, embedding_model: Default::default(), dimensions: None }
|
||||
Self { api_key, embedding_model: Default::default() }
|
||||
}
|
||||
|
||||
pub fn with_embedding_model(api_key: Option<String>, embedding_model: EmbeddingModel) -> Self {
|
||||
Self { api_key, embedding_model, dimensions: None }
|
||||
Self { api_key, embedding_model }
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new_client(&self) -> Result<reqwest::Client, EmbedError> {
|
||||
reqwest::ClientBuilder::new()
|
||||
.default_headers(self.headers.clone())
|
||||
.build()
|
||||
.map_err(EmbedError::openai_initialize_web_client)
|
||||
}
|
||||
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut headers = reqwest::header::HeaderMap::new();
|
||||
let mut inferred_api_key = Default::default();
|
||||
@@ -149,25 +111,25 @@ impl Embedder {
|
||||
reqwest::header::CONTENT_TYPE,
|
||||
reqwest::header::HeaderValue::from_static("application/json"),
|
||||
);
|
||||
let client = reqwest::ClientBuilder::new()
|
||||
.default_headers(headers)
|
||||
.build()
|
||||
.map_err(NewEmbedderError::openai_initialize_web_client)?;
|
||||
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
|
||||
Ok(Self { options, headers, tokenizer })
|
||||
Ok(Self { options, client, tokenizer })
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
pub async fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let mut tokenized = false;
|
||||
|
||||
for attempt in 0..7 {
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, client).await
|
||||
self.try_embed_tokenized(&texts).await
|
||||
} else {
|
||||
self.try_embed(&texts, client).await
|
||||
self.try_embed(&texts).await
|
||||
};
|
||||
|
||||
let retry_duration = match result {
|
||||
@@ -187,9 +149,9 @@ impl Embedder {
|
||||
}
|
||||
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, client).await
|
||||
self.try_embed_tokenized(&texts).await
|
||||
} else {
|
||||
self.try_embed(&texts, client).await
|
||||
self.try_embed(&texts).await
|
||||
};
|
||||
|
||||
result.map_err(Retry::into_error)
|
||||
@@ -267,17 +229,13 @@ impl Embedder {
|
||||
async fn try_embed<S: AsRef<str> + serde::Serialize>(
|
||||
&self,
|
||||
texts: &[S],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
for text in texts {
|
||||
tracing::trace!("Received prompt: {}", text.as_ref())
|
||||
}
|
||||
let request = OpenAiRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: texts,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
let request = OpenAiRequest { model: self.options.embedding_model.name(), input: texts };
|
||||
let response = self
|
||||
.client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
@@ -302,11 +260,7 @@ impl Embedder {
|
||||
.collect())
|
||||
}
|
||||
|
||||
async fn try_embed_tokenized(
|
||||
&self,
|
||||
text: &[String],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
async fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
pub const OVERLAP_SIZE: usize = 200;
|
||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||
for text in text {
|
||||
@@ -314,34 +268,31 @@ impl Embedder {
|
||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||
let len = encoded.len();
|
||||
if len < max_token_count {
|
||||
all_embeddings.append(&mut self.try_embed(&[text], client).await?);
|
||||
all_embeddings.append(&mut self.try_embed(&[text]).await?);
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut tokens = encoded.as_slice();
|
||||
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
||||
let mut embeddings_for_prompt =
|
||||
Embeddings::new(self.options.embedding_model.dimensions());
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
embeddings_for_prompt.push(self.embed_tokens(window, client).await?).unwrap();
|
||||
embeddings_for_prompt.push(self.embed_tokens(window).await?).unwrap();
|
||||
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
// end of text
|
||||
embeddings_for_prompt.push(self.embed_tokens(tokens, client).await?).unwrap();
|
||||
embeddings_for_prompt.push(self.embed_tokens(tokens).await?).unwrap();
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
Ok(all_embeddings)
|
||||
}
|
||||
|
||||
async fn embed_tokens(
|
||||
&self,
|
||||
tokens: &[usize],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embedding, Retry> {
|
||||
async fn embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
|
||||
for attempt in 0..9 {
|
||||
let duration = match self.try_embed_tokens(tokens, client).await {
|
||||
let duration = match self.try_embed_tokens(tokens).await {
|
||||
Ok(embedding) => return Ok(embedding),
|
||||
Err(retry) => retry.into_duration(attempt),
|
||||
}
|
||||
@@ -350,22 +301,14 @@ impl Embedder {
|
||||
tokio::time::sleep(duration).await;
|
||||
}
|
||||
|
||||
self.try_embed_tokens(tokens, client)
|
||||
.await
|
||||
.map_err(|retry| Retry::give_up(retry.into_error()))
|
||||
self.try_embed_tokens(tokens).await.map_err(|retry| Retry::give_up(retry.into_error()))
|
||||
}
|
||||
|
||||
async fn try_embed_tokens(
|
||||
&self,
|
||||
tokens: &[usize],
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embedding, Retry> {
|
||||
let request = OpenAiTokensRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: tokens,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
async fn try_embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
|
||||
let request =
|
||||
OpenAiTokensRequest { model: self.options.embedding_model.name(), input: tokens };
|
||||
let response = self
|
||||
.client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
@@ -383,19 +326,12 @@ impl Embedder {
|
||||
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
pub async fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)?;
|
||||
let client = self.new_client()?;
|
||||
rt.block_on(futures::future::try_join_all(
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts, &client)),
|
||||
))
|
||||
futures::future::try_join_all(text_chunks.into_iter().map(|prompts| self.embed(prompts)))
|
||||
.await
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
@@ -407,24 +343,12 @@ impl Embedder {
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions.unwrap_or(self.options.embedding_model.default_dimensions())
|
||||
} else {
|
||||
self.options.embedding_model.default_dimensions()
|
||||
}
|
||||
self.options.embedding_model.dimensions()
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.embedding_model.distribution()
|
||||
}
|
||||
|
||||
fn overriden_dimensions(&self) -> Option<usize> {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// retrying in case of failure
|
||||
@@ -484,16 +408,12 @@ impl Retry {
|
||||
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
|
||||
model: &'a str,
|
||||
input: &'a [S],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiTokensRequest<'a> {
|
||||
model: &'a str,
|
||||
input: &'a [usize],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use deserr::Deserr;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::openai;
|
||||
use crate::prompt::PromptData;
|
||||
use crate::update::Setting;
|
||||
use crate::vector::EmbeddingConfig;
|
||||
@@ -83,7 +82,7 @@ impl EmbeddingSettings {
|
||||
Self::MODEL => &[EmbedderSource::HuggingFace, EmbedderSource::OpenAi],
|
||||
Self::REVISION => &[EmbedderSource::HuggingFace],
|
||||
Self::API_KEY => &[EmbedderSource::OpenAi],
|
||||
Self::DIMENSIONS => &[EmbedderSource::OpenAi, EmbedderSource::UserProvided],
|
||||
Self::DIMENSIONS => &[EmbedderSource::UserProvided],
|
||||
Self::DOCUMENT_TEMPLATE => &[EmbedderSource::HuggingFace, EmbedderSource::OpenAi],
|
||||
_other => unreachable!("unknown field"),
|
||||
}
|
||||
@@ -91,13 +90,9 @@ impl EmbeddingSettings {
|
||||
|
||||
pub fn allowed_fields_for_source(source: EmbedderSource) -> &'static [&'static str] {
|
||||
match source {
|
||||
EmbedderSource::OpenAi => &[
|
||||
Self::SOURCE,
|
||||
Self::MODEL,
|
||||
Self::API_KEY,
|
||||
Self::DOCUMENT_TEMPLATE,
|
||||
Self::DIMENSIONS,
|
||||
],
|
||||
EmbedderSource::OpenAi => {
|
||||
&[Self::SOURCE, Self::MODEL, Self::API_KEY, Self::DOCUMENT_TEMPLATE]
|
||||
}
|
||||
EmbedderSource::HuggingFace => {
|
||||
&[Self::SOURCE, Self::MODEL, Self::REVISION, Self::DOCUMENT_TEMPLATE]
|
||||
}
|
||||
@@ -114,17 +109,6 @@ impl EmbeddingSettings {
|
||||
*source = Setting::Set(EmbedderSource::default())
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn apply_default_openai_model(setting: &mut Setting<EmbeddingSettings>) {
|
||||
if let Setting::Set(EmbeddingSettings {
|
||||
source: Setting::Set(EmbedderSource::OpenAi),
|
||||
model: model @ (Setting::NotSet | Setting::Reset),
|
||||
..
|
||||
}) = setting
|
||||
{
|
||||
*model = Setting::Set(openai::EmbeddingModel::default().name().to_owned())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
@@ -192,7 +176,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
model: Setting::Set(options.embedding_model.name().to_owned()),
|
||||
revision: Setting::NotSet,
|
||||
api_key: options.api_key.map(Setting::Set).unwrap_or_default(),
|
||||
dimensions: options.dimensions.map(Setting::Set).unwrap_or_default(),
|
||||
dimensions: Setting::NotSet,
|
||||
document_template: Setting::Set(prompt.template),
|
||||
},
|
||||
super::EmbedderOptions::UserProvided(options) => Self {
|
||||
@@ -224,9 +208,6 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
if let Some(api_key) = api_key.set() {
|
||||
options.api_key = Some(api_key);
|
||||
}
|
||||
if let Some(dimensions) = dimensions.set() {
|
||||
options.dimensions = Some(dimensions);
|
||||
}
|
||||
this.embedder_options = super::EmbedderOptions::OpenAi(options);
|
||||
}
|
||||
EmbedderSource::HuggingFace => {
|
||||
|
||||
@@ -13,11 +13,10 @@ serde_json = "1.0.111"
|
||||
tracing = "0.1.40"
|
||||
tracing-error = "0.2.0"
|
||||
tracing-subscriber = "0.3.18"
|
||||
byte-unit = { version = "4.0.19", default-features = false, features = [
|
||||
"std",
|
||||
"serde",
|
||||
] }
|
||||
tokio = { version = "1.35.1", features = ["sync"] }
|
||||
clap = { version = "4.4.18", features = ["derive"] }
|
||||
anyhow = "1.0.79"
|
||||
byte-unit = { version = "5.1.4", features = ["byte"] }
|
||||
|
||||
[target.'cfg(any(target_os = "linux", target_os = "macos"))'.dependencies]
|
||||
libproc = "0.14.2"
|
||||
|
||||
103
tracing-trace/src/bin/filter-trace.rs
Normal file
103
tracing-trace/src/bin/filter-trace.rs
Normal file
@@ -0,0 +1,103 @@
|
||||
use std::collections::vec_deque::Drain;
|
||||
use std::collections::VecDeque;
|
||||
use std::io::{self, BufReader, BufWriter, Stdout, Write};
|
||||
use std::mem;
|
||||
|
||||
use anyhow::Context;
|
||||
use byte_unit::Byte;
|
||||
use clap::Parser;
|
||||
use tracing_trace::entry::{Entry, NewSpan};
|
||||
|
||||
/// A program that filters trace logs to only keeps
|
||||
/// the logs related to memory usage above the given threshold.
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// The threshold that a log must have to be returned by this program.
|
||||
#[arg(short, long)]
|
||||
memory_threshold: Byte,
|
||||
|
||||
/// Number of context lines to keep around high memory log lines.
|
||||
#[arg(long, default_value_t = 10)]
|
||||
context: usize,
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let Args { memory_threshold, context } = Args::parse();
|
||||
|
||||
let mut context = EntryContext::new(context);
|
||||
let mut currently_in_threshold = false;
|
||||
|
||||
let input = BufReader::new(io::stdin());
|
||||
let mut output = io::BufWriter::new(io::stdout());
|
||||
for result in tracing_trace::TraceReader::new(input) {
|
||||
let entry = result?;
|
||||
|
||||
match entry {
|
||||
Entry::NewCallsite(_) | Entry::NewThread(_) => {
|
||||
write_to_output(&mut output, &entry)?;
|
||||
}
|
||||
Entry::NewSpan(NewSpan { id, call_id, parent_id, thread_id }) => todo!(),
|
||||
Entry::SpanEnter(_) => todo!(),
|
||||
Entry::SpanExit(_) => todo!(),
|
||||
Entry::SpanClose(_) => todo!(),
|
||||
Entry::Event(_) => todo!(),
|
||||
}
|
||||
|
||||
// if matches!(entry, Entry::NewCallsite(_) | Entry::NewThread(_)) {
|
||||
// write_to_output(&mut output, &entry)?;
|
||||
// } else if entry.memory().map_or(true, |m| m.resident < memory_threshold.as_u64()) {
|
||||
// if mem::replace(&mut currently_in_threshold, false) {
|
||||
// for entry in context.drain() {
|
||||
// write_to_output(&mut output, &entry)?;
|
||||
// }
|
||||
// }
|
||||
// context.push(entry);
|
||||
// } else {
|
||||
// currently_in_threshold = true;
|
||||
// for entry in context.drain() {
|
||||
// write_to_output(&mut output, &entry)?;
|
||||
// }
|
||||
// write_to_output(&mut output, &entry)?;
|
||||
// }
|
||||
}
|
||||
|
||||
for entry in context.drain() {
|
||||
write_to_output(&mut output, &entry)?;
|
||||
}
|
||||
|
||||
output.flush().context("flushing stdout")?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_to_output(writer: &mut BufWriter<Stdout>, entry: &Entry) -> anyhow::Result<()> {
|
||||
serde_json::to_writer(writer, &entry).context("while serializing and writing to stdout")
|
||||
}
|
||||
|
||||
/// Keeps only the last `size` element in memory.
|
||||
/// It's basically a sliding window.
|
||||
pub struct EntryContext {
|
||||
size: usize,
|
||||
queue: VecDeque<Entry>,
|
||||
}
|
||||
|
||||
impl EntryContext {
|
||||
pub fn new(size: usize) -> EntryContext {
|
||||
EntryContext { size, queue: VecDeque::with_capacity(size) }
|
||||
}
|
||||
|
||||
pub fn is_full(&self) -> bool {
|
||||
self.size >= self.queue.len()
|
||||
}
|
||||
|
||||
pub fn push(&mut self, entry: Entry) {
|
||||
if self.queue.len() == self.size {
|
||||
self.queue.pop_front();
|
||||
}
|
||||
self.queue.push_back(entry);
|
||||
}
|
||||
|
||||
pub fn drain(&mut self) -> Drain<Entry> {
|
||||
self.queue.drain(..)
|
||||
}
|
||||
}
|
||||
@@ -38,6 +38,20 @@ pub enum Entry {
|
||||
Event(Event),
|
||||
}
|
||||
|
||||
impl Entry {
|
||||
pub fn memory(&self) -> Option<MemoryStats> {
|
||||
match self {
|
||||
Entry::NewCallsite(_)
|
||||
| Entry::NewThread(_)
|
||||
| Entry::NewSpan(_)
|
||||
| Entry::SpanClose(_) => None,
|
||||
Entry::SpanEnter(event) => event.memory,
|
||||
Entry::SpanExit(event) => event.memory,
|
||||
Entry::Event(event) => event.memory,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq, Hash)]
|
||||
pub struct SpanId(u64);
|
||||
|
||||
|
||||
@@ -189,7 +189,7 @@ fn print_duration(duration: std::time::Duration) -> String {
|
||||
|
||||
/// Format only the allocated bytes, deallocated bytes and reallocated bytes in GiB, MiB, KiB, Bytes.
|
||||
fn print_memory(MemoryStats { resident }: MemoryStats) -> String {
|
||||
use byte_unit::Byte;
|
||||
let rss_bytes = Byte::from_bytes(resident).get_appropriate_unit(true);
|
||||
use byte_unit::{Byte, UnitType};
|
||||
let rss_bytes = Byte::from_u64(resident).get_appropriate_unit(UnitType::Binary);
|
||||
format!("RSS {rss_bytes:.2}")
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user