Compare commits

..

18 Commits

Author SHA1 Message Date
Kerollmops
dd01613a63 Remove the unused distance 2023-06-14 16:37:14 +02:00
Kerollmops
70d975b399 Introduce a new error message for invalid vector dimensions 2023-06-14 16:36:58 +02:00
Kerollmops
a8e6d946a7 Make clippy happy 2023-06-14 15:59:10 +02:00
Kerollmops
7c1f72ae33 Fix the tests 2023-06-14 15:57:31 +02:00
Kerollmops
442a8f44c6 Support more pages but in an ugly way 2023-06-14 15:53:39 +02:00
Kerollmops
185a238c77 Change the name of the distance module 2023-06-14 15:53:39 +02:00
Kerollmops
a82bf776f3 Implement an ugly deletion of values in the HNSW 2023-06-14 15:53:39 +02:00
Kerollmops
b2f86df127 Replace the euclidean with a dot product 2023-06-14 15:53:39 +02:00
Kerollmops
c3a5f51705 Use a basic euclidean distance function 2023-06-14 15:53:39 +02:00
Kerollmops
686d1f4c12 Move back to the hnsw crate
This reverts commit 7a4b6c065482f988b01298642f4c18775503f92f.
2023-06-14 15:53:39 +02:00
Kerollmops
ba75606731 Log more to make sure we insert vectors in the hgg data-structure 2023-06-14 15:53:38 +02:00
Kerollmops
baf3b036d9 Introduce an optimized version of the euclidean distance function 2023-06-14 15:53:38 +02:00
Kerollmops
0d499f0055 Move to the hgg crate 2023-06-14 15:53:38 +02:00
Clément Renault
7999c397c5 Expose a new vector field on the search route 2023-06-14 15:53:38 +02:00
Clément Renault
c44db8b4bc Add a vector field to the search routes 2023-06-14 15:53:38 +02:00
Clément Renault
9466949e34 Store the vectors in an HNSW in LMDB 2023-06-14 15:53:38 +02:00
Clément Renault
f051bbfd84 Extract the vectors from the documents 2023-06-14 15:52:43 +02:00
Clément Renault
72b1c3df08 Create a new _vector extractor 2023-06-14 15:52:43 +02:00
223 changed files with 1748 additions and 15073 deletions

View File

@@ -1,41 +1,24 @@
#!/usr/bin/env bash
set -eu -o pipefail
#!/bin/bash
check_tag() {
local expected=$1
local actual=$2
local filename=$3
if [[ $actual != $expected ]]; then
echo >&2 "Error: the current tag does not match the version in $filename: found $actual, expected $expected"
return 1
fi
# check_tag $current_tag $file_tag $file_name
function check_tag {
if [[ "$1" != "$2" ]]; then
echo "Error: the current tag does not match the version in Cargo.toml: found $2 - expected $1"
ret=1
fi
}
read_version() {
grep '^version = ' | cut -d \" -f 2
}
if [[ -z "${GITHUB_REF:-}" ]]; then
echo >&2 "Error: GITHUB_REF is not set"
exit 1
fi
if [[ ! "$GITHUB_REF" =~ ^refs/tags/v[0-9]+\.[0-9]+\.[0-9]+(-[a-z0-9]+)?$ ]]; then
echo >&2 "Error: GITHUB_REF is not a valid tag: $GITHUB_REF"
exit 1
fi
current_tag=${GITHUB_REF#refs/tags/v}
ret=0
current_tag=${GITHUB_REF#'refs/tags/v'}
toml_tag="$(cat Cargo.toml | read_version)"
check_tag "$current_tag" "$toml_tag" Cargo.toml || ret=1
file_tag="$(grep '^version = ' Cargo.toml | cut -d '=' -f 2 | tr -d '"' | tr -d ' ')"
check_tag $current_tag $file_tag
lock_tag=$(grep -A 1 '^name = "meilisearch-auth"' Cargo.lock | read_version)
check_tag "$current_tag" "$lock_tag" Cargo.lock || ret=1
lock_file='Cargo.lock'
lock_tag=$(grep -A 1 'name = "meilisearch-auth"' $lock_file | grep version | cut -d '=' -f 2 | tr -d '"' | tr -d ' ')
check_tag $current_tag $lock_tag $lock_file
if (( ret == 0 )); then
echo 'OK'
if [[ "$ret" -eq 0 ]] ; then
echo 'OK'
fi
exit $ret

View File

@@ -1,24 +0,0 @@
name: Run the indexing fuzzer
on:
push:
branches:
- main
jobs:
fuzz:
name: Setup the action
runs-on: ubuntu-latest
timeout-minutes: 4320 # 72h
steps:
- uses: actions/checkout@v3
- uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: stable
override: true
# Run benchmarks
- name: Run the fuzzer
run: |
cargo run --release --bin fuzz-indexing

View File

@@ -25,7 +25,7 @@ jobs:
- name: Define the Docker image we need to use
id: define-image
run: |
event=${{ github.event_name }}
event=${{ github.event.action }}
echo "docker-image=nightly" >> $GITHUB_OUTPUT
if [[ $event == 'workflow_dispatch' ]]; then
echo "docker-image=${{ github.event.inputs.docker_image }}" >> $GITHUB_OUTPUT
@@ -37,7 +37,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -72,7 +72,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -99,7 +99,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -130,7 +130,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -155,7 +155,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -185,7 +185,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -210,7 +210,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}

952
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -13,12 +13,11 @@ members = [
"filter-parser",
"flatten-serde-json",
"json-depth-checker",
"benchmarks",
"fuzzers",
"benchmarks"
]
[workspace.package]
version = "1.3.0"
version = "1.2.0"
authors = ["Quentin de Quelen <quentin@dequelen.me>", "Clément Renault <clement@meilisearch.com>"]
description = "Meilisearch HTTP server"
homepage = "https://meilisearch.com"

View File

@@ -6,7 +6,6 @@
<h4 align="center">
<a href="https://www.meilisearch.com">Website</a> |
<a href="https://roadmap.meilisearch.com/tabs/1-under-consideration">Roadmap</a> |
<a href="https://www.meilisearch.com/pricing?utm_campaign=oss&utm_source=engine&utm_medium=meilisearch">Meilisearch Cloud</a> |
<a href="https://blog.meilisearch.com">Blog</a> |
<a href="https://www.meilisearch.com/docs">Documentation</a> |
<a href="https://www.meilisearch.com/docs/faq">FAQ</a> |
@@ -38,10 +37,10 @@ Meilisearch helps you shape a delightful search experience in a snap, offering f
- **Search-as-you-type:** find search results in less than 50 milliseconds
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/getting_started/customizing_relevancy#typo-tolerance):** get relevant matches even when queries contain typos and misspellings
- **[Filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering) and [faceted search](https://www.meilisearch.com/docs/learn/fine_tuning_results/faceted_search):** enhance your user's search experience with custom filters and build a faceted search interface in a few lines of code
- **[Sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting):** sort results based on price, date, or pretty much anything else your users need
- **[Filtering](https://www.meilisearch.com/docs/learn/advanced/filtering) and [faceted search](https://www.meilisearch.com/docs/learn/advanced/faceted_search):** enhance your user's search experience with custom filters and build a faceted search interface in a few lines of code
- **[Sorting](https://www.meilisearch.com/docs/learn/advanced/sorting):** sort results based on price, date, or pretty much anything else your users need
- **[Synonym support](https://www.meilisearch.com/docs/learn/getting_started/customizing_relevancy#synonyms):** configure synonyms to include more relevant content in your search results
- **[Geosearch](https://www.meilisearch.com/docs/learn/fine_tuning_results/geosearch):** filter and sort documents based on geographic data
- **[Geosearch](https://www.meilisearch.com/docs/learn/advanced/geosearch):** filter and sort documents based on geographic data
- **[Extensive language support](https://www.meilisearch.com/docs/learn/what_is_meilisearch/language):** search datasets in any language, with optimized support for Chinese, Japanese, Hebrew, and languages using the Latin alphabet
- **[Security management](https://www.meilisearch.com/docs/learn/security/master_api_keys):** control which users can access what data with API keys that allow fine-grained permissions handling
- **[Multi-Tenancy](https://www.meilisearch.com/docs/learn/security/tenant_tokens):** personalize search results for any number of application tenants
@@ -59,9 +58,9 @@ For basic instructions on how to set up Meilisearch, add documents to an index,
You may also want to check out [Meilisearch 101](https://www.meilisearch.com/docs/learn/getting_started/filtering_and_sorting) for an introduction to some of Meilisearch's most popular features.
## ⚡ Supercharge your Meilisearch experience
## ☁️ Meilisearch cloud
Say goodbye to server deployment and manual updates with [Meilisearch Cloud](https://www.meilisearch.com/pricing?utm_campaign=oss&utm_source=engine&utm_medium=meilisearch). No credit card required.
Let us manage your infrastructure so you can focus on integrating a great search experience. Try [Meilisearch Cloud](https://meilisearch.com/pricing) today.
## 🧰 SDKs & integration tools
@@ -75,7 +74,7 @@ Take a look at the complete [Meilisearch integration list](https://www.meilisear
Experienced users will want to keep our [API Reference](https://www.meilisearch.com/docs/reference/api/overview) close at hand.
We also offer a wide range of dedicated guides to all Meilisearch features, such as [filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering), [sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting), [geosearch](https://www.meilisearch.com/docs/learn/fine_tuning_results/geosearch), [API keys](https://www.meilisearch.com/docs/learn/security/master_api_keys), and [tenant tokens](https://www.meilisearch.com/docs/learn/security/tenant_tokens).
We also offer a wide range of dedicated guides to all Meilisearch features, such as [filtering](https://www.meilisearch.com/docs/learn/advanced/filtering), [sorting](https://www.meilisearch.com/docs/learn/advanced/sorting), [geosearch](https://www.meilisearch.com/docs/learn/advanced/geosearch), [API keys](https://www.meilisearch.com/docs/learn/security/master_api_keys), and [tenant tokens](https://www.meilisearch.com/docs/learn/security/tenant_tokens).
Finally, for more in-depth information, refer to our articles explaining fundamental Meilisearch concepts such as [documents](https://www.meilisearch.com/docs/learn/core_concepts/documents) and [indexes](https://www.meilisearch.com/docs/learn/core_concepts/indexes).

View File

@@ -98,7 +98,7 @@
"showThresholdMarkers": true,
"text": {}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"targets": [
{
"datasource": {
@@ -158,7 +158,7 @@
"showThresholdMarkers": true,
"text": {}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"targets": [
{
"datasource": {
@@ -176,7 +176,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"fieldConfig": {
"defaults": {
@@ -220,7 +221,7 @@
"showThresholdMarkers": true,
"text": {}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"targets": [
{
"datasource": {
@@ -240,7 +241,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"fieldConfig": {
"defaults": {
@@ -280,7 +282,7 @@
"showThresholdMarkers": true,
"text": {}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"targets": [
{
"datasource": {
@@ -300,7 +302,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"fieldConfig": {
"defaults": {
@@ -340,7 +343,7 @@
"showThresholdMarkers": true,
"text": {}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"targets": [
{
"datasource": {
@@ -360,7 +363,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"description": "",
"fieldConfig": {
@@ -407,7 +411,8 @@
"mode": "absolute",
"steps": [
{
"color": "green"
"color": "green",
"value": null
},
{
"color": "red",
@@ -455,7 +460,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"editorMode": "builder",
"expr": "meilisearch_used_db_size_bytes{job=\"meilisearch\", instance=\"$instance\"}",
@@ -553,7 +559,7 @@
},
"editorMode": "builder",
"exemplar": true,
"expr": "rate(meilisearch_http_response_time_seconds_sum{instance=\"$instance\", job=\"meilisearch\"}[5m]) / rate(meilisearch_http_response_time_seconds_count[5m])",
"expr": "rate(http_response_time_seconds_sum{instance=\"$instance\", job=\"meilisearch\"}[5m]) / rate(http_response_time_seconds_count[5m])",
"interval": "",
"legendFormat": "{{method}} {{path}}",
"range": true,
@@ -565,7 +571,8 @@
},
{
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "c4085c47-f6d3-45dd-b761-6809055bb749"
},
"fieldConfig": {
"defaults": {
@@ -608,7 +615,8 @@
"mode": "absolute",
"steps": [
{
"color": "green"
"color": "green",
"value": null
},
{
"color": "red",
@@ -735,7 +743,7 @@
"unit": "s"
}
},
"pluginVersion": "10.0.1",
"pluginVersion": "9.5.2",
"reverseYBuckets": false,
"targets": [
{
@@ -744,7 +752,7 @@
},
"editorMode": "builder",
"exemplar": true,
"expr": "sum by(le) (increase(meilisearch_http_response_time_seconds_bucket{path=\"/indexes/$Index/search\", instance=\"$instance\", job=\"meilisearch\"}[30s]))",
"expr": "sum by(le) (increase(http_response_time_seconds_bucket{path=\"/indexes/$Index/search\", instance=\"$instance\", job=\"meilisearch\"}[30s]))",
"format": "heatmap",
"interval": "",
"legendFormat": "{{le}}",
@@ -1298,7 +1306,8 @@
"value": "localhost:7700"
},
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "bb3298a4-9acf-4da1-b86a-813f29f50888"
},
"definition": "label_values(instance)",
"hide": 0,
@@ -1320,11 +1329,12 @@
{
"current": {
"selected": false,
"text": "index-word-count-10-count",
"value": "index-word-count-10-count"
"text": "mieli",
"value": "mieli"
},
"datasource": {
"type": "prometheus"
"type": "prometheus",
"uid": "bb3298a4-9acf-4da1-b86a-813f29f50888"
},
"definition": "label_values(index)",
"hide": 0,
@@ -1361,6 +1371,6 @@
"timezone": "",
"title": "Meilisearch",
"uid": "7wcZ94dnz",
"version": 5,
"version": 6,
"weekStart": ""
}
}

View File

@@ -208,13 +208,12 @@ pub(crate) mod test {
use std::str::FromStr;
use big_s::S;
use maplit::{btreemap, btreeset};
use meilisearch_types::facet_values_sort::FacetValuesSort;
use maplit::btreeset;
use meilisearch_types::index_uid_pattern::IndexUidPattern;
use meilisearch_types::keys::{Action, Key};
use meilisearch_types::milli;
use meilisearch_types::milli::update::Setting;
use meilisearch_types::settings::{Checked, FacetingSettings, Settings};
use meilisearch_types::milli::{self};
use meilisearch_types::settings::{Checked, Settings};
use meilisearch_types::tasks::{Details, Status};
use serde_json::{json, Map, Value};
use time::macros::datetime;
@@ -264,12 +263,7 @@ pub(crate) mod test {
synonyms: Setting::NotSet,
distinct_attribute: Setting::NotSet,
typo_tolerance: Setting::NotSet,
faceting: Setting::Set(FacetingSettings {
max_values_per_facet: Setting::Set(111),
sort_facet_values_by: Setting::Set(
btreemap! { S("age") => FacetValuesSort::Count },
),
}),
faceting: Setting::NotSet,
pagination: Setting::NotSet,
_kind: std::marker::PhantomData,
};
@@ -418,8 +412,6 @@ pub(crate) mod test {
}
keys.flush().unwrap();
// ========== TODO: create features here
// create the dump
let mut file = tempfile::tempfile().unwrap();
dump.persist_to(&mut file).unwrap();

View File

@@ -191,10 +191,6 @@ impl CompatV5ToV6 {
})
})))
}
pub fn features(&self) -> Result<Option<v6::RuntimeTogglableFeatures>> {
Ok(None)
}
}
pub enum CompatIndexV5ToV6 {
@@ -362,7 +358,6 @@ impl<T> From<v5::Settings<T>> for v6::Settings<v6::Unchecked> {
faceting: match settings.faceting {
v5::Setting::Set(faceting) => v6::Setting::Set(v6::FacetingSettings {
max_values_per_facet: faceting.max_values_per_facet.into(),
sort_facet_values_by: v6::Setting::NotSet,
}),
v5::Setting::Reset => v6::Setting::Reset,
v5::Setting::NotSet => v6::Setting::NotSet,

View File

@@ -107,13 +107,6 @@ impl DumpReader {
DumpReader::Compat(compat) => compat.keys(),
}
}
pub fn features(&self) -> Result<Option<v6::RuntimeTogglableFeatures>> {
match self {
DumpReader::Current(current) => Ok(current.features()),
DumpReader::Compat(compat) => compat.features(),
}
}
}
impl From<V6Reader> for DumpReader {
@@ -196,8 +189,6 @@ pub(crate) mod test {
use super::*;
// TODO: add `features` to tests
#[test]
fn import_dump_v5() {
let dump = File::open("tests/assets/v5.dump").unwrap();

View File

@@ -2,7 +2,6 @@ use std::fs::{self, File};
use std::io::{BufRead, BufReader, ErrorKind};
use std::path::Path;
use log::debug;
pub use meilisearch_types::milli;
use tempfile::TempDir;
use time::OffsetDateTime;
@@ -19,7 +18,6 @@ pub type Unchecked = meilisearch_types::settings::Unchecked;
pub type Task = crate::TaskDump;
pub type Key = meilisearch_types::keys::Key;
pub type RuntimeTogglableFeatures = meilisearch_types::features::RuntimeTogglableFeatures;
// ===== Other types to clarify the code of the compat module
// everything related to the tasks
@@ -49,7 +47,6 @@ pub struct V6Reader {
metadata: Metadata,
tasks: BufReader<File>,
keys: BufReader<File>,
features: Option<RuntimeTogglableFeatures>,
}
impl V6Reader {
@@ -61,29 +58,11 @@ impl V6Reader {
Err(e) => return Err(e.into()),
};
let feature_file = match fs::read(dump.path().join("experimental-features.json")) {
Ok(feature_file) => Some(feature_file),
Err(error) => match error.kind() {
// Allows the file to be missing, this will only result in all experimental features disabled.
ErrorKind::NotFound => {
debug!("`experimental-features.json` not found in dump");
None
}
_ => return Err(error.into()),
},
};
let features = if let Some(feature_file) = feature_file {
Some(serde_json::from_reader(&*feature_file)?)
} else {
None
};
Ok(V6Reader {
metadata: serde_json::from_reader(&*meta_file)?,
instance_uid,
tasks: BufReader::new(File::open(dump.path().join("tasks").join("queue.jsonl"))?),
keys: BufReader::new(File::open(dump.path().join("keys.jsonl"))?),
features,
dump,
})
}
@@ -150,10 +129,6 @@ impl V6Reader {
(&mut self.keys).lines().map(|line| -> Result<_> { Ok(serde_json::from_str(&line?)?) }),
)
}
pub fn features(&self) -> Option<RuntimeTogglableFeatures> {
self.features
}
}
pub struct UpdateFile {

View File

@@ -4,7 +4,6 @@ use std::path::PathBuf;
use flate2::write::GzEncoder;
use flate2::Compression;
use meilisearch_types::features::RuntimeTogglableFeatures;
use meilisearch_types::keys::Key;
use meilisearch_types::settings::{Checked, Settings};
use serde_json::{Map, Value};
@@ -54,13 +53,6 @@ impl DumpWriter {
TaskWriter::new(self.dir.path().join("tasks"))
}
pub fn create_experimental_features(&self, features: RuntimeTogglableFeatures) -> Result<()> {
Ok(std::fs::write(
self.dir.path().join("experimental-features.json"),
serde_json::to_string(&features)?,
)?)
}
pub fn persist_to(self, mut writer: impl Write) -> Result<()> {
let gz_encoder = GzEncoder::new(&mut writer, Compression::default());
let mut tar_encoder = tar::Builder::new(gz_encoder);

View File

@@ -1,20 +0,0 @@
[package]
name = "fuzzers"
publish = false
version.workspace = true
authors.workspace = true
description.workspace = true
homepage.workspace = true
readme.workspace = true
edition.workspace = true
license.workspace = true
[dependencies]
arbitrary = { version = "1.3.0", features = ["derive"] }
clap = { version = "4.3.0", features = ["derive"] }
fastrand = "1.9.0"
milli = { path = "../milli" }
serde = { version = "1.0.160", features = ["derive"] }
serde_json = { version = "1.0.95", features = ["preserve_order"] }
tempfile = "3.5.0"

View File

@@ -1,3 +0,0 @@
# Fuzzers
The purpose of this crate is to contains all the handmade "fuzzer" we may need.

View File

@@ -1,152 +0,0 @@
use std::num::NonZeroUsize;
use std::path::PathBuf;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::time::Duration;
use arbitrary::{Arbitrary, Unstructured};
use clap::Parser;
use fuzzers::Operation;
use milli::heed::EnvOpenOptions;
use milli::update::{IndexDocuments, IndexDocumentsConfig, IndexerConfig};
use milli::Index;
use tempfile::TempDir;
#[derive(Debug, Arbitrary)]
struct Batch([Operation; 5]);
#[derive(Debug, Clone, Parser)]
struct Opt {
/// The number of fuzzer to run in parallel.
#[clap(long)]
par: Option<NonZeroUsize>,
// We need to put a lot of newlines in the following documentation or else everything gets collapsed on one line
/// The path in which the databases will be created.
/// Using a ramdisk is recommended.
///
/// Linux:
///
/// sudo mount -t tmpfs -o size=2g tmpfs ramdisk # to create it
///
/// sudo umount ramdisk # to remove it
///
/// MacOS:
///
/// diskutil erasevolume HFS+ 'RAM Disk' `hdiutil attach -nobrowse -nomount ram://4194304 # create it
///
/// hdiutil detach /dev/:the_disk
#[clap(long)]
path: Option<PathBuf>,
}
fn main() {
let opt = Opt::parse();
let progression: &'static AtomicUsize = Box::leak(Box::new(AtomicUsize::new(0)));
let stop: &'static AtomicBool = Box::leak(Box::new(AtomicBool::new(false)));
let par = opt.par.unwrap_or_else(|| std::thread::available_parallelism().unwrap()).get();
let mut handles = Vec::with_capacity(par);
for _ in 0..par {
let opt = opt.clone();
let handle = std::thread::spawn(move || {
let mut options = EnvOpenOptions::new();
options.map_size(1024 * 1024 * 1024 * 1024);
let tempdir = match opt.path {
Some(path) => TempDir::new_in(path).unwrap(),
None => TempDir::new().unwrap(),
};
let index = Index::new(options, tempdir.path()).unwrap();
let indexer_config = IndexerConfig::default();
let index_documents_config = IndexDocumentsConfig::default();
std::thread::scope(|s| {
loop {
if stop.load(Ordering::Relaxed) {
return;
}
let v: Vec<u8> =
std::iter::repeat_with(|| fastrand::u8(..)).take(1000).collect();
let mut data = Unstructured::new(&v);
let batches = <[Batch; 5]>::arbitrary(&mut data).unwrap();
// will be used to display the error once a thread crashes
let dbg_input = format!("{:#?}", batches);
let handle = s.spawn(|| {
let mut wtxn = index.write_txn().unwrap();
for batch in batches {
let mut builder = IndexDocuments::new(
&mut wtxn,
&index,
&indexer_config,
index_documents_config.clone(),
|_| (),
|| false,
)
.unwrap();
for op in batch.0 {
match op {
Operation::AddDoc(doc) => {
let documents =
milli::documents::objects_from_json_value(doc.to_d());
let documents =
milli::documents::documents_batch_reader_from_objects(
documents,
);
let (b, _added) = builder.add_documents(documents).unwrap();
builder = b;
}
Operation::DeleteDoc(id) => {
let (b, _removed) =
builder.remove_documents(vec![id.to_s()]).unwrap();
builder = b;
}
}
}
builder.execute().unwrap();
// after executing a batch we check if the database is corrupted
let res = index.search(&wtxn).execute().unwrap();
index.documents(&wtxn, res.documents_ids).unwrap();
progression.fetch_add(1, Ordering::Relaxed);
}
wtxn.abort().unwrap();
});
if let err @ Err(_) = handle.join() {
stop.store(true, Ordering::Relaxed);
err.expect(&dbg_input);
}
}
});
});
handles.push(handle);
}
std::thread::spawn(|| {
let mut last_value = 0;
let start = std::time::Instant::now();
loop {
let total = progression.load(Ordering::Relaxed);
let elapsed = start.elapsed().as_secs();
if elapsed > 3600 {
// after 1 hour, stop the fuzzer, success
std::process::exit(0);
}
println!(
"Has been running for {:?} seconds. Tested {} new values for a total of {}.",
elapsed,
total - last_value,
total
);
last_value = total;
std::thread::sleep(Duration::from_secs(1));
}
});
for handle in handles {
handle.join().unwrap();
}
}

View File

@@ -1,46 +0,0 @@
use arbitrary::Arbitrary;
use serde_json::{json, Value};
#[derive(Debug, Arbitrary)]
pub enum Document {
One,
Two,
Three,
Four,
Five,
Six,
}
impl Document {
pub fn to_d(&self) -> Value {
match self {
Document::One => json!({ "id": 0, "doggo": "bernese" }),
Document::Two => json!({ "id": 0, "doggo": "golden" }),
Document::Three => json!({ "id": 0, "catto": "jorts" }),
Document::Four => json!({ "id": 1, "doggo": "bernese" }),
Document::Five => json!({ "id": 1, "doggo": "golden" }),
Document::Six => json!({ "id": 1, "catto": "jorts" }),
}
}
}
#[derive(Debug, Arbitrary)]
pub enum DocId {
Zero,
One,
}
impl DocId {
pub fn to_s(&self) -> String {
match self {
DocId::Zero => "0".to_string(),
DocId::One => "1".to_string(),
}
}
}
#[derive(Debug, Arbitrary)]
pub enum Operation {
AddDoc(Document),
DeleteDoc(DocId),
}

View File

@@ -160,7 +160,7 @@ impl BatchKind {
impl BatchKind {
/// Returns a `ControlFlow::Break` if you must stop right now.
/// The boolean tell you if an index has been created by the batched task.
/// To ease the writing of the code. `true` can be returned when you don't need to create an index
/// To ease the writting of the code. `true` can be returned when you don't need to create an index
/// but false can't be returned if you needs to create an index.
// TODO use an AutoBatchKind as input
pub fn new(
@@ -214,7 +214,7 @@ impl BatchKind {
/// Returns a `ControlFlow::Break` if you must stop right now.
/// The boolean tell you if an index has been created by the batched task.
/// To ease the writing of the code. `true` can be returned when you don't need to create an index
/// To ease the writting of the code. `true` can be returned when you don't need to create an index
/// but false can't be returned if you needs to create an index.
#[rustfmt::skip]
fn accumulate(self, id: TaskId, kind: AutobatchKind, index_already_exists: bool, primary_key: Option<&str>) -> ControlFlow<BatchKind, BatchKind> {
@@ -321,18 +321,9 @@ impl BatchKind {
})
}
(
BatchKind::DocumentOperation { method, allow_index_creation, primary_key, mut operation_ids },
this @ BatchKind::DocumentOperation { .. },
K::DocumentDeletion,
) => {
operation_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids,
})
}
) => Break(this),
// but we can't autobatch documents if it's not the same kind
// this match branch MUST be AFTER the previous one
(
@@ -355,35 +346,7 @@ impl BatchKind {
deletion_ids.push(id);
Continue(BatchKind::DocumentClear { ids: deletion_ids })
}
// we can autobatch the deletion and import if the index already exists
(
BatchKind::DocumentDeletion { mut deletion_ids },
K::DocumentImport { method, allow_index_creation, primary_key }
) if index_already_exists => {
deletion_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids: deletion_ids,
})
}
// we can autobatch the deletion and import if both can't create an index
(
BatchKind::DocumentDeletion { mut deletion_ids },
K::DocumentImport { method, allow_index_creation, primary_key }
) if !allow_index_creation => {
deletion_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids: deletion_ids,
})
}
// we can't autobatch a deletion and an import if the index does not exists but would be created by an addition
// we can't autobatch a deletion and an import
(
this @ BatchKind::DocumentDeletion { .. },
K::DocumentImport { .. }
@@ -685,36 +648,36 @@ mod tests {
debug_snapshot!(autobatch_from(false,None, [settings(false)]), @"Some((Settings { allow_index_creation: false, settings_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false,None, [settings(false), settings(false), settings(false)]), @"Some((Settings { allow_index_creation: false, settings_ids: [0, 1, 2] }, false))");
// We can autobatch document addition with document deletion
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
// And the other way around
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
// We can't autobatch document addition with document deletion
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
// we also can't do the only way around
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
}
#[test]

View File

@@ -839,10 +839,6 @@ impl IndexScheduler {
Ok(())
})?;
// 4. Dump experimental feature settings
let features = self.features()?.runtime_features();
dump.create_experimental_features(features)?;
let dump_uid = started_at.format(format_description!(
"[year repr:full][month repr:numerical][day padding:zero]-[hour padding:zero][minute padding:zero][second padding:zero][subsecond digits:3]"
)).unwrap();
@@ -1002,7 +998,7 @@ impl IndexScheduler {
}()
.unwrap_or_default();
// The write transaction is directly owned and committed inside.
// The write transaction is directly owned and commited inside.
match self.index_mapper.delete_index(wtxn, &index_uid) {
Ok(()) => (),
Err(Error::IndexNotFound(_)) if index_has_been_created => (),

View File

@@ -123,8 +123,6 @@ pub enum Error {
IoError(#[from] std::io::Error),
#[error(transparent)]
Persist(#[from] tempfile::PersistError),
#[error(transparent)]
FeatureNotEnabled(#[from] FeatureNotEnabledError),
#[error(transparent)]
Anyhow(#[from] anyhow::Error),
@@ -144,16 +142,6 @@ pub enum Error {
PlannedFailure,
}
#[derive(Debug, thiserror::Error)]
#[error(
"{disabled_action} requires enabling the `{feature}` experimental feature. See {issue_link}"
)]
pub struct FeatureNotEnabledError {
pub disabled_action: &'static str,
pub feature: &'static str,
pub issue_link: &'static str,
}
impl Error {
pub fn is_recoverable(&self) -> bool {
match self {
@@ -182,7 +170,6 @@ impl Error {
| Error::FileStore(_)
| Error::IoError(_)
| Error::Persist(_)
| Error::FeatureNotEnabled(_)
| Error::Anyhow(_) => true,
Error::CreateBatch(_)
| Error::CorruptedTaskQueue
@@ -227,7 +214,6 @@ impl ErrorCode for Error {
Error::FileStore(e) => e.error_code(),
Error::IoError(e) => e.error_code(),
Error::Persist(e) => e.error_code(),
Error::FeatureNotEnabled(_) => Code::FeatureNotEnabled,
// Irrecoverable errors
Error::Anyhow(_) => Code::Internal,

View File

@@ -1,98 +0,0 @@
use meilisearch_types::features::{InstanceTogglableFeatures, RuntimeTogglableFeatures};
use meilisearch_types::heed::types::{SerdeJson, Str};
use meilisearch_types::heed::{Database, Env, RoTxn, RwTxn};
use crate::error::FeatureNotEnabledError;
use crate::Result;
const EXPERIMENTAL_FEATURES: &str = "experimental-features";
#[derive(Clone)]
pub(crate) struct FeatureData {
runtime: Database<Str, SerdeJson<RuntimeTogglableFeatures>>,
instance: InstanceTogglableFeatures,
}
#[derive(Debug, Clone, Copy)]
pub struct RoFeatures {
runtime: RuntimeTogglableFeatures,
instance: InstanceTogglableFeatures,
}
impl RoFeatures {
fn new(txn: RoTxn<'_>, data: &FeatureData) -> Result<Self> {
let runtime = data.runtime_features(txn)?;
Ok(Self { runtime, instance: data.instance })
}
pub fn runtime_features(&self) -> RuntimeTogglableFeatures {
self.runtime
}
pub fn check_score_details(&self) -> Result<()> {
if self.runtime.score_details {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Computing score details",
feature: "score details",
issue_link: "https://github.com/meilisearch/product/discussions/674",
}
.into())
}
}
pub fn check_metrics(&self) -> Result<()> {
if self.instance.metrics {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Getting metrics",
feature: "metrics",
issue_link: "https://github.com/meilisearch/meilisearch/discussions/3518",
}
.into())
}
}
pub fn check_vector(&self) -> Result<()> {
if self.runtime.vector_store {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Passing `vector` as a query parameter",
feature: "vector store",
issue_link: "https://github.com/meilisearch/product/discussions/677",
}
.into())
}
}
}
impl FeatureData {
pub fn new(env: &Env, instance_features: InstanceTogglableFeatures) -> Result<Self> {
let mut wtxn = env.write_txn()?;
let runtime_features = env.create_database(&mut wtxn, Some(EXPERIMENTAL_FEATURES))?;
wtxn.commit()?;
Ok(Self { runtime: runtime_features, instance: instance_features })
}
pub fn put_runtime_features(
&self,
mut wtxn: RwTxn,
features: RuntimeTogglableFeatures,
) -> Result<()> {
self.runtime.put(&mut wtxn, EXPERIMENTAL_FEATURES, &features)?;
wtxn.commit()?;
Ok(())
}
fn runtime_features(&self, txn: RoTxn) -> Result<RuntimeTogglableFeatures> {
Ok(self.runtime.get(&txn, EXPERIMENTAL_FEATURES)?.unwrap_or_default())
}
pub fn features(&self, txn: RoTxn) -> Result<RoFeatures> {
RoFeatures::new(txn, self)
}
}

View File

@@ -223,9 +223,7 @@ impl IndexMap {
enable_mdb_writemap: bool,
map_size_growth: usize,
) {
let Some(index) = self.available.remove(uuid) else {
return;
};
let Some(index) = self.available.remove(uuid) else { return; };
self.close(*uuid, index, enable_mdb_writemap, map_size_growth);
}

View File

@@ -28,7 +28,6 @@ pub fn snapshot_index_scheduler(scheduler: &IndexScheduler) -> String {
started_at,
finished_at,
index_mapper,
features: _,
max_number_of_tasks: _,
wake_up: _,
dumps_path: _,

View File

@@ -21,7 +21,6 @@ content of the scheduler or enqueue new tasks.
mod autobatcher;
mod batch;
pub mod error;
mod features;
mod index_mapper;
#[cfg(test)]
mod insta_snapshot;
@@ -42,10 +41,8 @@ use std::time::Duration;
use dump::{KindDump, TaskDump, UpdateFile};
pub use error::Error;
pub use features::RoFeatures;
use file_store::FileStore;
use meilisearch_types::error::ResponseError;
use meilisearch_types::features::{InstanceTogglableFeatures, RuntimeTogglableFeatures};
use meilisearch_types::heed::types::{OwnedType, SerdeBincode, SerdeJson, Str};
use meilisearch_types::heed::{self, Database, Env, RoTxn, RwTxn};
use meilisearch_types::milli::documents::DocumentsBatchBuilder;
@@ -250,8 +247,6 @@ pub struct IndexSchedulerOptions {
/// The maximum number of tasks stored in the task queue before starting
/// to auto schedule task deletions.
pub max_number_of_tasks: usize,
/// The experimental features enabled for this instance.
pub instance_features: InstanceTogglableFeatures,
}
/// Structure which holds meilisearch's indexes and schedules the tasks
@@ -295,9 +290,6 @@ pub struct IndexScheduler {
/// In charge of creating, opening, storing and returning indexes.
pub(crate) index_mapper: IndexMapper,
/// In charge of fetching and setting the status of experimental features.
features: features::FeatureData,
/// Get a signal when a batch needs to be processed.
pub(crate) wake_up: Arc<SignalEvent>,
@@ -368,7 +360,6 @@ impl IndexScheduler {
planned_failures: self.planned_failures.clone(),
#[cfg(test)]
run_loop_iteration: self.run_loop_iteration.clone(),
features: self.features.clone(),
}
}
}
@@ -407,12 +398,9 @@ impl IndexScheduler {
};
let env = heed::EnvOpenOptions::new()
.max_dbs(11)
.max_dbs(10)
.map_size(budget.task_db_size)
.open(options.tasks_path)?;
let features = features::FeatureData::new(&env, options.instance_features)?;
let file_store = FileStore::new(&options.update_file_path)?;
let mut wtxn = env.write_txn()?;
@@ -464,7 +452,6 @@ impl IndexScheduler {
planned_failures,
#[cfg(test)]
run_loop_iteration: Arc::new(RwLock::new(0)),
features,
};
this.run();
@@ -1227,17 +1214,6 @@ impl IndexScheduler {
Ok(IndexStats { is_indexing, inner_stats: index_stats })
}
pub fn features(&self) -> Result<RoFeatures> {
let rtxn = self.read_txn()?;
self.features.features(rtxn)
}
pub fn put_runtime_features(&self, features: RuntimeTogglableFeatures) -> Result<()> {
let wtxn = self.env.write_txn().map_err(Error::HeedTransaction)?;
self.features.put_runtime_features(wtxn, features)?;
Ok(())
}
pub(crate) fn delete_persisted_task_data(&self, task: &Task) -> Result<()> {
match task.content_uuid() {
Some(content_file) => self.delete_update_file(content_file),
@@ -1558,7 +1534,6 @@ mod tests {
indexer_config,
autobatching_enabled: true,
max_number_of_tasks: 1_000_000,
instance_features: Default::default(),
};
configuration(&mut options);
@@ -1810,7 +1785,7 @@ mod tests {
assert_eq!(task.kind.as_kind(), k);
}
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "everything_is_successfully_registered");
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "everything_is_succesfully_registered");
}
#[test]
@@ -2100,105 +2075,6 @@ mod tests {
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "both_task_succeeded");
}
#[test]
fn document_addition_and_document_deletion() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
let content = r#"[
{ "id": 1, "doggo": "jean bob" },
{ "id": 2, "catto": "jorts" },
{ "id": 3, "doggo": "bork" }
]"#;
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0).unwrap();
let documents_count = read_json(content.as_bytes(), file.as_file_mut()).unwrap();
file.persist().unwrap();
index_scheduler
.register(KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: ReplaceDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_first_task");
index_scheduler
.register(KindWithContent::DocumentDeletion {
index_uid: S("doggos"),
documents_ids: vec![S("1"), S("2")],
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_second_task");
handle.advance_one_successful_batch(); // The addition AND deletion should've been batched together
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_processing_the_batch");
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let field_ids_map = index.fields_ids_map(&rtxn).unwrap();
let field_ids = field_ids_map.ids().collect::<Vec<_>>();
let documents = index
.all_documents(&rtxn)
.unwrap()
.map(|ret| obkv_to_json(&field_ids, &field_ids_map, ret.unwrap().1).unwrap())
.collect::<Vec<_>>();
snapshot!(serde_json::to_string_pretty(&documents).unwrap(), name: "documents");
}
#[test]
fn document_deletion_and_document_addition() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
index_scheduler
.register(KindWithContent::DocumentDeletion {
index_uid: S("doggos"),
documents_ids: vec![S("1"), S("2")],
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_first_task");
let content = r#"[
{ "id": 1, "doggo": "jean bob" },
{ "id": 2, "catto": "jorts" },
{ "id": 3, "doggo": "bork" }
]"#;
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0).unwrap();
let documents_count = read_json(content.as_bytes(), file.as_file_mut()).unwrap();
file.persist().unwrap();
index_scheduler
.register(KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: ReplaceDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_second_task");
// The deletion should have failed because it can't create an index
handle.advance_one_failed_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_failing_the_deletion");
// The addition should works
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_last_successful_addition");
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let field_ids_map = index.fields_ids_map(&rtxn).unwrap();
let field_ids = field_ids_map.ids().collect::<Vec<_>>();
let documents = index
.all_documents(&rtxn)
.unwrap()
.map(|ret| obkv_to_json(&field_ids, &field_ids_map, ret.unwrap().1).unwrap())
.collect::<Vec<_>>();
snapshot!(serde_json::to_string_pretty(&documents).unwrap(), name: "documents");
}
#[test]
fn do_not_batch_task_of_different_indexes() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);

View File

@@ -1,43 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { received_documents: 3, indexed_documents: Some(3) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_document_ids: 2, deleted_documents: Some(2) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
"documentDeletion" [1,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,9 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
[
{
"id": 3,
"doggo": "bork"
}
]

View File

@@ -1,37 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -1,40 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
"documentDeletion" [1,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -1,43 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: failed, error: ResponseError { code: 200, message: "Index `doggos` not found.", error_code: "index_not_found", error_type: "invalid_request", error_link: "https://docs.meilisearch.com/errors#index_not_found" }, details: { received_document_ids: 2, deleted_documents: Some(0) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [1,]
failed [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -1,46 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: failed, error: ResponseError { code: 200, message: "Index `doggos` not found.", error_code: "index_not_found", error_type: "invalid_request", error_link: "https://docs.meilisearch.com/errors#index_not_found" }, details: { received_document_ids: 2, deleted_documents: Some(0) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: succeeded, details: { received_documents: 3, indexed_documents: Some(3) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [1,]
failed [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 3, field_distribution: {"catto": 1, "doggo": 2, "id": 3} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,17 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
[
{
"id": 1,
"doggo": "jean bob"
},
{
"id": 2,
"catto": "jorts"
},
{
"id": 3,
"doggo": "bork"
}
]

View File

@@ -1,36 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,40 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -151,10 +151,6 @@ make_missing_field_convenience_builder!(MissingApiKeyExpiresAt, missing_api_key_
make_missing_field_convenience_builder!(MissingApiKeyIndexes, missing_api_key_indexes);
make_missing_field_convenience_builder!(MissingSwapIndexes, missing_swap_indexes);
make_missing_field_convenience_builder!(MissingDocumentFilter, missing_document_filter);
make_missing_field_convenience_builder!(
MissingFacetSearchFacetName,
missing_facet_search_facet_name
);
// Integrate a sub-error into a [`DeserrError`] by taking its error message but using
// the default error code (C) from `Self`

View File

@@ -218,7 +218,6 @@ MissingDocumentFilter , InvalidRequest , BAD_REQUEST ;
InvalidDocumentFilter , InvalidRequest , BAD_REQUEST ;
InvalidDocumentGeoField , InvalidRequest , BAD_REQUEST ;
InvalidVectorDimensions , InvalidRequest , BAD_REQUEST ;
InvalidVectorsType , InvalidRequest , BAD_REQUEST ;
InvalidDocumentId , InvalidRequest , BAD_REQUEST ;
InvalidDocumentLimit , InvalidRequest , BAD_REQUEST ;
InvalidDocumentOffset , InvalidRequest , BAD_REQUEST ;
@@ -226,14 +225,12 @@ InvalidIndexLimit , InvalidRequest , BAD_REQUEST ;
InvalidIndexOffset , InvalidRequest , BAD_REQUEST ;
InvalidIndexPrimaryKey , InvalidRequest , BAD_REQUEST ;
InvalidIndexUid , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToSearchOn , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToCrop , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToHighlight , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPreTag , InvalidRequest , BAD_REQUEST ;
@@ -243,12 +240,7 @@ InvalidSearchMatchingStrategy , InvalidRequest , BAD_REQUEST ;
InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchQuery , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchName , InvalidRequest , BAD_REQUEST ;
InvalidSearchVector , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;
@@ -278,7 +270,6 @@ InvalidTaskStatuses , InvalidRequest , BAD_REQUEST ;
InvalidTaskTypes , InvalidRequest , BAD_REQUEST ;
InvalidTaskUids , InvalidRequest , BAD_REQUEST ;
IoError , System , UNPROCESSABLE_ENTITY;
FeatureNotEnabled , InvalidRequest , BAD_REQUEST ;
MalformedPayload , InvalidRequest , BAD_REQUEST ;
MaxFieldsLimitExceeded , InvalidRequest , BAD_REQUEST ;
MissingApiKeyActions , InvalidRequest , BAD_REQUEST ;
@@ -287,7 +278,6 @@ MissingApiKeyIndexes , InvalidRequest , BAD_REQUEST ;
MissingAuthorizationHeader , Auth , UNAUTHORIZED ;
MissingContentType , InvalidRequest , UNSUPPORTED_MEDIA_TYPE ;
MissingDocumentId , InvalidRequest , BAD_REQUEST ;
MissingFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
MissingIndexUid , InvalidRequest , BAD_REQUEST ;
MissingMasterKey , Auth , UNAUTHORIZED ;
MissingPayload , InvalidRequest , BAD_REQUEST ;
@@ -341,16 +331,9 @@ impl ErrorCode for milli::Error {
UserError::SortRankingRuleMissing => Code::InvalidSearchSort,
UserError::InvalidFacetsDistribution { .. } => Code::InvalidSearchFacets,
UserError::InvalidSortableAttribute { .. } => Code::InvalidSearchSort,
UserError::InvalidSearchableAttribute { .. } => {
Code::InvalidSearchAttributesToSearchOn
}
UserError::InvalidFacetSearchFacetName { .. } => {
Code::InvalidFacetSearchFacetName
}
UserError::CriterionError(_) => Code::InvalidSettingsRankingRules,
UserError::InvalidGeoField { .. } => Code::InvalidDocumentGeoField,
UserError::InvalidVectorDimensions { .. } => Code::InvalidVectorDimensions,
UserError::InvalidVectorsType { .. } => Code::InvalidVectorsType,
UserError::SortError(_) => Code::InvalidSearchSort,
UserError::InvalidMinTypoWordLenSetting(_, _) => {
Code::InvalidSettingsTypoTolerance

View File

@@ -1,33 +0,0 @@
use deserr::Deserr;
use milli::OrderBy;
use serde::{Deserialize, Serialize};
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, Serialize, Deserialize, Deserr)]
#[serde(rename_all = "camelCase")]
#[deserr(rename_all = camelCase)]
pub enum FacetValuesSort {
/// Facet values are sorted in alphabetical order, ascending from A to Z.
#[default]
Alpha,
/// Facet values are sorted by decreasing count.
/// The count is the number of records containing this facet value in the results of the query.
Count,
}
impl From<FacetValuesSort> for OrderBy {
fn from(val: FacetValuesSort) -> Self {
match val {
FacetValuesSort::Alpha => OrderBy::Lexicographic,
FacetValuesSort::Count => OrderBy::Count,
}
}
}
impl From<OrderBy> for FacetValuesSort {
fn from(val: OrderBy) -> Self {
match val {
OrderBy::Lexicographic => FacetValuesSort::Alpha,
OrderBy::Count => FacetValuesSort::Count,
}
}
}

View File

@@ -1,13 +0,0 @@
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug, Clone, Copy, Default)]
#[serde(rename_all = "camelCase", default)]
pub struct RuntimeTogglableFeatures {
pub score_details: bool,
pub vector_store: bool,
}
#[derive(Default, Debug, Clone, Copy)]
pub struct InstanceTogglableFeatures {
pub metrics: bool,
}

View File

@@ -147,7 +147,9 @@ impl Key {
fn parse_expiration_date(
string: Option<String>,
) -> std::result::Result<Option<OffsetDateTime>, ParseOffsetDateTimeError> {
let Some(string) = string else { return Ok(None) };
let Some(string) = string else {
return Ok(None)
};
let datetime = if let Ok(datetime) = OffsetDateTime::parse(&string, &Rfc3339) {
datetime
} else if let Ok(primitive_datetime) = PrimitiveDateTime::parse(
@@ -272,12 +274,6 @@ pub enum Action {
#[serde(rename = "keys.delete")]
#[deserr(rename = "keys.delete")]
KeysDelete,
#[serde(rename = "experimental.get")]
#[deserr(rename = "experimental.get")]
ExperimentalFeaturesGet,
#[serde(rename = "experimental.update")]
#[deserr(rename = "experimental.update")]
ExperimentalFeaturesUpdate,
}
impl Action {
@@ -314,8 +310,6 @@ impl Action {
KEYS_GET => Some(Self::KeysGet),
KEYS_UPDATE => Some(Self::KeysUpdate),
KEYS_DELETE => Some(Self::KeysDelete),
EXPERIMENTAL_FEATURES_GET => Some(Self::ExperimentalFeaturesGet),
EXPERIMENTAL_FEATURES_UPDATE => Some(Self::ExperimentalFeaturesUpdate),
_otherwise => None,
}
}
@@ -358,6 +352,4 @@ pub mod actions {
pub const KEYS_GET: u8 = KeysGet.repr();
pub const KEYS_UPDATE: u8 = KeysUpdate.repr();
pub const KEYS_DELETE: u8 = KeysDelete.repr();
pub const EXPERIMENTAL_FEATURES_GET: u8 = ExperimentalFeaturesGet.repr();
pub const EXPERIMENTAL_FEATURES_UPDATE: u8 = ExperimentalFeaturesUpdate.repr();
}

View File

@@ -2,8 +2,6 @@ pub mod compression;
pub mod deserr;
pub mod document_formats;
pub mod error;
pub mod facet_values_sort;
pub mod features;
pub mod index_uid;
pub mod index_uid_pattern;
pub mod keys;

View File

@@ -14,9 +14,8 @@ use serde::{Deserialize, Serialize, Serializer};
use crate::deserr::DeserrJsonError;
use crate::error::deserr_codes::*;
use crate::facet_values_sort::FacetValuesSort;
/// The maximum number of results that the engine
/// The maximimum number of results that the engine
/// will be able to return in one search call.
pub const DEFAULT_PAGINATION_MAX_TOTAL_HITS: usize = 1000;
@@ -103,9 +102,6 @@ pub struct FacetingSettings {
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub max_values_per_facet: Setting<usize>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub sort_facet_values_by: Setting<BTreeMap<String, FacetValuesSort>>,
}
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
@@ -402,25 +398,13 @@ pub fn apply_settings_to_builder(
Setting::NotSet => (),
}
match &settings.faceting {
Setting::Set(FacetingSettings { max_values_per_facet, sort_facet_values_by }) => {
match max_values_per_facet {
Setting::Set(val) => builder.set_max_values_per_facet(*val),
Setting::Reset => builder.reset_max_values_per_facet(),
Setting::NotSet => (),
}
match sort_facet_values_by {
Setting::Set(val) => builder.set_sort_facet_values_by(
val.iter().map(|(name, order)| (name.clone(), (*order).into())).collect(),
),
Setting::Reset => builder.reset_sort_facet_values_by(),
Setting::NotSet => (),
}
}
Setting::Reset => {
builder.reset_max_values_per_facet();
builder.reset_sort_facet_values_by();
}
match settings.faceting {
Setting::Set(ref value) => match value.max_values_per_facet {
Setting::Set(val) => builder.set_max_values_per_facet(val),
Setting::Reset => builder.reset_max_values_per_facet(),
Setting::NotSet => (),
},
Setting::Reset => builder.reset_max_values_per_facet(),
Setting::NotSet => (),
}
@@ -492,13 +476,6 @@ pub fn settings(
max_values_per_facet: Setting::Set(
index.max_values_per_facet(rtxn)?.unwrap_or(DEFAULT_VALUES_PER_FACET),
),
sort_facet_values_by: Setting::Set(
index
.sort_facet_values_by(rtxn)?
.into_iter()
.map(|(name, sort)| (name, sort.into()))
.collect(),
),
};
let pagination = PaginationSettings {

View File

@@ -14,27 +14,14 @@ default-run = "meilisearch"
[dependencies]
actix-cors = "0.6.4"
actix-http = { version = "3.3.1", default-features = false, features = [
"compress-brotli",
"compress-gzip",
"rustls",
] }
actix-web = { version = "4.3.1", default-features = false, features = [
"macros",
"compress-brotli",
"compress-gzip",
"cookies",
"rustls",
] }
actix-http = { version = "3.3.1", default-features = false, features = ["compress-brotli", "compress-gzip", "rustls"] }
actix-web = { version = "4.3.1", default-features = false, features = ["macros", "compress-brotli", "compress-gzip", "cookies", "rustls"] }
actix-web-static-files = { git = "https://github.com/kilork/actix-web-static-files.git", rev = "2d3b6160", optional = true }
anyhow = { version = "1.0.70", features = ["backtrace"] }
async-stream = "0.3.5"
async-trait = "0.1.68"
bstr = "1.4.0"
byte-unit = { version = "4.0.19", default-features = false, features = [
"std",
"serde",
] }
byte-unit = { version = "4.0.19", default-features = false, features = ["std", "serde"] }
bytes = "1.4.0"
clap = { version = "4.2.1", features = ["derive", "env"] }
crossbeam-channel = "0.5.8"
@@ -61,7 +48,6 @@ mime = "0.3.17"
num_cpus = "1.15.0"
obkv = "0.2.0"
once_cell = "1.17.1"
ordered-float = "3.7.0"
parking_lot = "0.12.1"
permissive-json-pointer = { path = "../permissive-json-pointer" }
pin-project-lite = "0.2.9"
@@ -70,10 +56,7 @@ prometheus = { version = "0.13.3", features = ["process"] }
rand = "0.8.5"
rayon = "1.7.0"
regex = "1.7.3"
reqwest = { version = "0.11.16", features = [
"rustls-tls",
"json",
], default-features = false }
reqwest = { version = "0.11.16", features = ["rustls-tls", "json"], default-features = false }
rustls = "0.20.8"
rustls-pemfile = "1.0.2"
segment = { version = "0.2.2", optional = true }
@@ -87,12 +70,7 @@ sysinfo = "0.28.4"
tar = "0.4.38"
tempfile = "3.5.0"
thiserror = "1.0.40"
time = { version = "0.3.20", features = [
"serde-well-known",
"formatting",
"parsing",
"macros",
] }
time = { version = "0.3.20", features = ["serde-well-known", "formatting", "parsing", "macros"] }
tokio = { version = "1.27.0", features = ["full"] }
tokio-stream = "0.1.12"
toml = "0.7.3"
@@ -111,7 +89,7 @@ brotli = "3.3.4"
insta = "1.29.0"
manifest-dir-macros = "0.1.16"
maplit = "1.0.2"
meili-snap = { path = "../meili-snap" }
meili-snap = {path = "../meili-snap"}
temp-env = "0.3.3"
urlencoding = "2.1.2"
yaup = "0.2.1"
@@ -120,10 +98,7 @@ yaup = "0.2.1"
anyhow = { version = "1.0.70", optional = true }
cargo_toml = { version = "0.15.2", optional = true }
hex = { version = "0.4.3", optional = true }
reqwest = { version = "0.11.16", features = [
"blocking",
"rustls-tls",
], default-features = false, optional = true }
reqwest = { version = "0.11.16", features = ["blocking", "rustls-tls"], default-features = false, optional = true }
sha-1 = { version = "0.10.1", optional = true }
static-files = { version = "0.2.3", optional = true }
tempfile = { version = "3.5.0", optional = true }
@@ -133,17 +108,7 @@ zip = { version = "0.6.4", optional = true }
[features]
default = ["analytics", "meilisearch-types/all-tokenizations", "mini-dashboard"]
analytics = ["segment"]
mini-dashboard = [
"actix-web-static-files",
"static-files",
"anyhow",
"cargo_toml",
"hex",
"reqwest",
"sha-1",
"tempfile",
"zip",
]
mini-dashboard = ["actix-web-static-files", "static-files", "anyhow", "cargo_toml", "hex", "reqwest", "sha-1", "tempfile", "zip"]
chinese = ["meilisearch-types/chinese"]
hebrew = ["meilisearch-types/hebrew"]
japanese = ["meilisearch-types/japanese"]

View File

@@ -38,18 +38,6 @@ impl MultiSearchAggregator {
pub fn succeed(&mut self) {}
}
#[derive(Default)]
pub struct FacetSearchAggregator;
#[allow(dead_code)]
impl FacetSearchAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self::default()
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
impl MockAnalytics {
#[allow(clippy::new_ret_no_self)]
pub fn new(opt: &Opt) -> Arc<dyn Analytics> {
@@ -68,7 +56,6 @@ impl Analytics for MockAnalytics {
fn get_search(&self, _aggregate: super::SearchAggregator) {}
fn post_search(&self, _aggregate: super::SearchAggregator) {}
fn post_multi_search(&self, _aggregate: super::MultiSearchAggregator) {}
fn post_facet_search(&self, _aggregate: super::FacetSearchAggregator) {}
fn add_documents(
&self,
_documents_query: &UpdateDocumentsQuery,

View File

@@ -25,8 +25,6 @@ pub type SegmentAnalytics = mock_analytics::MockAnalytics;
pub type SearchAggregator = mock_analytics::SearchAggregator;
#[cfg(any(debug_assertions, not(feature = "analytics")))]
pub type MultiSearchAggregator = mock_analytics::MultiSearchAggregator;
#[cfg(any(debug_assertions, not(feature = "analytics")))]
pub type FacetSearchAggregator = mock_analytics::FacetSearchAggregator;
// if we are in release mode and the feature analytics was enabled
// we use the real analytics
@@ -36,8 +34,6 @@ pub type SegmentAnalytics = segment_analytics::SegmentAnalytics;
pub type SearchAggregator = segment_analytics::SearchAggregator;
#[cfg(all(not(debug_assertions), feature = "analytics"))]
pub type MultiSearchAggregator = segment_analytics::MultiSearchAggregator;
#[cfg(all(not(debug_assertions), feature = "analytics"))]
pub type FacetSearchAggregator = segment_analytics::FacetSearchAggregator;
/// The Meilisearch config dir:
/// `~/.config/Meilisearch` on *NIX or *BSD.
@@ -92,9 +88,6 @@ pub trait Analytics: Sync + Send {
/// This method should be called to aggregate a post array of searches
fn post_multi_search(&self, aggregate: MultiSearchAggregator);
/// This method should be called to aggregate post facet values searches
fn post_facet_search(&self, aggregate: FacetSearchAggregator);
// this method should be called to aggregate a add documents request
fn add_documents(
&self,

View File

@@ -1,6 +1,5 @@
use std::collections::{BinaryHeap, HashMap, HashSet};
use std::fs;
use std::mem::take;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use std::time::{Duration, Instant};
@@ -30,13 +29,11 @@ use super::{
use crate::analytics::Analytics;
use crate::option::{default_http_addr, IndexerOpts, MaxMemory, MaxThreads, ScheduleSnapshot};
use crate::routes::indexes::documents::UpdateDocumentsQuery;
use crate::routes::indexes::facet_search::FacetSearchQuery;
use crate::routes::tasks::TasksFilterQuery;
use crate::routes::{create_all_stats, Stats};
use crate::search::{
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
SearchQuery, SearchQueryWithIndex, SearchResult, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
};
use crate::Opt;
@@ -74,7 +71,6 @@ pub enum AnalyticsMsg {
AggregateGetSearch(SearchAggregator),
AggregatePostSearch(SearchAggregator),
AggregatePostMultiSearch(MultiSearchAggregator),
AggregatePostFacetSearch(FacetSearchAggregator),
AggregateAddDocuments(DocumentsAggregator),
AggregateDeleteDocuments(DocumentsDeletionAggregator),
AggregateUpdateDocuments(DocumentsAggregator),
@@ -143,7 +139,6 @@ impl SegmentAnalytics {
batcher,
post_search_aggregator: SearchAggregator::default(),
post_multi_search_aggregator: MultiSearchAggregator::default(),
post_facet_search_aggregator: FacetSearchAggregator::default(),
get_search_aggregator: SearchAggregator::default(),
add_documents_aggregator: DocumentsAggregator::default(),
delete_documents_aggregator: DocumentsDeletionAggregator::default(),
@@ -187,10 +182,6 @@ impl super::Analytics for SegmentAnalytics {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostSearch(aggregate));
}
fn post_facet_search(&self, aggregate: FacetSearchAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostFacetSearch(aggregate));
}
fn post_multi_search(&self, aggregate: MultiSearchAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostMultiSearch(aggregate));
}
@@ -363,7 +354,6 @@ pub struct Segment {
get_search_aggregator: SearchAggregator,
post_search_aggregator: SearchAggregator,
post_multi_search_aggregator: MultiSearchAggregator,
post_facet_search_aggregator: FacetSearchAggregator,
add_documents_aggregator: DocumentsAggregator,
delete_documents_aggregator: DocumentsDeletionAggregator,
update_documents_aggregator: DocumentsAggregator,
@@ -428,7 +418,6 @@ impl Segment {
Some(AnalyticsMsg::AggregateGetSearch(agreg)) => self.get_search_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostSearch(agreg)) => self.post_search_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostMultiSearch(agreg)) => self.post_multi_search_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostFacetSearch(agreg)) => self.post_facet_search_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateAddDocuments(agreg)) => self.add_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateDeleteDocuments(agreg)) => self.delete_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateUpdateDocuments(agreg)) => self.update_documents_aggregator.aggregate(agreg),
@@ -472,74 +461,55 @@ impl Segment {
})
.await;
}
let get_search = std::mem::take(&mut self.get_search_aggregator)
.into_event(&self.user, "Documents Searched GET");
let post_search = std::mem::take(&mut self.post_search_aggregator)
.into_event(&self.user, "Documents Searched POST");
let post_multi_search = std::mem::take(&mut self.post_multi_search_aggregator)
.into_event(&self.user, "Documents Searched by Multi-Search POST");
let add_documents = std::mem::take(&mut self.add_documents_aggregator)
.into_event(&self.user, "Documents Added");
let delete_documents = std::mem::take(&mut self.delete_documents_aggregator)
.into_event(&self.user, "Documents Deleted");
let update_documents = std::mem::take(&mut self.update_documents_aggregator)
.into_event(&self.user, "Documents Updated");
let get_fetch_documents = std::mem::take(&mut self.get_fetch_documents_aggregator)
.into_event(&self.user, "Documents Fetched GET");
let post_fetch_documents = std::mem::take(&mut self.post_fetch_documents_aggregator)
.into_event(&self.user, "Documents Fetched POST");
let get_tasks =
std::mem::take(&mut self.get_tasks_aggregator).into_event(&self.user, "Tasks Seen");
let health =
std::mem::take(&mut self.health_aggregator).into_event(&self.user, "Health Seen");
let Segment {
inbox: _,
opt: _,
batcher: _,
user,
get_search_aggregator,
post_search_aggregator,
post_multi_search_aggregator,
post_facet_search_aggregator,
add_documents_aggregator,
delete_documents_aggregator,
update_documents_aggregator,
get_fetch_documents_aggregator,
post_fetch_documents_aggregator,
get_tasks_aggregator,
health_aggregator,
} = self;
if let Some(get_search) =
take(get_search_aggregator).into_event(&user, "Documents Searched GET")
{
if let Some(get_search) = get_search {
let _ = self.batcher.push(get_search).await;
}
if let Some(post_search) =
take(post_search_aggregator).into_event(&user, "Documents Searched POST")
{
if let Some(post_search) = post_search {
let _ = self.batcher.push(post_search).await;
}
if let Some(post_multi_search) = take(post_multi_search_aggregator)
.into_event(&user, "Documents Searched by Multi-Search POST")
{
if let Some(post_multi_search) = post_multi_search {
let _ = self.batcher.push(post_multi_search).await;
}
if let Some(post_facet_search) =
take(post_facet_search_aggregator).into_event(&user, "Facet Searched POST")
{
let _ = self.batcher.push(post_facet_search).await;
}
if let Some(add_documents) =
take(add_documents_aggregator).into_event(&user, "Documents Added")
{
if let Some(add_documents) = add_documents {
let _ = self.batcher.push(add_documents).await;
}
if let Some(delete_documents) =
take(delete_documents_aggregator).into_event(&user, "Documents Deleted")
{
if let Some(delete_documents) = delete_documents {
let _ = self.batcher.push(delete_documents).await;
}
if let Some(update_documents) =
take(update_documents_aggregator).into_event(&user, "Documents Updated")
{
if let Some(update_documents) = update_documents {
let _ = self.batcher.push(update_documents).await;
}
if let Some(get_fetch_documents) =
take(get_fetch_documents_aggregator).into_event(&user, "Documents Fetched GET")
{
if let Some(get_fetch_documents) = get_fetch_documents {
let _ = self.batcher.push(get_fetch_documents).await;
}
if let Some(post_fetch_documents) =
take(post_fetch_documents_aggregator).into_event(&user, "Documents Fetched POST")
{
if let Some(post_fetch_documents) = post_fetch_documents {
let _ = self.batcher.push(post_fetch_documents).await;
}
if let Some(get_tasks) = take(get_tasks_aggregator).into_event(&user, "Tasks Seen") {
if let Some(get_tasks) = get_tasks {
let _ = self.batcher.push(get_tasks).await;
}
if let Some(health) = take(health_aggregator).into_event(&user, "Health Seen") {
if let Some(health) = health {
let _ = self.batcher.push(health).await;
}
let _ = self.batcher.flush().await;
@@ -578,10 +548,6 @@ pub struct SearchAggregator {
// The maximum number of terms in a q request
max_terms_number: usize,
// vector
// The maximum number of floats in a vector request
max_vector_size: usize,
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
@@ -603,10 +569,6 @@ pub struct SearchAggregator {
// facets
facets_sum_of_terms: usize,
facets_total_number_of_facets: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
}
impl SearchAggregator {
@@ -651,10 +613,6 @@ impl SearchAggregator {
ret.max_terms_number = q.split_whitespace().count();
}
if let Some(ref vector) = query.vector {
ret.max_vector_size = vector.len();
}
if query.is_finite_pagination() {
let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
ret.max_limit = limit;
@@ -674,9 +632,6 @@ impl SearchAggregator {
ret.crop_length = query.crop_length != DEFAULT_CROP_LENGTH();
ret.show_matches_position = query.show_matches_position;
ret.show_ranking_score = query.show_ranking_score;
ret.show_ranking_score_details = query.show_ranking_score_details;
ret
}
@@ -751,10 +706,6 @@ impl SearchAggregator {
let matching_strategy = self.matching_strategy.entry(key).or_insert(0);
*matching_strategy = matching_strategy.saturating_add(value);
}
// scoring
self.show_ranking_score |= other.show_ranking_score;
self.show_ranking_score_details |= other.show_ranking_score_details;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
@@ -809,11 +760,7 @@ impl SearchAggregator {
},
"matching_strategy": {
"most_used_strategy": self.matching_strategy.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"scoring": {
"show_ranking_score": self.show_ranking_score,
"show_ranking_score_details": self.show_ranking_score_details,
},
}
});
Some(Track {
@@ -939,120 +886,6 @@ impl MultiSearchAggregator {
}
}
#[derive(Default)]
pub struct FacetSearchAggregator {
timestamp: Option<OffsetDateTime>,
// context
user_agents: HashSet<String>,
// requests
total_received: usize,
total_succeeded: usize,
time_spent: BinaryHeap<usize>,
// The set of all facetNames that were used
facet_names: HashSet<String>,
// As there been any other parameter than the facetName or facetQuery ones?
additional_search_parameters_provided: bool,
}
impl FacetSearchAggregator {
pub fn from_query(query: &FacetSearchQuery, request: &HttpRequest) -> Self {
let FacetSearchQuery {
facet_query: _,
facet_name,
vector,
q,
filter,
matching_strategy,
attributes_to_search_on,
} = query;
let mut ret = Self::default();
ret.timestamp = Some(OffsetDateTime::now_utc());
ret.total_received = 1;
ret.user_agents = extract_user_agents(request).into_iter().collect();
ret.facet_names = Some(facet_name.clone()).into_iter().collect();
ret.additional_search_parameters_provided = q.is_some()
|| vector.is_some()
|| filter.is_some()
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some();
ret
}
pub fn succeed(&mut self, result: &FacetSearchResult) {
self.total_succeeded = self.total_succeeded.saturating_add(1);
self.time_spent.push(result.processing_time_ms as usize);
}
/// Aggregate one [SearchAggregator] into another.
pub fn aggregate(&mut self, mut other: Self) {
if self.timestamp.is_none() {
self.timestamp = other.timestamp;
}
// context
for user_agent in other.user_agents.into_iter() {
self.user_agents.insert(user_agent);
}
// request
self.total_received = self.total_received.saturating_add(other.total_received);
self.total_succeeded = self.total_succeeded.saturating_add(other.total_succeeded);
self.time_spent.append(&mut other.time_spent);
// facet_names
for facet_name in other.facet_names.into_iter() {
self.facet_names.insert(facet_name);
}
// additional_search_parameters_provided
self.additional_search_parameters_provided = self.additional_search_parameters_provided
| other.additional_search_parameters_provided;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
if self.total_received == 0 {
None
} else {
// the index of the 99th percentage of value
let percentile_99th = 0.99 * (self.total_succeeded as f64 - 1.) + 1.;
// we get all the values in a sorted manner
let time_spent = self.time_spent.into_sorted_vec();
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th as usize);
let properties = json!({
"user-agent": self.user_agents,
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": self.total_succeeded,
"total_failed": self.total_received.saturating_sub(self.total_succeeded), // just to be sure we never panics
"total_received": self.total_received,
},
"facets": {
"total_distinct_facet_count": self.facet_names.len(),
"additional_search_parameters_provided": self.additional_search_parameters_provided,
},
});
Some(Track {
timestamp: self.timestamp,
user: user.clone(),
event: event_name.to_string(),
properties,
..Default::default()
})
}
}
}
#[derive(Default)]
pub struct DocumentsAggregator {
timestamp: Option<OffsetDateTime>,

View File

@@ -71,40 +71,3 @@ impl Stream for Payload {
}
}
}
#[cfg(test)]
mod tests {
use actix_http::encoding::Decoder as Decompress;
use actix_http::BoxedPayloadStream;
use bytes::Bytes;
use futures_util::StreamExt;
use meili_snap::snapshot;
use super::*;
#[actix_rt::test]
async fn payload_to_large() {
let stream = futures::stream::iter(vec![
Ok(Bytes::from("1")),
Ok(Bytes::from("2")),
Ok(Bytes::from("3")),
Ok(Bytes::from("4")),
]);
let boxed_stream: BoxedPayloadStream = Box::pin(stream);
let actix_payload = dev::Payload::from(boxed_stream);
let payload = Payload {
limit: 3,
remaining: 3,
payload: Decompress::new(actix_payload, actix_http::ContentEncoding::Identity),
};
let mut enumerated_payload_stream = payload.enumerate();
while let Some((idx, chunk)) = enumerated_payload_stream.next().await {
if idx == 3 {
snapshot!(chunk.unwrap_err(), @"The provided payload reached the size limit. The maximum accepted payload size is 3 B.");
}
}
}
}

View File

@@ -111,7 +111,7 @@ pub fn create_app(
analytics.clone(),
)
})
.configure(routes::configure)
.configure(|cfg| routes::configure(cfg, opt.experimental_enable_metrics))
.configure(|s| dashboard(s, enable_dashboard));
let app = app.wrap(actix_web::middleware::Condition::new(
@@ -221,7 +221,6 @@ fn open_or_create_database_unchecked(
// we don't want to create anything in the data.ms yet, thus we
// wrap our two builders in a closure that'll be executed later.
let auth_controller = AuthController::new(&opt.db_path, &opt.master_key);
let instance_features = opt.to_instance_features();
let index_scheduler_builder = || -> anyhow::Result<_> {
Ok(IndexScheduler::new(IndexSchedulerOptions {
version_file_path: opt.db_path.join(VERSION_FILE_NAME),
@@ -239,7 +238,6 @@ fn open_or_create_database_unchecked(
max_number_of_tasks: 1_000_000,
index_growth_amount: byte_unit::Byte::from_str("10GiB").unwrap().get_bytes() as usize,
index_count: DEFAULT_INDEX_COUNT,
instance_features,
})?)
};
@@ -309,16 +307,12 @@ fn import_dump(
keys.push(key);
}
// 3. Import the runtime features.
let features = dump_reader.features()?.unwrap_or_default();
index_scheduler.put_runtime_features(features)?;
let indexer_config = index_scheduler.indexer_config();
// /!\ The tasks must be imported AFTER importing the indexes or else the scheduler might
// try to process tasks while we're trying to import the indexes.
// 4. Import the indexes.
// 3. Import the indexes.
for index_reader in dump_reader.indexes()? {
let mut index_reader = index_reader?;
let metadata = index_reader.metadata();
@@ -330,19 +324,19 @@ fn import_dump(
let mut wtxn = index.write_txn()?;
let mut builder = milli::update::Settings::new(&mut wtxn, &index, indexer_config);
// 4.1 Import the primary key if there is one.
// 3.1 Import the primary key if there is one.
if let Some(ref primary_key) = metadata.primary_key {
builder.set_primary_key(primary_key.to_string());
}
// 4.2 Import the settings.
// 3.2 Import the settings.
log::info!("Importing the settings.");
let settings = index_reader.settings()?;
apply_settings_to_builder(&settings, &mut builder);
builder.execute(|indexing_step| log::debug!("update: {:?}", indexing_step), || false)?;
// 4.3 Import the documents.
// 4.3.1 We need to recreate the grenad+obkv format accepted by the index.
// 3.3 Import the documents.
// 3.3.1 We need to recreate the grenad+obkv format accepted by the index.
log::info!("Importing the documents.");
let file = tempfile::tempfile()?;
let mut builder = DocumentsBatchBuilder::new(BufWriter::new(file));
@@ -353,7 +347,7 @@ fn import_dump(
// This flush the content of the batch builder.
let file = builder.into_inner()?.into_inner()?;
// 4.3.2 We feed it to the milli index.
// 3.3.2 We feed it to the milli index.
let reader = BufReader::new(file);
let reader = DocumentsBatchReader::from_reader(reader)?;
@@ -378,7 +372,7 @@ fn import_dump(
let mut index_scheduler_dump = index_scheduler.register_dumped_task()?;
// 5. Import the tasks.
// 4. Import the tasks.
for ret in dump_reader.tasks()? {
let (task, file) = ret?;
index_scheduler_dump.register_dumped_task(task, file)?;

View File

@@ -186,10 +186,9 @@ Anonymous telemetry:\t\"Enabled\""
}
eprintln!();
eprintln!("Check out Meilisearch Cloud!\thttps://cloud.meilisearch.com/login?utm_campaign=oss&utm_source=engine&utm_medium=cli");
eprintln!("Documentation:\t\t\thttps://www.meilisearch.com/docs");
eprintln!("Source code:\t\t\thttps://github.com/meilisearch/meilisearch");
eprintln!("Discord:\t\t\thttps://discord.meilisearch.com");
eprintln!("Documentation:\t\thttps://www.meilisearch.com/docs");
eprintln!("Source code:\t\thttps://github.com/meilisearch/meilisearch");
eprintln!("Discord:\t\thttps://discord.meilisearch.com");
eprintln!();
}

View File

@@ -16,7 +16,7 @@ fn create_buckets() -> [f64; 29] {
}
lazy_static! {
pub static ref MEILISEARCH_HTTP_RESPONSE_TIME_CUSTOM_BUCKETS: [f64; 29] = create_buckets();
pub static ref HTTP_RESPONSE_TIME_CUSTOM_BUCKETS: [f64; 29] = create_buckets();
pub static ref MEILISEARCH_HTTP_REQUESTS_TOTAL: IntCounterVec = register_int_counter_vec!(
opts!("meilisearch_http_requests_total", "Meilisearch HTTP requests total"),
&["method", "path"]
@@ -39,10 +39,10 @@ lazy_static! {
)
.expect("Can't create a metric");
pub static ref MEILISEARCH_HTTP_RESPONSE_TIME_SECONDS: HistogramVec = register_histogram_vec!(
"meilisearch_http_response_time_seconds",
"Meilisearch HTTP response times",
"http_response_time_seconds",
"HTTP response times",
&["method", "path"],
MEILISEARCH_HTTP_RESPONSE_TIME_CUSTOM_BUCKETS.to_vec()
HTTP_RESPONSE_TIME_CUSTOM_BUCKETS.to_vec()
)
.expect("Can't create a metric");
pub static ref MEILISEARCH_NB_TASKS: IntGaugeVec = register_int_gauge_vec!(

View File

@@ -12,7 +12,6 @@ use std::{env, fmt, fs};
use byte_unit::{Byte, ByteError};
use clap::Parser;
use meilisearch_types::features::InstanceTogglableFeatures;
use meilisearch_types::milli::update::IndexerConfig;
use rustls::server::{
AllowAnyAnonymousOrAuthenticatedClient, AllowAnyAuthenticatedClient, ServerSessionMemoryCache,
@@ -487,10 +486,6 @@ impl Opt {
Ok(None)
}
}
pub(crate) fn to_instance_features(&self) -> InstanceTogglableFeatures {
InstanceTogglableFeatures { metrics: self.experimental_enable_metrics }
}
}
#[derive(Debug, Default, Clone, Parser, Deserialize)]

View File

@@ -1,70 +0,0 @@
use actix_web::web::{self, Data};
use actix_web::{HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
use deserr::Deserr;
use index_scheduler::IndexScheduler;
use log::debug;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::ResponseError;
use meilisearch_types::keys::actions;
use serde_json::json;
use crate::analytics::Analytics;
use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
web::resource("")
.route(web::get().to(SeqHandler(get_features)))
.route(web::patch().to(SeqHandler(patch_features))),
);
}
async fn get_features(
index_scheduler: GuardedData<
ActionPolicy<{ actions::EXPERIMENTAL_FEATURES_GET }>,
Data<IndexScheduler>,
>,
req: HttpRequest,
analytics: Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let features = index_scheduler.features()?;
analytics.publish("Experimental features Seen".to_string(), json!(null), Some(&req));
debug!("returns: {:?}", features.runtime_features());
Ok(HttpResponse::Ok().json(features.runtime_features()))
}
#[derive(Debug, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct RuntimeTogglableFeatures {
#[deserr(default)]
pub score_details: Option<bool>,
#[deserr(default)]
pub vector_store: Option<bool>,
}
async fn patch_features(
index_scheduler: GuardedData<
ActionPolicy<{ actions::EXPERIMENTAL_FEATURES_UPDATE }>,
Data<IndexScheduler>,
>,
new_features: AwebJson<RuntimeTogglableFeatures, DeserrJsonError>,
req: HttpRequest,
analytics: Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let features = index_scheduler.features()?;
let old_features = features.runtime_features();
let new_features = meilisearch_types::features::RuntimeTogglableFeatures {
score_details: new_features.0.score_details.unwrap_or(old_features.score_details),
vector_store: new_features.0.vector_store.unwrap_or(old_features.vector_store),
};
analytics.publish("Experimental features Updated".to_string(), json!(new_features), Some(&req));
index_scheduler.put_runtime_features(new_features)?;
Ok(HttpResponse::Ok().json(new_features))
}

View File

@@ -1,124 +0,0 @@
use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
use index_scheduler::IndexScheduler;
use log::debug;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use serde_json::Value;
use crate::analytics::{Analytics, FacetSearchAggregator};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::search::{
add_search_rules, perform_facet_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("").route(web::post().to(search)));
}
/// # Important
///
/// Intentionally don't use `deny_unknown_fields` to ignore search parameters sent by user
#[derive(Debug, Clone, Default, PartialEq, deserr::Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase)]
pub struct FacetSearchQuery {
#[deserr(default, error = DeserrJsonError<InvalidFacetSearchQuery>)]
pub facet_query: Option<String>,
#[deserr(error = DeserrJsonError<InvalidFacetSearchFacetName>, missing_field_error = DeserrJsonError::missing_facet_search_facet_name)]
pub facet_name: String,
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
pub vector: Option<Vec<f32>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
}
pub async fn search(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebJson<FacetSearchQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.into_inner();
debug!("facet search called with params: {:?}", query);
let mut aggregate = FacetSearchAggregator::from_query(&query, &req);
let facet_query = query.facet_query.clone();
let facet_name = query.facet_name.clone();
let mut search_query = SearchQuery::from(query);
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut search_query, search_rules);
}
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features()?;
let search_result = tokio::task::spawn_blocking(move || {
perform_facet_search(&index, search_query, facet_query, facet_name, features)
})
.await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
analytics.post_facet_search(aggregate);
let search_result = search_result?;
debug!("returns: {:?}", search_result);
Ok(HttpResponse::Ok().json(search_result))
}
impl From<FacetSearchQuery> for SearchQuery {
fn from(value: FacetSearchQuery) -> Self {
let FacetSearchQuery {
facet_query: _,
facet_name: _,
q,
vector,
filter,
matching_strategy,
attributes_to_search_on,
} = value;
SearchQuery {
q,
offset: DEFAULT_SEARCH_OFFSET(),
limit: DEFAULT_SEARCH_LIMIT(),
page: None,
hits_per_page: None,
attributes_to_retrieve: None,
attributes_to_crop: None,
crop_length: DEFAULT_CROP_LENGTH(),
attributes_to_highlight: None,
show_matches_position: false,
show_ranking_score: false,
show_ranking_score_details: false,
filter,
sort: None,
facets: None,
highlight_pre_tag: DEFAULT_HIGHLIGHT_PRE_TAG(),
highlight_post_tag: DEFAULT_HIGHLIGHT_POST_TAG(),
crop_marker: DEFAULT_CROP_MARKER(),
matching_strategy,
vector,
attributes_to_search_on,
}
}
}

View File

@@ -24,7 +24,6 @@ use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler;
pub mod documents;
pub mod facet_search;
pub mod search;
pub mod settings;
@@ -45,7 +44,6 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
.service(web::resource("/stats").route(web::get().to(SeqHandler(get_index_stats))))
.service(web::scope("/documents").configure(documents::configure))
.service(web::scope("/search").configure(search::configure))
.service(web::scope("/facet-search").configure(facet_search::configure))
.service(web::scope("/settings").configure(settings::configure)),
);
}

View File

@@ -34,7 +34,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
pub struct SearchQueryGet {
#[deserr(default, error = DeserrQueryParamError<InvalidSearchQ>)]
q: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchVector>)]
#[deserr(default, error = DeserrQueryParamError<InvalidSearchQ>)]
vector: Option<Vec<f32>>,
#[deserr(default = Param(DEFAULT_SEARCH_OFFSET()), error = DeserrQueryParamError<InvalidSearchOffset>)]
offset: Param<usize>,
@@ -58,10 +58,6 @@ pub struct SearchQueryGet {
sort: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowMatchesPosition>)]
show_matches_position: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchFacets>)]
facets: Option<CS<String>>,
#[deserr( default = DEFAULT_HIGHLIGHT_PRE_TAG(), error = DeserrQueryParamError<InvalidSearchHighlightPreTag>)]
@@ -72,8 +68,6 @@ pub struct SearchQueryGet {
crop_marker: String,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchMatchingStrategy>)]
matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToSearchOn>)]
pub attributes_to_search_on: Option<CS<String>>,
}
impl From<SearchQueryGet> for SearchQuery {
@@ -100,14 +94,11 @@ impl From<SearchQueryGet> for SearchQuery {
filter,
sort: other.sort.map(|attr| fix_sort_query_parameters(&attr)),
show_matches_position: other.show_matches_position.0,
show_ranking_score: other.show_ranking_score.0,
show_ranking_score_details: other.show_ranking_score_details.0,
facets: other.facets.map(|o| o.into_iter().collect()),
highlight_pre_tag: other.highlight_pre_tag,
highlight_post_tag: other.highlight_post_tag,
crop_marker: other.crop_marker,
matching_strategy: other.matching_strategy,
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
}
}
}
@@ -157,9 +148,7 @@ pub async fn search_with_url_query(
let mut aggregate = SearchAggregator::from_query(&query, &req);
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features()?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
let search_result = tokio::task::spawn_blocking(move || perform_search(&index, query)).await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
@@ -191,10 +180,7 @@ pub async fn search_with_post(
let mut aggregate = SearchAggregator::from_query(&query, &req);
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features()?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
let search_result = tokio::task::spawn_blocking(move || perform_search(&index, query)).await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}

View File

@@ -401,17 +401,12 @@ make_setting_route!(
analytics,
|setting: &Option<meilisearch_types::settings::FacetingSettings>, req: &HttpRequest| {
use serde_json::json;
use meilisearch_types::facet_values_sort::FacetValuesSort;
analytics.publish(
"Faceting Updated".to_string(),
json!({
"faceting": {
"max_values_per_facet": setting.as_ref().and_then(|s| s.max_values_per_facet.set()),
"sort_facet_values_by_star_count": setting.as_ref().and_then(|s| {
s.sort_facet_values_by.as_ref().set().map(|s| s.iter().any(|(k, v)| k == "*" && v == &FacetValuesSort::Count))
}),
"sort_facet_values_by_total": setting.as_ref().and_then(|s| s.sort_facet_values_by.as_ref().set().map(|s| s.len())),
},
}),
Some(req),
@@ -550,10 +545,6 @@ pub async fn update_all(
.as_ref()
.set()
.and_then(|s| s.max_values_per_facet.as_ref().set()),
"sort_facet_values_by": new_settings.faceting
.as_ref()
.set()
.and_then(|s| s.sort_facet_values_by.as_ref().set()),
},
"pagination": {
"max_total_hits": new_settings.pagination

View File

@@ -19,7 +19,6 @@ pub async fn get_metrics(
index_scheduler: GuardedData<ActionPolicy<{ actions::METRICS_GET }>, Data<IndexScheduler>>,
auth_controller: Data<AuthController>,
) -> Result<HttpResponse, ResponseError> {
index_scheduler.features()?.check_metrics()?;
let auth_filters = index_scheduler.filters();
if !auth_filters.all_indexes_authorized() {
let mut error = ResponseError::from(AuthenticationError::InvalidToken);

View File

@@ -20,14 +20,13 @@ const PAGINATION_DEFAULT_LIMIT: usize = 20;
mod api_key;
mod dump;
pub mod features;
pub mod indexes;
mod metrics;
mod multi_search;
mod swap_indexes;
pub mod tasks;
pub fn configure(cfg: &mut web::ServiceConfig) {
pub fn configure(cfg: &mut web::ServiceConfig, enable_metrics: bool) {
cfg.service(web::scope("/tasks").configure(tasks::configure))
.service(web::resource("/health").route(web::get().to(get_health)))
.service(web::scope("/keys").configure(api_key::configure))
@@ -36,9 +35,11 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
.service(web::resource("/version").route(web::get().to(get_version)))
.service(web::scope("/indexes").configure(indexes::configure))
.service(web::scope("/multi-search").configure(multi_search::configure))
.service(web::scope("/swap-indexes").configure(swap_indexes::configure))
.service(web::scope("/metrics").configure(metrics::configure))
.service(web::scope("/experimental-features").configure(features::configure));
.service(web::scope("/swap-indexes").configure(swap_indexes::configure));
if enable_metrics {
cfg.service(web::scope("/metrics").configure(metrics::configure));
}
}
#[derive(Debug, Serialize)]

View File

@@ -41,7 +41,6 @@ pub async fn multi_search_with_post(
let queries = params.into_inner().queries;
let mut multi_aggregate = MultiSearchAggregator::from_queries(&queries, &req);
let features = index_scheduler.features()?;
// Explicitly expect a `(ResponseError, usize)` for the error type rather than `ResponseError` only,
// so that `?` doesn't work if it doesn't use `with_index`, ensuring that it is not forgotten in case of code
@@ -75,9 +74,8 @@ pub async fn multi_search_with_post(
err
})
.with_index(query_index)?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features))
tokio::task::spawn_blocking(move || perform_search(&index, query))
.await
.with_index(query_index)?;

View File

@@ -5,26 +5,17 @@ use std::time::Instant;
use deserr::Deserr;
use either::Either;
use index_scheduler::RoFeatures;
use indexmap::IndexMap;
use log::warn;
use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::{
dot_product_similarity, FacetValueHit, InternalError, OrderBy, SearchForFacetValues,
};
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
use milli::{
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
SortError, TermsMatchingStrategy, VectorOrArrayOfVectors, DEFAULT_VALUES_PER_FACET,
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
};
use ordered_float::OrderedFloat;
use regex::Regex;
use serde::Serialize;
use serde_json::{json, Value};
@@ -45,7 +36,7 @@ pub const DEFAULT_HIGHLIGHT_POST_TAG: fn() -> String = || "</em>".to_string();
pub struct SearchQuery {
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
pub vector: Option<Vec<f32>>,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
@@ -65,10 +56,6 @@ pub struct SearchQuery {
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchSort>)]
@@ -83,8 +70,6 @@ pub struct SearchQuery {
pub crop_marker: String,
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
}
impl SearchQuery {
@@ -122,10 +107,6 @@ pub struct SearchQueryWithIndex {
pub crop_length: usize,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToHighlight>)]
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
@@ -142,8 +123,6 @@ pub struct SearchQueryWithIndex {
pub crop_marker: String,
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
}
impl SearchQueryWithIndex {
@@ -160,8 +139,6 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@@ -170,7 +147,6 @@ impl SearchQueryWithIndex {
highlight_post_tag,
crop_marker,
matching_strategy,
attributes_to_search_on,
} = self;
(
index_uid,
@@ -185,8 +161,6 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@@ -195,7 +169,6 @@ impl SearchQueryWithIndex {
highlight_post_tag,
crop_marker,
matching_strategy,
attributes_to_search_on,
// do not use ..Default::default() here,
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
},
@@ -203,7 +176,7 @@ impl SearchQueryWithIndex {
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
#[derive(Debug, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum MatchingStrategy {
/// Remove query words from last to first
@@ -227,27 +200,7 @@ impl From<MatchingStrategy> for TermsMatchingStrategy {
}
}
#[derive(Debug, Default, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum FacetValuesSort {
/// Facet values are sorted in alphabetical order, ascending from A to Z.
#[default]
Alpha,
/// Facet values are sorted by decreasing count.
/// The count is the number of records containing this facet value in the results of the query.
Count,
}
impl From<FacetValuesSort> for OrderBy {
fn from(val: FacetValuesSort) -> Self {
match val {
FacetValuesSort::Alpha => OrderBy::Lexicographic,
FacetValuesSort::Count => OrderBy::Count,
}
}
}
#[derive(Debug, Clone, Serialize, PartialEq)]
#[derive(Debug, Clone, Serialize, PartialEq, Eq)]
pub struct SearchHit {
#[serde(flatten)]
pub document: Document,
@@ -255,12 +208,6 @@ pub struct SearchHit {
pub formatted: Document,
#[serde(rename = "_matchesPosition", skip_serializing_if = "Option::is_none")]
pub matches_position: Option<MatchesPosition>,
#[serde(rename = "_rankingScore", skip_serializing_if = "Option::is_none")]
pub ranking_score: Option<f64>,
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
#[serde(rename = "_semanticScore", skip_serializing_if = "Option::is_none")]
pub semantic_score: Option<f32>,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
@@ -268,13 +215,11 @@ pub struct SearchHit {
pub struct SearchResult {
pub hits: Vec<SearchHit>,
pub query: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub vector: Option<Vec<f32>>,
pub processing_time_ms: u128,
#[serde(flatten)]
pub hits_info: HitsInfo,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_distribution: Option<BTreeMap<String, IndexMap<String, u64>>>,
pub facet_distribution: Option<BTreeMap<String, BTreeMap<String, u64>>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_stats: Option<BTreeMap<String, FacetStats>>,
}
@@ -302,14 +247,6 @@ pub struct FacetStats {
pub max: f64,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct FacetSearchResult {
pub facet_hits: Vec<FacetValueHit>,
pub facet_query: Option<String>,
pub processing_time_ms: u128,
}
/// Incorporate search rules in search query
pub fn add_search_rules(query: &mut SearchQuery, rules: IndexSearchRules) {
query.filter = match (query.filter.take(), rules.filter) {
@@ -330,17 +267,14 @@ pub fn add_search_rules(query: &mut SearchQuery, rules: IndexSearchRules) {
}
}
fn prepare_search<'t>(
index: &'t Index,
rtxn: &'t RoTxn,
query: &'t SearchQuery,
features: RoFeatures,
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
let mut search = index.search(rtxn);
pub fn perform_search(
index: &Index,
query: SearchQuery,
) -> Result<SearchResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
if query.vector.is_some() && query.q.is_some() {
warn!("Ignoring the query string `q` when used with the `vector` parameter.");
}
let mut search = index.search(&rtxn);
if let Some(ref vector) = query.vector {
search.vector(vector.clone());
@@ -350,32 +284,15 @@ fn prepare_search<'t>(
search.query(query);
}
if let Some(ref searchable) = query.attributes_to_search_on {
search.searchable_attributes(searchable);
}
let is_finite_pagination = query.is_finite_pagination();
search.terms_matching_strategy(query.matching_strategy.into());
let max_total_hits = index
.pagination_max_total_hits(rtxn)
.pagination_max_total_hits(&rtxn)
.map_err(milli::Error::from)?
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
search.exhaustive_number_hits(is_finite_pagination);
search.scoring_strategy(if query.show_ranking_score || query.show_ranking_score_details {
ScoringStrategy::Detailed
} else {
ScoringStrategy::Skip
});
if query.show_ranking_score_details {
features.check_score_details()?;
}
if query.vector.is_some() {
features.check_vector()?;
}
// compute the offset on the limit depending on the pagination mode.
let (offset, limit) = if is_finite_pagination {
@@ -413,22 +330,7 @@ fn prepare_search<'t>(
search.sort_criteria(sort);
}
Ok((search, is_finite_pagination, max_total_hits, offset))
}
pub fn perform_search(
index: &Index,
query: SearchQuery,
features: RoFeatures,
) -> Result<SearchResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let (search, is_finite_pagination, max_total_hits, offset) =
prepare_search(index, &rtxn, &query, features)?;
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
search.execute()?;
let milli::SearchResult { documents_ids, matching_words, candidates, .. } = search.execute()?;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@@ -497,9 +399,10 @@ pub fn perform_search(
formatter_builder.highlight_suffix(query.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
for (_id, obkv) in documents_iter {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
@@ -523,27 +426,7 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document);
}
let semantic_score = match query.vector.as_ref() {
Some(vector) => match extract_field("_vectors", &fields_ids_map, obkv)? {
Some(vectors) => compute_semantic_score(vector, vectors)?,
None => None,
},
None => None,
};
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
semantic_score,
};
let hit = SearchHit { document, formatted, matches_position };
documents.push(hit);
}
@@ -575,30 +458,10 @@ pub fn perform_search(
.unwrap_or(DEFAULT_VALUES_PER_FACET);
facet_distribution.max_values_per_facet(max_values_by_facet);
let sort_facet_values_by =
index.sort_facet_values_by(&rtxn).map_err(milli::Error::from)?;
let default_sort_facet_values_by =
sort_facet_values_by.get("*").copied().unwrap_or_default();
if fields.iter().all(|f| f != "*") {
let fields: Vec<_> = fields
.iter()
.map(|n| {
(
n,
sort_facet_values_by
.get(n)
.copied()
.unwrap_or(default_sort_facet_values_by),
)
})
.collect();
facet_distribution.facets(fields);
}
let distribution = facet_distribution
.candidates(candidates)
.default_order_by(default_sort_facet_values_by)
.execute()?;
let distribution = facet_distribution.candidates(candidates).execute()?;
let stats = facet_distribution.compute_stats()?;
(Some(distribution), Some(stats))
}
@@ -612,8 +475,7 @@ pub fn perform_search(
let result = SearchResult {
hits: documents,
hits_info,
query: query.q.unwrap_or_default(),
vector: query.vector,
query: query.q.clone().unwrap_or_default(),
processing_time_ms: before_search.elapsed().as_millis(),
facet_distribution,
facet_stats,
@@ -621,29 +483,6 @@ pub fn perform_search(
Ok(result)
}
pub fn perform_facet_search(
index: &Index,
search_query: SearchQuery,
facet_query: Option<String>,
facet_name: String,
features: RoFeatures,
) -> Result<FacetSearchResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, features)?;
let mut facet_search = SearchForFacetValues::new(facet_name, search);
if let Some(facet_query) = &facet_query {
facet_search.query(facet_query);
}
Ok(FacetSearchResult {
facet_hits: facet_search.execute()?,
facet_query,
processing_time_ms: before_search.elapsed().as_millis(),
})
}
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
lazy_static::lazy_static! {
static ref GEO_REGEX: Regex =
@@ -660,17 +499,6 @@ fn insert_geo_distance(sorts: &[String], document: &mut Document) {
}
}
fn compute_semantic_score(query: &[f32], vectors: Value) -> milli::Result<Option<f32>> {
let vectors = serde_json::from_value(vectors)
.map(VectorOrArrayOfVectors::into_array_of_vectors)
.map_err(InternalError::SerdeJson)?;
Ok(vectors
.into_iter()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner))
}
fn compute_formatted_options(
attr_to_highlight: &HashSet<String>,
attr_to_crop: &[String],
@@ -798,26 +626,10 @@ fn make_document(
Ok(document)
}
/// Extract the JSON value under the field name specified
/// but doesn't support nested objects.
fn extract_field(
field_name: &str,
field_ids_map: &FieldsIdsMap,
obkv: obkv::KvReaderU16,
) -> Result<Option<serde_json::Value>, MeilisearchHttpError> {
match field_ids_map.id(field_name) {
Some(fid) => match obkv.get(fid) {
Some(value) => Ok(serde_json::from_slice(value).map(Some)?),
None => Ok(None),
},
None => Ok(None),
}
}
fn format_fields<'a>(
fn format_fields<A: AsRef<[u8]>>(
document: &Document,
field_ids_map: &FieldsIdsMap,
builder: &'a MatcherBuilder<'a>,
builder: &MatcherBuilder<'_, A>,
formatted_options: &BTreeMap<FieldId, FormatOptions>,
compute_matches: bool,
displayable_ids: &BTreeSet<FieldId>,
@@ -862,9 +674,9 @@ fn format_fields<'a>(
Ok((matches_position, document))
}
fn format_value<'a>(
fn format_value<A: AsRef<[u8]>>(
value: Value,
builder: &'a MatcherBuilder<'a>,
builder: &MatcherBuilder<'_, A>,
format_options: Option<FormatOptions>,
infos: &mut Vec<MatchBounds>,
compute_matches: bool,

View File

@@ -422,7 +422,7 @@ async fn error_add_api_key_invalid_parameters_actions() {
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response, { ".createdAt" => "[ignored]", ".updatedAt" => "[ignored]" }), @r###"
{
"message": "Unknown value `doc.add` at `.actions[0]`: expected one of `*`, `search`, `documents.*`, `documents.add`, `documents.get`, `documents.delete`, `indexes.*`, `indexes.create`, `indexes.get`, `indexes.update`, `indexes.delete`, `indexes.swap`, `tasks.*`, `tasks.cancel`, `tasks.delete`, `tasks.get`, `settings.*`, `settings.get`, `settings.update`, `stats.*`, `stats.get`, `metrics.*`, `metrics.get`, `dumps.*`, `dumps.create`, `version`, `keys.create`, `keys.get`, `keys.update`, `keys.delete`, `experimental.get`, `experimental.update`",
"message": "Unknown value `doc.add` at `.actions[0]`: expected one of `*`, `search`, `documents.*`, `documents.add`, `documents.get`, `documents.delete`, `indexes.*`, `indexes.create`, `indexes.get`, `indexes.update`, `indexes.delete`, `indexes.swap`, `tasks.*`, `tasks.cancel`, `tasks.delete`, `tasks.get`, `settings.*`, `settings.get`, `settings.update`, `stats.*`, `stats.get`, `metrics.*`, `metrics.get`, `dumps.*`, `dumps.create`, `version`, `keys.create`, `keys.get`, `keys.update`, `keys.delete`",
"code": "invalid_api_key_actions",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_api_key_actions"

View File

@@ -90,7 +90,7 @@ async fn create_api_key_bad_actions() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Unknown value `doggo` at `.actions[0]`: expected one of `*`, `search`, `documents.*`, `documents.add`, `documents.get`, `documents.delete`, `indexes.*`, `indexes.create`, `indexes.get`, `indexes.update`, `indexes.delete`, `indexes.swap`, `tasks.*`, `tasks.cancel`, `tasks.delete`, `tasks.get`, `settings.*`, `settings.get`, `settings.update`, `stats.*`, `stats.get`, `metrics.*`, `metrics.get`, `dumps.*`, `dumps.create`, `version`, `keys.create`, `keys.get`, `keys.update`, `keys.delete`, `experimental.get`, `experimental.update`",
"message": "Unknown value `doggo` at `.actions[0]`: expected one of `*`, `search`, `documents.*`, `documents.add`, `documents.get`, `documents.delete`, `indexes.*`, `indexes.create`, `indexes.get`, `indexes.update`, `indexes.delete`, `indexes.swap`, `tasks.*`, `tasks.cancel`, `tasks.delete`, `tasks.get`, `settings.*`, `settings.get`, `settings.update`, `stats.*`, `stats.get`, `metrics.*`, `metrics.get`, `dumps.*`, `dumps.create`, `version`, `keys.create`, `keys.get`, `keys.update`, `keys.delete`",
"code": "invalid_api_key_actions",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_api_key_actions"

View File

@@ -346,24 +346,17 @@ impl Index<'_> {
query: Value,
test: impl Fn(Value, StatusCode) + UnwindSafe + Clone,
) {
let post = self.search_post(query.clone()).await;
let (response, code) = self.search_post(query.clone()).await;
let t = test.clone();
if let Err(e) = catch_unwind(move || t(response, code)) {
eprintln!("Error with post search");
resume_unwind(e);
}
let query = yaup::to_string(&query).unwrap();
let get = self.search_get(&query).await;
insta::allow_duplicates! {
let (response, code) = post;
let t = test.clone();
if let Err(e) = catch_unwind(move || t(response, code)) {
eprintln!("Error with post search");
resume_unwind(e);
}
let (response, code) = get;
if let Err(e) = catch_unwind(move || test(response, code)) {
eprintln!("Error with get search");
resume_unwind(e);
}
let (response, code) = self.search_get(&query).await;
if let Err(e) = catch_unwind(move || test(response, code)) {
eprintln!("Error with get search");
resume_unwind(e);
}
}
@@ -377,11 +370,6 @@ impl Index<'_> {
self.service.get(url).await
}
pub async fn facet_search(&self, query: Value) -> (Value, StatusCode) {
let url = format!("/indexes/{}/facet-search", urlencode(self.uid.as_ref()));
self.service.post_encoded(url, query, self.encoder).await
}
pub async fn update_distinct_attribute(&self, value: Value) -> (Value, StatusCode) {
let url =
format!("/indexes/{}/settings/{}", urlencode(self.uid.as_ref()), "distinct-attribute");

View File

@@ -36,7 +36,7 @@ async fn import_dump_v1_movie_raw() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["typo", "words", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["typo", "words", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -128,7 +128,7 @@ async fn import_dump_v1_movie_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["genres", "id", "overview", "poster", "release_date", "title"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": ["genres"], "rankingRules": ["typo", "words", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["genres", "id", "overview", "poster", "release_date", "title"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": ["genres"], "rankingRules": ["typo", "words", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -220,7 +220,7 @@ async fn import_dump_v1_rubygems_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["description", "id", "name", "summary", "total_downloads", "version"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": ["version"], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 }})
json!({"displayedAttributes": ["description", "id", "name", "summary", "total_downloads", "version"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": ["version"], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 }})
);
let (tasks, code) = index.list_tasks().await;
@@ -310,7 +310,7 @@ async fn import_dump_v2_movie_raw() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -402,7 +402,7 @@ async fn import_dump_v2_movie_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -494,7 +494,7 @@ async fn import_dump_v2_rubygems_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 }})
json!({"displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 }})
);
let (tasks, code) = index.list_tasks().await;
@@ -584,7 +584,7 @@ async fn import_dump_v3_movie_raw() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({"displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -676,7 +676,7 @@ async fn import_dump_v3_movie_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -768,7 +768,7 @@ async fn import_dump_v3_rubygems_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({"displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({"displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -858,7 +858,7 @@ async fn import_dump_v4_movie_raw() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["*"], "searchableAttributes": ["*"], "filterableAttributes": [], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -950,7 +950,7 @@ async fn import_dump_v4_movie_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["title", "genres", "overview", "poster", "release_date"], "searchableAttributes": ["title", "overview"], "filterableAttributes": ["genres"], "sortableAttributes": [], "rankingRules": ["words", "typo", "proximity", "attribute", "exactness"], "stopWords": ["of", "the"], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": { "oneTypo": 5, "twoTypos": 9 }, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;
@@ -1042,7 +1042,7 @@ async fn import_dump_v4_rubygems_with_settings() {
assert_eq!(code, 200);
assert_eq!(
settings,
json!({ "displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100, "sortFacetValuesBy": { "*": "alpha" } }, "pagination": { "maxTotalHits": 1000 } })
json!({ "displayedAttributes": ["name", "summary", "description", "version", "total_downloads"], "searchableAttributes": ["name", "summary"], "filterableAttributes": ["version"], "sortableAttributes": [], "rankingRules": ["typo", "words", "fame:desc", "proximity", "attribute", "exactness", "total_downloads:desc"], "stopWords": [], "synonyms": {}, "distinctAttribute": null, "typoTolerance": {"enabled": true, "minWordSizeForTypos": {"oneTypo": 5, "twoTypos": 9}, "disableOnWords": [], "disableOnAttributes": [] }, "faceting": { "maxValuesPerFacet": 100 }, "pagination": { "maxTotalHits": 1000 } })
);
let (tasks, code) = index.list_tasks().await;

View File

@@ -963,29 +963,3 @@ async fn sort_unset_ranking_rule() {
)
.await;
}
#[actix_rt::test]
async fn search_on_unknown_field() {
let server = Server::new().await;
let index = server.index("test");
let documents = DOCUMENTS.clone();
index.add_documents(documents, None).await;
index.wait_task(0).await;
index
.search(
json!({"q": "Captain Marvel", "attributesToSearchOn": ["unknown"]}),
|response, code| {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Attribute `unknown` is not searchable. Available searchable attributes are: `id, title`.",
"code": "invalid_search_attributes_to_search_on",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_attributes_to_search_on"
}
"###);
},
)
.await;
}

View File

@@ -1,92 +0,0 @@
use once_cell::sync::Lazy;
use serde_json::{json, Value};
use crate::common::Server;
pub(self) static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"genres": ["Action", "Adventure"],
"id": "287947",
},
{
"title": "Captain Marvel",
"genres": ["Action", "Adventure"],
"id": "299537",
},
{
"title": "Escape Room",
"genres": ["Horror", "Thriller", "Multiple Words"],
"id": "522681",
},
{
"title": "How to Train Your Dragon: The Hidden World",
"genres": ["Action", "Comedy"],
"id": "166428",
},
{
"title": "Gläss",
"genres": ["Thriller"],
"id": "450465",
}
])
});
#[actix_rt::test]
async fn simple_facet_search() {
let server = Server::new().await;
let index = server.index("test");
let documents = DOCUMENTS.clone();
index.update_settings_filterable_attributes(json!(["genres"])).await;
index.add_documents(documents, None).await;
index.wait_task(1).await;
let (response, code) =
index.facet_search(json!({"facetName": "genres", "facetQuery": "a"})).await;
assert_eq!(code, 200, "{}", response);
assert_eq!(dbg!(response)["facetHits"].as_array().unwrap().len(), 2);
let (response, code) =
index.facet_search(json!({"facetName": "genres", "facetQuery": "adventure"})).await;
assert_eq!(code, 200, "{}", response);
assert_eq!(response["facetHits"].as_array().unwrap().len(), 1);
}
#[actix_rt::test]
async fn non_filterable_facet_search_error() {
let server = Server::new().await;
let index = server.index("test");
let documents = DOCUMENTS.clone();
index.add_documents(documents, None).await;
index.wait_task(0).await;
let (response, code) =
index.facet_search(json!({"facetName": "genres", "facetQuery": "a"})).await;
assert_eq!(code, 400, "{}", response);
let (response, code) =
index.facet_search(json!({"facetName": "genres", "facetQuery": "adv"})).await;
assert_eq!(code, 400, "{}", response);
}
#[actix_rt::test]
async fn facet_search_dont_support_words() {
let server = Server::new().await;
let index = server.index("test");
let documents = DOCUMENTS.clone();
index.update_settings_filterable_attributes(json!(["genres"])).await;
index.add_documents(documents, None).await;
index.wait_task(1).await;
let (response, code) =
index.facet_search(json!({"facetName": "genres", "facetQuery": "words"})).await;
assert_eq!(code, 200, "{}", response);
assert_eq!(response["facetHits"].as_array().unwrap().len(), 0);
}

View File

@@ -1,4 +1,3 @@
use insta::{allow_duplicates, assert_json_snapshot};
use serde_json::json;
use super::*;
@@ -19,43 +18,30 @@ async fn formatted_contain_wildcard() {
|response, code|
{
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###);
}
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
})
);
})
.await;
@@ -64,29 +50,20 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToHighlight": ["id"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
})
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
@@ -94,20 +71,17 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToCrop": ["*"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###);
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
},
)
.await;
@@ -115,20 +89,17 @@ async fn formatted_contain_wildcard() {
index
.search(json!({ "q": "pésti", "attributesToCrop": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
})
.await;
}
@@ -145,24 +116,21 @@ async fn format_nested() {
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby",
"age": 2
},
{
"name": "buddy",
"age": 4
}
]
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": 2,
},
{
"name": "buddy",
"age": 4,
},
],
})
);
})
.await;
@@ -171,22 +139,19 @@ async fn format_nested() {
json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
})
);
},
)
.await;
@@ -196,30 +161,20 @@ async fn format_nested() {
json!({ "q": "bobby", "attributesToRetrieve": ["doggos.name"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_matchesPosition": {
"doggos.name": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_matchesPosition": {"doggos.name": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
@@ -228,24 +183,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -253,24 +205,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -278,61 +227,55 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"], "attributesToHighlight": ["doggos.age"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_formatted": {
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
})
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
})
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.age"], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
}
)
.await;
@@ -354,66 +297,54 @@ async fn displayedattr_2_smol() {
.search(json!({ "attributesToRetrieve": ["father", "id"], "attributesToHighlight": ["mother"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToHighlight": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
@@ -422,18 +353,15 @@ async fn displayedattr_2_smol() {
json!({ "attributesToHighlight": ["id"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -441,41 +369,31 @@ async fn displayedattr_2_smol() {
index
.search(json!({ "attributesToHighlight": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
assert_eq!(response["hits"][0], json!({}));
})
.await;
@@ -484,11 +402,7 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["cattos"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
assert_eq!(response["hits"][0], json!({}));
}
)
@@ -499,17 +413,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -519,17 +430,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;

View File

@@ -2,11 +2,9 @@
// should be tested in its own module to isolate tests and keep the tests readable.
mod errors;
mod facet_search;
mod formatted;
mod multi;
mod pagination;
mod restrict_searchable;
use once_cell::sync::Lazy;
use serde_json::{json, Value};

View File

@@ -65,7 +65,7 @@ async fn simple_search_single_index() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",
@@ -170,7 +170,7 @@ async fn simple_search_two_indexes() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",

View File

@@ -1,267 +0,0 @@
use meili_snap::{json_string, snapshot};
use once_cell::sync::Lazy;
use serde_json::{json, Value};
use crate::common::index::Index;
use crate::common::Server;
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
index.add_documents(documents.clone(), None).await;
index.wait_task(0).await;
index
}
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
},
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
}])
});
#[actix_rt::test]
async fn simple_search_on_title() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// simple search should return 2 documents (ids: 2 and 3).
index
.search(
json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"]}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"].as_array().unwrap().len(), @"2");
},
)
.await;
}
#[actix_rt::test]
async fn simple_prefix_search_on_title() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// simple search should return 2 documents (ids: 2 and 3).
index
.search(json!({"q": "Captain Mar", "attributesToSearchOn": ["title"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"].as_array().unwrap().len(), @"2");
})
.await;
}
#[actix_rt::test]
async fn simple_search_on_title_matching_strategy_all() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// simple search matching strategy all should only return 1 document (ids: 2).
index
.search(json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "matchingStrategy": "all"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"].as_array().unwrap().len(), @"1");
})
.await;
}
#[actix_rt::test]
async fn simple_search_on_no_field() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// simple search on no field shouldn't return any document.
index
.search(json!({"q": "Captain Marvel", "attributesToSearchOn": []}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"].as_array().unwrap().len(), @"0");
})
.await;
}
#[actix_rt::test]
async fn word_ranking_rule_order() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// Document 3 should appear before document 2.
index
.search(
json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["id"]}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]),
@r###"
[
{
"id": "3"
},
{
"id": "2"
}
]
"###
);
},
)
.await;
}
#[actix_rt::test]
async fn word_ranking_rule_order_exact_words() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
index.update_settings_typo_tolerance(json!({"disableOnWords": ["Captain", "Marvel"]})).await;
index.wait_task(1).await;
// simple search should return 2 documents (ids: 2 and 3).
index
.search(
json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["id"]}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]),
@r###"
[
{
"id": "3"
},
{
"id": "2"
}
]
"###
);
},
)
.await;
}
#[actix_rt::test]
async fn typo_ranking_rule_order() {
let server = Server::new().await;
let index = index_with_documents(
&server,
&json!([
{
"title": "Capitain Marivel",
"desc": "Captain Marvel",
"id": "1",
},
{
"title": "Captain Marivel",
"desc": "a Shazam ersatz",
"id": "2",
}]),
)
.await;
// Document 2 should appear before document 1.
index
.search(json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]),
@r###"
[
{
"id": "2"
},
{
"id": "1"
}
]
"###
);
})
.await;
}
#[actix_rt::test]
async fn attributes_ranking_rule_order() {
let server = Server::new().await;
let index = index_with_documents(
&server,
&json!([
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"footer": "The story of Captain Marvel",
"id": "1",
},
{
"title": "The Avengers",
"desc": "Captain Marvel is far from the earth",
"footer": "A super hero team",
"id": "2",
}]),
)
.await;
// Document 2 should appear before document 1.
index
.search(json!({"q": "Captain Marvel", "attributesToSearchOn": ["desc", "footer"], "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]),
@r###"
[
{
"id": "2"
},
{
"id": "1"
}
]
"###
);
})
.await;
}
#[actix_rt::test]
async fn exactness_ranking_rule_order() {
let server = Server::new().await;
let index = index_with_documents(
&server,
&json!([
{
"title": "Captain Marvel",
"desc": "Captain Marivel",
"id": "1",
},
{
"title": "Captain Marvel",
"desc": "CaptainMarvel",
"id": "2",
}]),
)
.await;
// Document 2 should appear before document 1.
index
.search(json!({"q": "Captain Marvel", "attributesToRetrieve": ["id"], "attributesToSearchOn": ["desc"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]),
@r###"
[
{
"id": "2"
},
{
"id": "1"
}
]
"###
);
})
.await;
}

View File

@@ -21,9 +21,6 @@ static DEFAULT_SETTINGS_VALUES: Lazy<HashMap<&'static str, Value>> = Lazy::new(|
"faceting",
json!({
"maxValuesPerFacet": json!(100),
"sortFacetValuesBy": {
"*": "alpha"
}
}),
);
map.insert(
@@ -66,9 +63,6 @@ async fn get_settings() {
settings["faceting"],
json!({
"maxValuesPerFacet": 100,
"sortFacetValuesBy": {
"*": "alpha"
}
})
);
assert_eq!(

View File

@@ -17,7 +17,7 @@ bincode = "1.3.3"
bstr = "1.4.0"
bytemuck = { version = "1.13.1", features = ["extern_crate_alloc"] }
byteorder = "1.4.3"
charabia = { version = "0.8.1", default-features = false }
charabia = { version = "0.7.2", default-features = false }
concat-arrays = "0.1.2"
crossbeam-channel = "0.5.8"
deserr = "0.5.0"
@@ -34,7 +34,6 @@ heed = { git = "https://github.com/meilisearch/heed", tag = "v0.12.6", default-f
"sync-read-txn",
] }
hnsw = { version = "0.11.0", features = ["serde1"] }
indexmap = { version = "1.9.3", features = ["serde"] }
json-depth-checker = { path = "../json-depth-checker" }
levenshtein_automata = { version = "0.2.1", features = ["fst_automaton"] }
memmap2 = "0.5.10"
@@ -80,6 +79,9 @@ maplit = "1.0.2"
md5 = "0.7.0"
rand = { version = "0.8.5", features = ["small_rng"] }
[target.'cfg(fuzzing)'.dev-dependencies]
fuzzcheck = "0.12.1"
[features]
all-tokenizations = ["charabia/default"]

View File

@@ -54,7 +54,6 @@ fn main() -> Result<(), Box<dyn Error>> {
&(!query.trim().is_empty()).then(|| query.trim().to_owned()),
&None,
TermsMatchingStrategy::Last,
milli::score_details::ScoringStrategy::Skip,
false,
&None,
&None,

View File

@@ -7,19 +7,28 @@ pub struct DotProduct;
impl Metric<Vec<f32>> for DotProduct {
type Unit = u32;
// Following <https://docs.rs/space/0.17.0/space/trait.Metric.html>.
// TODO explain me this function, I don't understand why f32.to_bits is ordered.
// I tried to do this and it wasn't OK <https://stackoverflow.com/a/43305015/1941280>
//
// Here is a playground that validate the ordering of the bit representation of floats in range 0.0..=1.0:
// <https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=6c59e31a3cc5036b32edf51e8937b56e>
// Following <https://docs.rs/space/0.17.0/space/trait.Metric.html>.
fn distance(&self, a: &Vec<f32>, b: &Vec<f32>) -> Self::Unit {
let dist = 1.0 - dot_product_similarity(a, b);
let dist: f32 = a.iter().zip(b).map(|(a, b)| a * b).sum();
let dist = 1.0 - dist;
debug_assert!(!dist.is_nan());
dist.to_bits()
}
}
/// Returns the dot product similarity score that will between 0.0 and 1.0
/// if both vectors are normalized. The higher the more similar the vectors are.
pub fn dot_product_similarity(a: &[f32], b: &[f32]) -> f32 {
a.iter().zip(b).map(|(a, b)| a * b).sum()
#[derive(Debug, Default, Clone, Copy, Serialize, Deserialize)]
pub struct Euclidean;
impl Metric<Vec<f32>> for Euclidean {
type Unit = u32;
fn distance(&self, a: &Vec<f32>, b: &Vec<f32>) -> Self::Unit {
let squared: f32 = a.iter().zip(b).map(|(a, b)| (a - b).powi(2)).sum();
let dist = squared.sqrt();
debug_assert!(!dist.is_nan());
dist.to_bits()
}
}

View File

@@ -111,6 +111,7 @@ pub enum Error {
Io(#[from] io::Error),
}
#[cfg(test)]
pub fn objects_from_json_value(json: serde_json::Value) -> Vec<crate::Object> {
let documents = match json {
object @ serde_json::Value::Object(_) => vec![object],
@@ -140,6 +141,7 @@ macro_rules! documents {
}};
}
#[cfg(test)]
pub fn documents_batch_reader_from_objects(
objects: impl IntoIterator<Item = Object>,
) -> DocumentsBatchReader<std::io::Cursor<Vec<u8>>> {

View File

@@ -112,8 +112,6 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
InvalidGeoField(#[from] GeoError),
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
InvalidVectorDimensions { expected: usize, found: usize },
#[error("The `_vectors` field in the document with the id: `{document_id}` is not an array. Was expecting an array of floats or an array of arrays of floats but instead got `{value}`.")]
InvalidVectorsType { document_id: Value, value: Value },
#[error("{0}")]
InvalidFilter(String),
#[error("Invalid type for filter subexpression: expected: {}, found: {1}.", .0.join(", "))]
@@ -128,26 +126,6 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
}
)]
InvalidSortableAttribute { field: String, valid_fields: BTreeSet<String> },
#[error("Attribute `{}` is not facet-searchable. {}",
.field,
match .valid_fields.is_empty() {
true => "This index does not have configured facet-searchable attributes. To make it facet-searchable add it to the `filterableAttributes` index settings.".to_string(),
false => format!("Available facet-searchable attributes are: `{}`. To make it facet-searchable add it to the `filterableAttributes` index settings.",
valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", ")
),
}
)]
InvalidFacetSearchFacetName { field: String, valid_fields: BTreeSet<String> },
#[error("Attribute `{}` is not searchable. Available searchable attributes are: `{}{}`.",
.field,
.valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", "),
.hidden_fields.then_some(", <..hidden-attributes>").unwrap_or(""),
)]
InvalidSearchableAttribute {
field: String,
valid_fields: BTreeSet<String>,
hidden_fields: bool,
},
#[error("{}", HeedError::BadOpenOptions)]
InvalidLmdbOpenOptions,
#[error("You must specify where `sort` is listed in the rankingRules setting to use the sort parameter at search time.")]

View File

@@ -106,30 +106,22 @@ impl<'a> ExternalDocumentsIds<'a> {
map
}
/// Return an fst of the combined hard and soft deleted ID.
pub fn to_fst<'b>(&'b self) -> fst::Result<Cow<'b, fst::Map<Cow<'a, [u8]>>>> {
if self.soft.is_empty() {
return Ok(Cow::Borrowed(&self.hard));
}
let union_op = self.hard.op().add(&self.soft).r#union();
let mut iter = union_op.into_stream();
let mut new_hard_builder = fst::MapBuilder::memory();
while let Some((external_id, marked_docids)) = iter.next() {
let value = indexed_last_value(marked_docids).unwrap();
if value != DELETED_ID {
new_hard_builder.insert(external_id, value)?;
}
}
drop(iter);
Ok(Cow::Owned(new_hard_builder.into_map().map_data(Cow::Owned)?))
}
fn merge_soft_into_hard(&mut self) -> fst::Result<()> {
if self.soft.len() >= self.hard.len() / 2 {
self.hard = self.to_fst()?.into_owned();
let union_op = self.hard.op().add(&self.soft).r#union();
let mut iter = union_op.into_stream();
let mut new_hard_builder = fst::MapBuilder::memory();
while let Some((external_id, marked_docids)) = iter.next() {
let value = indexed_last_value(marked_docids).unwrap();
if value != DELETED_ID {
new_hard_builder.insert(external_id, value)?;
}
}
drop(iter);
self.hard = new_hard_builder.into_map().map_data(Cow::Owned)?;
self.soft = fst::Map::default().map_data(Cow::Owned)?;
}

View File

@@ -1,23 +0,0 @@
use std::borrow::Cow;
use fst::Set;
use heed::{BytesDecode, BytesEncode};
/// A codec for values of type `Set<&[u8]>`.
pub struct FstSetCodec;
impl<'a> BytesEncode<'a> for FstSetCodec {
type EItem = Set<Vec<u8>>;
fn bytes_encode(item: &'a Self::EItem) -> Option<Cow<'a, [u8]>> {
Some(Cow::Borrowed(item.as_fst().as_bytes()))
}
}
impl<'a> BytesDecode<'a> for FstSetCodec {
type DItem = Set<&'a [u8]>;
fn bytes_decode(bytes: &'a [u8]) -> Option<Self::DItem> {
Set::new(bytes).ok()
}
}

View File

@@ -2,7 +2,6 @@ mod beu32_str_codec;
mod byte_slice_ref;
pub mod facet;
mod field_id_word_count_codec;
mod fst_set_codec;
mod obkv_codec;
mod roaring_bitmap;
mod roaring_bitmap_length;
@@ -16,7 +15,6 @@ pub use str_ref::StrRefCodec;
pub use self::beu32_str_codec::BEU32StrCodec;
pub use self::field_id_word_count_codec::FieldIdWordCountCodec;
pub use self::fst_set_codec::FstSetCodec;
pub use self::obkv_codec::ObkvCodec;
pub use self::roaring_bitmap::{BoRoaringBitmapCodec, CboRoaringBitmapCodec, RoaringBitmapCodec};
pub use self::roaring_bitmap_length::{
@@ -25,9 +23,3 @@ pub use self::roaring_bitmap_length::{
pub use self::script_language_codec::ScriptLanguageCodec;
pub use self::str_beu32_codec::{StrBEU16Codec, StrBEU32Codec};
pub use self::str_str_u8_codec::{U8StrStrCodec, UncheckedU8StrStrCodec};
pub trait BytesDecodeOwned {
type DItem;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem>;
}

View File

@@ -2,11 +2,8 @@ use std::borrow::Cow;
use std::convert::TryInto;
use std::mem::size_of;
use heed::BytesDecode;
use roaring::RoaringBitmap;
use crate::heed_codec::BytesDecodeOwned;
pub struct BoRoaringBitmapCodec;
impl BoRoaringBitmapCodec {
@@ -16,7 +13,7 @@ impl BoRoaringBitmapCodec {
}
}
impl BytesDecode<'_> for BoRoaringBitmapCodec {
impl heed::BytesDecode<'_> for BoRoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode(bytes: &[u8]) -> Option<Self::DItem> {
@@ -31,14 +28,6 @@ impl BytesDecode<'_> for BoRoaringBitmapCodec {
}
}
impl BytesDecodeOwned for BoRoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
Self::bytes_decode(bytes)
}
}
impl heed::BytesEncode<'_> for BoRoaringBitmapCodec {
type EItem = RoaringBitmap;

View File

@@ -5,8 +5,6 @@ use std::mem::size_of;
use byteorder::{NativeEndian, ReadBytesExt, WriteBytesExt};
use roaring::RoaringBitmap;
use crate::heed_codec::BytesDecodeOwned;
/// This is the limit where using a byteorder became less size efficient
/// than using a direct roaring encoding, it is also the point where we are able
/// to determine the encoding used only by using the array of bytes length.
@@ -105,14 +103,6 @@ impl heed::BytesDecode<'_> for CboRoaringBitmapCodec {
}
}
impl BytesDecodeOwned for CboRoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
Self::deserialize_from(bytes).ok()
}
}
impl heed::BytesEncode<'_> for CboRoaringBitmapCodec {
type EItem = RoaringBitmap;

View File

@@ -2,8 +2,6 @@ use std::borrow::Cow;
use roaring::RoaringBitmap;
use crate::heed_codec::BytesDecodeOwned;
pub struct RoaringBitmapCodec;
impl heed::BytesDecode<'_> for RoaringBitmapCodec {
@@ -14,14 +12,6 @@ impl heed::BytesDecode<'_> for RoaringBitmapCodec {
}
}
impl BytesDecodeOwned for RoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
RoaringBitmap::deserialize_from(bytes).ok()
}
}
impl heed::BytesEncode<'_> for RoaringBitmapCodec {
type EItem = RoaringBitmap;

View File

@@ -1,23 +1,11 @@
use std::mem;
use heed::BytesDecode;
use crate::heed_codec::BytesDecodeOwned;
pub struct BoRoaringBitmapLenCodec;
impl BytesDecode<'_> for BoRoaringBitmapLenCodec {
impl heed::BytesDecode<'_> for BoRoaringBitmapLenCodec {
type DItem = u64;
fn bytes_decode(bytes: &[u8]) -> Option<Self::DItem> {
Some((bytes.len() / mem::size_of::<u32>()) as u64)
}
}
impl BytesDecodeOwned for BoRoaringBitmapLenCodec {
type DItem = u64;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
Self::bytes_decode(bytes)
}
}

View File

@@ -1,14 +1,11 @@
use std::mem;
use heed::BytesDecode;
use super::{BoRoaringBitmapLenCodec, RoaringBitmapLenCodec};
use crate::heed_codec::roaring_bitmap::cbo_roaring_bitmap_codec::THRESHOLD;
use crate::heed_codec::BytesDecodeOwned;
pub struct CboRoaringBitmapLenCodec;
impl BytesDecode<'_> for CboRoaringBitmapLenCodec {
impl heed::BytesDecode<'_> for CboRoaringBitmapLenCodec {
type DItem = u64;
fn bytes_decode(bytes: &[u8]) -> Option<Self::DItem> {
@@ -23,11 +20,3 @@ impl BytesDecode<'_> for CboRoaringBitmapLenCodec {
}
}
}
impl BytesDecodeOwned for CboRoaringBitmapLenCodec {
type DItem = u64;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
Self::bytes_decode(bytes)
}
}

View File

@@ -3,8 +3,6 @@ use std::mem;
use byteorder::{LittleEndian, ReadBytesExt};
use crate::heed_codec::BytesDecodeOwned;
const SERIAL_COOKIE_NO_RUNCONTAINER: u32 = 12346;
const SERIAL_COOKIE: u16 = 12347;
@@ -61,14 +59,6 @@ impl heed::BytesDecode<'_> for RoaringBitmapLenCodec {
}
}
impl BytesDecodeOwned for RoaringBitmapLenCodec {
type DItem = u64;
fn bytes_decode_owned(bytes: &[u8]) -> Option<Self::DItem> {
RoaringBitmapLenCodec::deserialize_from_slice(bytes).ok()
}
}
#[cfg(test)]
mod tests {
use heed::BytesEncode;

View File

@@ -21,13 +21,11 @@ use crate::heed_codec::facet::{
FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec,
FieldIdCodec, OrderedF64Codec,
};
use crate::heed_codec::{FstSetCodec, ScriptLanguageCodec, StrBEU16Codec, StrRefCodec};
use crate::readable_slices::ReadableSlices;
use crate::heed_codec::{ScriptLanguageCodec, StrBEU16Codec, StrRefCodec};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec,
OrderBy, Result, RoaringBitmapCodec, RoaringBitmapLenCodec, Search, U8StrStrCodec, BEU16,
BEU32,
Result, RoaringBitmapCodec, RoaringBitmapLenCodec, Search, U8StrStrCodec, BEU16, BEU32,
};
/// The HNSW data-structure that we serialize, fill and search in.
@@ -49,10 +47,7 @@ pub mod main_key {
pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map";
pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids";
pub const GEO_RTREE_KEY: &str = "geo-rtree";
/// The prefix of the key that is used to store the, potential big, HNSW structure.
/// It is concatenated with a big-endian encoded number (non-human readable).
/// e.g. vector-hnsw0x0032.
pub const VECTOR_HNSW_KEY_PREFIX: &str = "vector-hnsw";
pub const VECTOR_HNSW_KEY: &str = "vector-hnsw";
pub const HARD_EXTERNAL_DOCUMENTS_IDS_KEY: &str = "hard-external-documents-ids";
pub const NUMBER_FACETED_DOCUMENTS_IDS_PREFIX: &str = "number-faceted-documents-ids";
pub const PRIMARY_KEY_KEY: &str = "primary-key";
@@ -72,7 +67,6 @@ pub mod main_key {
pub const EXACT_WORDS: &str = "exact-words";
pub const EXACT_ATTRIBUTES: &str = "exact-attributes";
pub const MAX_VALUES_PER_FACET: &str = "max-values-per-facet";
pub const SORT_FACET_VALUES_BY: &str = "sort-facet-values-by";
pub const PAGINATION_MAX_TOTAL_HITS: &str = "pagination-max-total-hits";
}
@@ -96,7 +90,6 @@ pub mod db_name {
pub const FACET_ID_IS_NULL_DOCIDS: &str = "facet-id-is-null-docids";
pub const FACET_ID_IS_EMPTY_DOCIDS: &str = "facet-id-is-empty-docids";
pub const FACET_ID_STRING_DOCIDS: &str = "facet-id-string-docids";
pub const FACET_ID_STRING_FST: &str = "facet-id-string-fst";
pub const FIELD_ID_DOCID_FACET_F64S: &str = "field-id-docid-facet-f64s";
pub const FIELD_ID_DOCID_FACET_STRINGS: &str = "field-id-docid-facet-strings";
pub const VECTOR_ID_DOCID: &str = "vector-id-docids";
@@ -157,8 +150,6 @@ pub struct Index {
pub facet_id_f64_docids: Database<FacetGroupKeyCodec<OrderedF64Codec>, FacetGroupValueCodec>,
/// Maps the facet field id and ranges of strings with the docids that corresponds to them.
pub facet_id_string_docids: Database<FacetGroupKeyCodec<StrRefCodec>, FacetGroupValueCodec>,
/// Maps the facet field id of the string facets with an FST containing all the facets values.
pub facet_id_string_fst: Database<OwnedType<BEU16>, FstSetCodec>,
/// Maps the document id, the facet field id and the numbers.
pub field_id_docid_facet_f64s: Database<FieldDocIdFacetF64Codec, Unit>,
@@ -211,7 +202,6 @@ impl Index {
let facet_id_f64_docids = env.create_database(&mut wtxn, Some(FACET_ID_F64_DOCIDS))?;
let facet_id_string_docids =
env.create_database(&mut wtxn, Some(FACET_ID_STRING_DOCIDS))?;
let facet_id_string_fst = env.create_database(&mut wtxn, Some(FACET_ID_STRING_FST))?;
let facet_id_exists_docids =
env.create_database(&mut wtxn, Some(FACET_ID_EXISTS_DOCIDS))?;
let facet_id_is_null_docids =
@@ -246,7 +236,6 @@ impl Index {
field_id_word_count_docids,
facet_id_f64_docids,
facet_id_string_docids,
facet_id_string_fst,
facet_id_exists_docids,
facet_id_is_null_docids,
facet_id_is_empty_docids,
@@ -528,49 +517,19 @@ impl Index {
/// Writes the provided `hnsw`.
pub(crate) fn put_vector_hnsw(&self, wtxn: &mut RwTxn, hnsw: &Hnsw) -> heed::Result<()> {
// We must delete all the chunks before we write the new HNSW chunks.
self.delete_vector_hnsw(wtxn)?;
let chunk_size = 1024 * 1024 * (1024 + 512); // 1.5 GiB
let bytes = bincode::serialize(hnsw).map_err(|_| heed::Error::Encoding)?;
for (i, chunk) in bytes.chunks(chunk_size).enumerate() {
let i = i as u32;
let mut key = main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes().to_vec();
key.extend_from_slice(&i.to_be_bytes());
self.main.put::<_, ByteSlice, ByteSlice>(wtxn, &key, chunk)?;
}
Ok(())
self.main.put::<_, Str, SerdeBincode<Hnsw>>(wtxn, main_key::VECTOR_HNSW_KEY, hnsw)
}
/// Delete the `hnsw`.
pub(crate) fn delete_vector_hnsw(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
let mut iter = self.main.prefix_iter_mut::<_, ByteSlice, DecodeIgnore>(
wtxn,
main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes(),
)?;
let mut deleted = false;
while iter.next().transpose()?.is_some() {
// We do not keep a reference to the key or the value.
unsafe { deleted |= iter.del_current()? };
}
Ok(deleted)
self.main.delete::<_, Str>(wtxn, main_key::VECTOR_HNSW_KEY)
}
/// Returns the `hnsw`.
pub fn vector_hnsw(&self, rtxn: &RoTxn) -> Result<Option<Hnsw>> {
let mut slices = Vec::new();
for result in
self.main.prefix_iter::<_, Str, ByteSlice>(rtxn, main_key::VECTOR_HNSW_KEY_PREFIX)?
{
let (_, slice) = result?;
slices.push(slice);
}
if slices.is_empty() {
Ok(None)
} else {
let readable_slices: ReadableSlices<_> = slices.into_iter().collect();
Ok(Some(bincode::deserialize_from(readable_slices).map_err(|_| heed::Error::Decoding)?))
match self.main.get::<_, Str, SerdeBincode<Hnsw>>(rtxn, main_key::VECTOR_HNSW_KEY)? {
Some(hnsw) => Ok(Some(hnsw)),
None => Ok(None),
}
}
@@ -1300,31 +1259,6 @@ impl Index {
self.main.delete::<_, Str>(txn, main_key::MAX_VALUES_PER_FACET)
}
pub fn sort_facet_values_by(&self, txn: &RoTxn) -> heed::Result<HashMap<String, OrderBy>> {
let mut orders = self
.main
.get::<_, Str, SerdeJson<HashMap<String, OrderBy>>>(
txn,
main_key::SORT_FACET_VALUES_BY,
)?
.unwrap_or_default();
// Insert the default ordering if it is not already overwritten by the user.
orders.entry("*".to_string()).or_insert(OrderBy::Lexicographic);
Ok(orders)
}
pub(crate) fn put_sort_facet_values_by(
&self,
txn: &mut RwTxn,
val: &HashMap<String, OrderBy>,
) -> heed::Result<()> {
self.main.put::<_, Str, SerdeJson<_>>(txn, main_key::SORT_FACET_VALUES_BY, &val)
}
pub(crate) fn delete_sort_facet_values_by(&self, txn: &mut RwTxn) -> heed::Result<bool> {
self.main.delete::<_, Str>(txn, main_key::SORT_FACET_VALUES_BY)
}
pub fn pagination_max_total_hits(&self, txn: &RoTxn) -> heed::Result<Option<usize>> {
self.main.get::<_, Str, OwnedType<usize>>(txn, main_key::PAGINATION_MAX_TOTAL_HITS)
}
@@ -2585,12 +2519,8 @@ pub(crate) mod tests {
let rtxn = index.read_txn().unwrap();
let search = Search::new(&rtxn, &index);
let SearchResult {
matching_words: _,
candidates: _,
document_scores: _,
mut documents_ids,
} = search.execute().unwrap();
let SearchResult { matching_words: _, candidates: _, mut documents_ids } =
search.execute().unwrap();
let primary_key_id = index.fields_ids_map(&rtxn).unwrap().id("primary_key").unwrap();
documents_ids.sort_unstable();
let docs = index.documents(&rtxn, documents_ids).unwrap();

View File

@@ -18,8 +18,6 @@ mod fields_ids_map;
pub mod heed_codec;
pub mod index;
pub mod proximity;
mod readable_slices;
pub mod score_details;
mod search;
pub mod update;
@@ -32,7 +30,6 @@ use std::convert::{TryFrom, TryInto};
use std::hash::BuildHasherDefault;
use charabia::normalizer::{CharNormalizer, CompatibilityDecompositionNormalizer};
pub use distance::dot_product_similarity;
pub use filter_parser::{Condition, FilterCondition, Span, Token};
use fxhash::{FxHasher32, FxHasher64};
pub use grenad::CompressionType;
@@ -57,9 +54,8 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::{
FacetDistribution, FacetValueHit, Filter, FormatOptions, MatchBounds, MatcherBuilder,
MatchingWords, OrderBy, Search, SearchForFacetValues, SearchResult, TermsMatchingStrategy,
DEFAULT_VALUES_PER_FACET,
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, Search,
SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
};
pub type Result<T> = std::result::Result<T, error::Error>;
@@ -288,35 +284,6 @@ pub fn normalize_facet(original: &str) -> String {
CompatibilityDecompositionNormalizer.normalize_str(original.trim()).to_lowercase()
}
/// Represents either a vector or an array of multiple vectors.
#[derive(serde::Serialize, serde::Deserialize, Debug)]
#[serde(transparent)]
pub struct VectorOrArrayOfVectors {
#[serde(with = "either::serde_untagged")]
inner: either::Either<Vec<f32>, Vec<Vec<f32>>>,
}
impl VectorOrArrayOfVectors {
pub fn into_array_of_vectors(self) -> Vec<Vec<f32>> {
match self.inner {
either::Either::Left(vector) => vec![vector],
either::Either::Right(vectors) => vectors,
}
}
}
/// Normalize a vector by dividing the dimensions by the length of it.
pub fn normalize_vector(mut vector: Vec<f32>) -> Vec<f32> {
let squared: f32 = vector.iter().map(|x| x * x).sum();
let length = squared.sqrt();
if length <= f32::EPSILON {
vector
} else {
vector.iter_mut().for_each(|x| *x /= length);
vector
}
}
#[cfg(test)]
mod tests {
use serde_json::json;

View File

@@ -1,85 +0,0 @@
use std::io::{self, Read};
use std::iter::FromIterator;
pub struct ReadableSlices<A> {
inner: Vec<A>,
pos: u64,
}
impl<A> FromIterator<A> for ReadableSlices<A> {
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
ReadableSlices { inner: iter.into_iter().collect(), pos: 0 }
}
}
impl<A: AsRef<[u8]>> Read for ReadableSlices<A> {
fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
let original_buf_len = buf.len();
// We explore the list of slices to find the one where we must start reading.
let mut pos = self.pos;
let index = match self
.inner
.iter()
.map(|s| s.as_ref().len() as u64)
.position(|size| pos.checked_sub(size).map(|p| pos = p).is_none())
{
Some(index) => index,
None => return Ok(0),
};
let mut inner_pos = pos as usize;
for slice in &self.inner[index..] {
let slice = &slice.as_ref()[inner_pos..];
if buf.len() > slice.len() {
// We must exhaust the current slice and go to the next one there is not enough here.
buf[..slice.len()].copy_from_slice(slice);
buf = &mut buf[slice.len()..];
inner_pos = 0;
} else {
// There is enough in this slice to fill the remaining bytes of the buffer.
// Let's break just after filling it.
buf.copy_from_slice(&slice[..buf.len()]);
buf = &mut [];
break;
}
}
let written = original_buf_len - buf.len();
self.pos += written as u64;
Ok(written)
}
}
#[cfg(test)]
mod test {
use std::io::Read;
use super::ReadableSlices;
#[test]
fn basic() {
let data: Vec<_> = (0..100).collect();
let splits: Vec<_> = data.chunks(3).collect();
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
let mut output = Vec::new();
let length = rdslices.read_to_end(&mut output).unwrap();
assert_eq!(length, data.len());
assert_eq!(output, data);
}
#[test]
fn small_reads() {
let data: Vec<_> = (0..u8::MAX).collect();
let splits: Vec<_> = data.chunks(27).collect();
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
let buffer = &mut [0; 45];
let length = rdslices.read(buffer).unwrap();
let expected: Vec<_> = (0..buffer.len() as u8).collect();
assert_eq!(length, buffer.len());
assert_eq!(buffer, &expected[..]);
}
}

View File

@@ -1,313 +0,0 @@
use serde::Serialize;
use crate::distance_between_two_points;
#[derive(Debug, Clone, PartialEq)]
pub enum ScoreDetails {
Words(Words),
Typo(Typo),
Proximity(Rank),
Fid(Rank),
Position(Rank),
ExactAttribute(ExactAttribute),
Exactness(Rank),
Sort(Sort),
GeoSort(GeoSort),
}
impl ScoreDetails {
pub fn local_score(&self) -> Option<f64> {
self.rank().map(Rank::local_score)
}
pub fn rank(&self) -> Option<Rank> {
match self {
ScoreDetails::Words(details) => Some(details.rank()),
ScoreDetails::Typo(details) => Some(details.rank()),
ScoreDetails::Proximity(details) => Some(*details),
ScoreDetails::Fid(details) => Some(*details),
ScoreDetails::Position(details) => Some(*details),
ScoreDetails::ExactAttribute(details) => Some(details.rank()),
ScoreDetails::Exactness(details) => Some(*details),
ScoreDetails::Sort(_) => None,
ScoreDetails::GeoSort(_) => None,
}
}
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self>) -> f64 {
Rank::global_score(details.filter_map(Self::rank))
}
/// Panics
///
/// - If Position is not preceded by Fid
/// - If Exactness is not preceded by ExactAttribute
pub fn to_json_map<'a>(
details: impl Iterator<Item = &'a Self>,
) -> serde_json::Map<String, serde_json::Value> {
let mut order = 0;
let mut fid_details = None;
let mut details_map = serde_json::Map::default();
for details in details {
match details {
ScoreDetails::Words(words) => {
let words_details = serde_json::json!({
"order": order,
"matchingWords": words.matching_words,
"maxMatchingWords": words.max_matching_words,
"score": words.rank().local_score(),
});
details_map.insert("words".into(), words_details);
order += 1;
}
ScoreDetails::Typo(typo) => {
let typo_details = serde_json::json!({
"order": order,
"typoCount": typo.typo_count,
"maxTypoCount": typo.max_typo_count,
"score": typo.rank().local_score(),
});
details_map.insert("typo".into(), typo_details);
order += 1;
}
ScoreDetails::Proximity(proximity) => {
let proximity_details = serde_json::json!({
"order": order,
"score": proximity.local_score(),
});
details_map.insert("proximity".into(), proximity_details);
order += 1;
}
ScoreDetails::Fid(fid) => {
// copy the rank for future use in Position.
fid_details = Some(*fid);
// For now, fid is a virtual rule always followed by the "position" rule
let fid_details = serde_json::json!({
"order": order,
"attribute_ranking_order_score": fid.local_score(),
});
details_map.insert("attribute".into(), fid_details);
order += 1;
}
ScoreDetails::Position(position) => {
// For now, position is a virtual rule always preceded by the "fid" rule
let attribute_details = details_map
.get_mut("attribute")
.expect("position not preceded by attribute");
let attribute_details = attribute_details
.as_object_mut()
.expect("attribute details was not an object");
let Some(fid_details) = fid_details else {
unimplemented!("position not preceded by attribute");
};
attribute_details
.insert("query_word_distance_score".into(), position.local_score().into());
let score = Rank::global_score([fid_details, *position].iter().copied());
attribute_details.insert("score".into(), score.into());
// do not update the order since this was already done by fid
}
ScoreDetails::ExactAttribute(exact_attribute) => {
let exactness_details = serde_json::json!({
"order": order,
"matchType": exact_attribute,
"score": exact_attribute.rank().local_score(),
});
details_map.insert("exactness".into(), exactness_details);
order += 1;
}
ScoreDetails::Exactness(details) => {
// For now, exactness is a virtual rule always preceded by the "ExactAttribute" rule
let exactness_details = details_map
.get_mut("exactness")
.expect("Exactness not preceded by exactAttribute");
let exactness_details = exactness_details
.as_object_mut()
.expect("exactness details was not an object");
if exactness_details.get("matchType").expect("missing 'matchType'")
== &serde_json::json!(ExactAttribute::NoExactMatch)
{
let score = Rank::global_score(
[ExactAttribute::NoExactMatch.rank(), *details].iter().copied(),
);
*exactness_details.get_mut("score").expect("missing score") = score.into();
}
// do not update the order since this was already done by exactAttribute
}
ScoreDetails::Sort(details) => {
let sort = if details.redacted {
format!("<hidden-rule-{order}>")
} else {
format!(
"{}:{}",
details.field_name,
if details.ascending { "asc" } else { "desc" }
)
};
let value =
if details.redacted { "<hidden>".into() } else { details.value.clone() };
let sort_details = serde_json::json!({
"order": order,
"value": value,
});
details_map.insert(sort, sort_details);
order += 1;
}
ScoreDetails::GeoSort(details) => {
let sort = format!(
"_geoPoint({}, {}):{}",
details.target_point[0],
details.target_point[1],
if details.ascending { "asc" } else { "desc" }
);
let point = if let Some(value) = details.value {
serde_json::json!({ "lat": value[0], "lng": value[1]})
} else {
serde_json::Value::Null
};
let sort_details = serde_json::json!({
"order": order,
"value": point,
"distance": details.distance(),
});
details_map.insert(sort, sort_details);
order += 1;
}
}
}
details_map
}
}
/// The strategy to compute scores.
///
/// It makes sense to pass down this strategy to the internals of the search, because
/// some optimizations (today, mainly skipping ranking rules for universes of a single document)
/// are not correct to do when computing the scores.
///
/// This strategy could feasibly be extended to differentiate between the normalized score and the
/// detailed scores, but it is not useful today as the normalized score is *derived from* the
/// detailed scores.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub enum ScoringStrategy {
/// Don't compute scores
#[default]
Skip,
/// Compute detailed scores
Detailed,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Words {
pub matching_words: u32,
pub max_matching_words: u32,
}
impl Words {
pub fn rank(&self) -> Rank {
Rank { rank: self.matching_words, max_rank: self.max_matching_words }
}
pub(crate) fn from_rank(rank: Rank) -> Words {
Words { matching_words: rank.rank, max_matching_words: rank.max_rank }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Typo {
pub typo_count: u32,
pub max_typo_count: u32,
}
impl Typo {
pub fn rank(&self) -> Rank {
Rank {
rank: self.max_typo_count - self.typo_count + 1,
max_rank: (self.max_typo_count + 1),
}
}
// max_rank = max_typo + 1
// max_typo = max_rank - 1
//
// rank = max_typo - typo + 1
// rank = max_rank - 1 - typo + 1
// rank + typo = max_rank
// typo = max_rank - rank
pub fn from_rank(rank: Rank) -> Typo {
Typo { typo_count: rank.max_rank - rank.rank, max_typo_count: rank.max_rank - 1 }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Rank {
/// The ordinal rank, such that `max_rank` is the first rank, and 0 is the last rank.
///
/// The higher the better. Documents with a rank of 0 have a score of 0 and are typically never returned
/// (they don't match the query).
pub rank: u32,
/// The maximum possible rank. Documents with this rank have a score of 1.
///
/// The max rank should not be 0.
pub max_rank: u32,
}
impl Rank {
pub fn local_score(self) -> f64 {
self.rank as f64 / self.max_rank as f64
}
pub fn global_score(details: impl Iterator<Item = Self>) -> f64 {
let mut rank = Rank { rank: 1, max_rank: 1 };
for inner_rank in details {
rank.rank -= 1;
rank.rank *= inner_rank.max_rank;
rank.max_rank *= inner_rank.max_rank;
rank.rank += inner_rank.rank;
}
rank.local_score()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum ExactAttribute {
ExactMatch,
MatchesStart,
NoExactMatch,
}
impl ExactAttribute {
pub fn rank(&self) -> Rank {
let rank = match self {
ExactAttribute::ExactMatch => 3,
ExactAttribute::MatchesStart => 2,
ExactAttribute::NoExactMatch => 1,
};
Rank { rank, max_rank: 3 }
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Sort {
pub field_name: String,
pub ascending: bool,
pub redacted: bool,
pub value: serde_json::Value,
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct GeoSort {
pub target_point: [f64; 2],
pub ascending: bool,
pub value: Option<[f64; 2]>,
}
impl GeoSort {
pub fn distance(&self) -> Option<f64> {
self.value.map(|value| distance_between_two_points(&self.target_point, &value))
}
}

View File

@@ -1,22 +1,19 @@
use std::collections::{BTreeMap, HashMap, HashSet};
use std::collections::{BTreeMap, HashSet};
use std::ops::ControlFlow;
use std::{fmt, mem};
use heed::types::ByteSlice;
use heed::BytesDecode;
use indexmap::IndexMap;
use roaring::RoaringBitmap;
use serde::{Deserialize, Serialize};
use crate::error::UserError;
use crate::facet::FacetType;
use crate::heed_codec::facet::{
FacetGroupKeyCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec, OrderedF64Codec,
FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec,
OrderedF64Codec,
};
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
use crate::search::facet::facet_distribution_iter::{
count_iterate_over_facet_distribution, lexicographically_iterate_over_facet_distribution,
};
use crate::search::facet::facet_distribution_iter;
use crate::{FieldId, Index, Result};
/// The default number of values by facets that will
@@ -27,21 +24,10 @@ pub const DEFAULT_VALUES_PER_FACET: usize = 100;
/// the system to choose between one algorithm or another.
const CANDIDATES_THRESHOLD: u64 = 3000;
/// How should we fetch the facets?
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum OrderBy {
/// By lexicographic order...
#[default]
Lexicographic,
/// Or by number of docids in common?
Count,
}
pub struct FacetDistribution<'a> {
facets: Option<HashMap<String, OrderBy>>,
facets: Option<HashSet<String>>,
candidates: Option<RoaringBitmap>,
max_values_per_facet: usize,
default_order_by: OrderBy,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
}
@@ -52,22 +38,13 @@ impl<'a> FacetDistribution<'a> {
facets: None,
candidates: None,
max_values_per_facet: DEFAULT_VALUES_PER_FACET,
default_order_by: OrderBy::default(),
rtxn,
index,
}
}
pub fn facets<I: IntoIterator<Item = (A, OrderBy)>, A: AsRef<str>>(
&mut self,
names_ordered_by: I,
) -> &mut Self {
self.facets = Some(
names_ordered_by
.into_iter()
.map(|(name, order_by)| (name.as_ref().to_string(), order_by))
.collect(),
);
pub fn facets<I: IntoIterator<Item = A>, A: AsRef<str>>(&mut self, names: I) -> &mut Self {
self.facets = Some(names.into_iter().map(|s| s.as_ref().to_string()).collect());
self
}
@@ -76,11 +53,6 @@ impl<'a> FacetDistribution<'a> {
self
}
pub fn default_order_by(&mut self, order_by: OrderBy) -> &mut Self {
self.default_order_by = order_by;
self
}
pub fn candidates(&mut self, candidates: RoaringBitmap) -> &mut Self {
self.candidates = Some(candidates);
self
@@ -93,7 +65,7 @@ impl<'a> FacetDistribution<'a> {
field_id: FieldId,
facet_type: FacetType,
candidates: &RoaringBitmap,
distribution: &mut IndexMap<String, u64>,
distribution: &mut BTreeMap<String, u64>,
) -> heed::Result<()> {
match facet_type {
FacetType::Number => {
@@ -162,15 +134,9 @@ impl<'a> FacetDistribution<'a> {
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
distribution: &mut BTreeMap<String, u64>,
) -> heed::Result<()> {
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
facet_distribution_iter::iterate_over_facet_distribution(
self.rtxn,
self.index
.facet_id_f64_docids
@@ -193,15 +159,9 @@ impl<'a> FacetDistribution<'a> {
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
distribution: &mut BTreeMap<String, u64>,
) -> heed::Result<()> {
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
facet_distribution_iter::iterate_over_facet_distribution(
self.rtxn,
self.index
.facet_id_string_docids
@@ -229,49 +189,95 @@ impl<'a> FacetDistribution<'a> {
)
}
fn facet_values(
/// Placeholder search, a.k.a. no candidates were specified. We iterate throught the
/// facet values one by one and iterate on the facet level 0 for numbers.
fn facet_values_from_raw_facet_database(
&self,
field_id: FieldId,
order_by: OrderBy,
) -> heed::Result<IndexMap<String, u64>> {
use FacetType::{Number, String};
) -> heed::Result<BTreeMap<String, u64>> {
let mut distribution = BTreeMap::new();
let mut distribution = IndexMap::new();
match (order_by, &self.candidates) {
(OrderBy::Lexicographic, Some(cnd)) if cnd.len() <= CANDIDATES_THRESHOLD => {
// Classic search, candidates were specified, we must return facet values only related
// to those candidates. We also enter here for facet strings for performance reasons.
self.facet_distribution_from_documents(field_id, Number, cnd, &mut distribution)?;
self.facet_distribution_from_documents(field_id, String, cnd, &mut distribution)?;
}
_ => {
let universe;
let candidates = match &self.candidates {
Some(cnd) => cnd,
None => {
universe = self.index.documents_ids(self.rtxn)?;
&universe
}
};
let db = self.index.facet_id_f64_docids;
let mut prefix = vec![];
prefix.extend_from_slice(&field_id.to_be_bytes());
prefix.push(0); // read values from level 0 only
self.facet_numbers_distribution_from_facet_levels(
field_id,
candidates,
order_by,
&mut distribution,
)?;
self.facet_strings_distribution_from_facet_levels(
field_id,
candidates,
order_by,
&mut distribution,
)?;
let iter = db
.as_polymorph()
.prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())?
.remap_types::<FacetGroupKeyCodec<OrderedF64Codec>, FacetGroupValueCodec>();
for result in iter {
let (key, value) = result?;
distribution.insert(key.left_bound.to_string(), value.bitmap.len());
if distribution.len() == self.max_values_per_facet {
break;
}
};
}
let iter = self
.index
.facet_id_string_docids
.as_polymorph()
.prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())?
.remap_types::<FacetGroupKeyCodec<StrRefCodec>, FacetGroupValueCodec>();
for result in iter {
let (key, value) = result?;
let docid = value.bitmap.iter().next().unwrap();
let key: (FieldId, _, &'a str) = (field_id, docid, key.left_bound);
let original_string =
self.index.field_id_docid_facet_strings.get(self.rtxn, &key)?.unwrap().to_owned();
distribution.insert(original_string, value.bitmap.len());
if distribution.len() == self.max_values_per_facet {
break;
}
}
Ok(distribution)
}
fn facet_values(&self, field_id: FieldId) -> heed::Result<BTreeMap<String, u64>> {
use FacetType::{Number, String};
match self.candidates {
Some(ref candidates) => {
// Classic search, candidates were specified, we must return facet values only related
// to those candidates. We also enter here for facet strings for performance reasons.
let mut distribution = BTreeMap::new();
if candidates.len() <= CANDIDATES_THRESHOLD {
self.facet_distribution_from_documents(
field_id,
Number,
candidates,
&mut distribution,
)?;
self.facet_distribution_from_documents(
field_id,
String,
candidates,
&mut distribution,
)?;
} else {
self.facet_numbers_distribution_from_facet_levels(
field_id,
candidates,
&mut distribution,
)?;
self.facet_strings_distribution_from_facet_levels(
field_id,
candidates,
&mut distribution,
)?;
}
Ok(distribution)
}
None => self.facet_values_from_raw_facet_database(field_id),
}
}
pub fn compute_stats(&self) -> Result<BTreeMap<String, (f64, f64)>> {
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
@@ -285,7 +291,6 @@ impl<'a> FacetDistribution<'a> {
Some(facets) => {
let invalid_fields: HashSet<_> = facets
.iter()
.map(|(name, _)| name)
.filter(|facet| !crate::is_faceted(facet, &filterable_fields))
.collect();
if !invalid_fields.is_empty() {
@@ -295,7 +300,7 @@ impl<'a> FacetDistribution<'a> {
}
.into());
} else {
facets.iter().map(|(name, _)| name).cloned().collect()
facets.clone()
}
}
None => filterable_fields,
@@ -332,7 +337,7 @@ impl<'a> FacetDistribution<'a> {
Ok(distribution)
}
pub fn execute(&self) -> Result<BTreeMap<String, IndexMap<String, u64>>> {
pub fn execute(&self) -> Result<BTreeMap<String, BTreeMap<String, u64>>> {
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
@@ -340,7 +345,6 @@ impl<'a> FacetDistribution<'a> {
Some(ref facets) => {
let invalid_fields: HashSet<_> = facets
.iter()
.map(|(name, _)| name)
.filter(|facet| !crate::is_faceted(facet, &filterable_fields))
.collect();
if !invalid_fields.is_empty() {
@@ -350,7 +354,7 @@ impl<'a> FacetDistribution<'a> {
}
.into());
} else {
facets.iter().map(|(name, _)| name).cloned().collect()
facets.clone()
}
}
None => filterable_fields,
@@ -359,12 +363,7 @@ impl<'a> FacetDistribution<'a> {
let mut distribution = BTreeMap::new();
for (fid, name) in fields_ids_map.iter() {
if crate::is_faceted(name, &fields) {
let order_by = self
.facets
.as_ref()
.and_then(|facets| facets.get(name).copied())
.unwrap_or(self.default_order_by);
let values = self.facet_values(fid, order_by)?;
let values = self.facet_values(fid)?;
distribution.insert(name.to_string(), values);
}
}
@@ -375,34 +374,25 @@ impl<'a> FacetDistribution<'a> {
impl fmt::Debug for FacetDistribution<'_> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let FacetDistribution {
facets,
candidates,
max_values_per_facet,
default_order_by,
rtxn: _,
index: _,
} = self;
let FacetDistribution { facets, candidates, max_values_per_facet, rtxn: _, index: _ } =
self;
f.debug_struct("FacetDistribution")
.field("facets", facets)
.field("candidates", candidates)
.field("max_values_per_facet", max_values_per_facet)
.field("default_order_by", default_order_by)
.finish()
}
}
#[cfg(test)]
mod tests {
use std::iter;
use big_s::S;
use maplit::hashset;
use crate::documents::documents_batch_reader_from_objects;
use crate::index::tests::TempIndex;
use crate::{milli_snap, FacetDistribution, OrderBy};
use crate::{milli_snap, FacetDistribution};
#[test]
fn few_candidates_few_facet_values() {
@@ -427,14 +417,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates([0, 1, 2].iter().copied().collect())
.execute()
.unwrap();
@@ -442,7 +432,7 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates([1, 2].iter().copied().collect())
.execute()
.unwrap();
@@ -453,7 +443,7 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {" blue": 1, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates([2].iter().copied().collect())
.execute()
.unwrap();
@@ -461,22 +451,13 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates([0, 1, 2].iter().copied().collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::Count)))
.candidates([0, 1, 2].iter().copied().collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2}}"###);
}
#[test]
@@ -508,14 +489,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.max_values_per_facet(1)
.execute()
.unwrap();
@@ -523,7 +504,7 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..10_000).collect())
.execute()
.unwrap();
@@ -531,7 +512,7 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..5_000).collect())
.execute()
.unwrap();
@@ -539,7 +520,7 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..5_000).collect())
.execute()
.unwrap();
@@ -547,22 +528,13 @@ mod tests {
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..5_000).collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::Count)))
.candidates((0..5_000).collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Red": 3000}}"###);
}
#[test]
@@ -594,14 +566,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"ac9229ed5964d893af96a7076e2f8af5");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.max_values_per_facet(2)
.execute()
.unwrap();
@@ -609,7 +581,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "no_candidates_with_max_2", @r###"{"colour": {"0": 10, "1": 10}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..10_000).collect())
.execute()
.unwrap();
@@ -617,7 +589,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "candidates_0_10_000", @"ac9229ed5964d893af96a7076e2f8af5");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..5_000).collect())
.execute()
.unwrap();
@@ -654,14 +626,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
@@ -669,7 +641,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
@@ -706,14 +678,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
@@ -721,7 +693,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
@@ -758,14 +730,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
@@ -773,7 +745,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
@@ -814,14 +786,14 @@ mod tests {
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
@@ -829,7 +801,7 @@ mod tests {
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1998.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.facets(std::iter::once("colour"))
.candidates((217..777).collect())
.compute_stats()
.unwrap();

View File

@@ -1,5 +1,3 @@
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::ops::ControlFlow;
use heed::Result;
@@ -21,7 +19,7 @@ use crate::DocumentId;
///
/// The return value of the closure is a `ControlFlow<()>` which indicates whether we should
/// keep iterating over the different facet values or stop.
pub fn lexicographically_iterate_over_facet_distribution<'t, CB>(
pub fn iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
field_id: u16,
@@ -31,7 +29,7 @@ pub fn lexicographically_iterate_over_facet_distribution<'t, CB>(
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
let mut fd = LexicographicFacetDistribution { rtxn, db, field_id, callback };
let mut fd = FacetDistribution { rtxn, db, field_id, callback };
let highest_level = get_highest_level(
rtxn,
db.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
@@ -46,102 +44,7 @@ where
}
}
pub fn count_iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: &RoaringBitmap,
mut callback: CB,
) -> Result<()>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
/// # Important
/// The order of the fields determines the order in which the facet values will be returned.
/// This struct is inserted in a BinaryHeap and popped later on.
#[derive(Debug, PartialOrd, Ord, PartialEq, Eq)]
struct LevelEntry<'t> {
/// The number of candidates in this entry.
count: u64,
/// The key level of the entry.
level: Reverse<u8>,
/// The left bound key.
left_bound: &'t [u8],
/// The number of keys we must look for after `left_bound`.
group_size: u8,
/// Any docid in the set of matching documents. Used to find the original facet string.
any_docid: u32,
}
// Represents the list of keys that we must explore.
let mut heap = BinaryHeap::new();
let highest_level = get_highest_level(
rtxn,
db.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
)?;
if let Some(first_bound) = get_first_facet_value::<ByteSliceRefCodec>(rtxn, db, field_id)? {
// We first fill the heap with values from the highest level
let starting_key =
FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
for el in db.range(rtxn, &(&starting_key..))?.take(usize::MAX) {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = value.bitmap & candidates;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
while let Some(LevelEntry { count, level, left_bound, group_size, any_docid }) = heap.pop()
{
if let Reverse(0) = level {
match (callback)(left_bound, count, any_docid)? {
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(()),
}
} else {
let starting_key = FacetGroupKey { field_id, level: level.0 - 1, left_bound };
for el in db.range(rtxn, &(&starting_key..))?.take(group_size as usize) {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = value.bitmap & candidates;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
}
}
}
Ok(())
}
/// Iterate over the facets values by lexicographic order.
struct LexicographicFacetDistribution<'t, CB>
struct FacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
@@ -151,7 +54,7 @@ where
callback: CB,
}
impl<'t, CB> LexicographicFacetDistribution<'t, CB>
impl<'t, CB> FacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
@@ -183,7 +86,6 @@ where
}
Ok(ControlFlow::Continue(()))
}
fn iterate(
&mut self,
candidates: &RoaringBitmap,
@@ -196,10 +98,10 @@ where
}
let starting_key =
FacetGroupKey { field_id: self.field_id, level, left_bound: starting_bound };
let iter = self.db.range(self.rtxn, &(&starting_key..))?.take(group_size);
let iter = self.db.range(self.rtxn, &(&starting_key..)).unwrap().take(group_size);
for el in iter {
let (key, value) = el?;
let (key, value) = el.unwrap();
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != self.field_id {
@@ -214,7 +116,7 @@ where
value.size as usize,
)?;
match cf {
ControlFlow::Continue(_) => (),
ControlFlow::Continue(_) => {}
ControlFlow::Break(_) => return Ok(ControlFlow::Break(())),
}
}
@@ -230,7 +132,7 @@ mod tests {
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::lexicographically_iterate_over_facet_distribution;
use super::iterate_over_facet_distribution;
use crate::heed_codec::facet::OrderedF64Codec;
use crate::milli_snap;
use crate::search::facet::tests::{get_random_looking_index, get_simple_index};
@@ -242,7 +144,7 @@ mod tests {
let txn = index.env.read_txn().unwrap();
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
lexicographically_iterate_over_facet_distribution(
iterate_over_facet_distribution(
&txn,
index.content,
0,
@@ -259,7 +161,6 @@ mod tests {
txn.commit().unwrap();
}
}
#[test]
fn filter_distribution_all_stop_early() {
let indexes = [get_simple_index(), get_random_looking_index()];
@@ -268,7 +169,7 @@ mod tests {
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
let mut nbr_facets = 0;
lexicographically_iterate_over_facet_distribution(
iterate_over_facet_distribution(
&txn,
index.content,
0,

View File

@@ -4,7 +4,7 @@ use heed::types::{ByteSlice, DecodeIgnore};
use heed::{BytesDecode, RoTxn};
use roaring::RoaringBitmap;
pub use self::facet_distribution::{FacetDistribution, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::facet_distribution::{FacetDistribution, DEFAULT_VALUES_PER_FACET};
pub use self::filter::{BadGeoError, Filter};
use crate::heed_codec::facet::{FacetGroupKeyCodec, FacetGroupValueCodec, OrderedF64Codec};
use crate::heed_codec::ByteSliceRefCodec;

View File

@@ -1,21 +1,14 @@
use std::fmt;
use fst::automaton::{Automaton, Str};
use fst::{IntoStreamer, Streamer};
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
use log::error;
use once_cell::sync::Lazy;
use roaring::bitmap::RoaringBitmap;
pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::facet::{FacetDistribution, Filter, DEFAULT_VALUES_PER_FACET};
pub use self::new::matches::{FormatOptions, MatchBounds, Matcher, MatcherBuilder, MatchingWords};
use self::new::PartialSearchResult;
use crate::error::UserError;
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupValue};
use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::{
execute_search, normalize_facet, AscDesc, DefaultSearchLogger, DocumentId, FieldId, Index,
Result, SearchContext, BEU16,
execute_search, AscDesc, DefaultSearchLogger, DocumentId, Index, Result, SearchContext,
};
// Building these factories is not free.
@@ -23,9 +16,6 @@ static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
/// The maximum number of facets returned by the facet search route.
const MAX_NUMBER_OF_FACETS: usize = 100;
pub mod facet;
mod fst_utils;
pub mod new;
@@ -38,10 +28,8 @@ pub struct Search<'a> {
offset: usize,
limit: usize,
sort_criteria: Option<Vec<AscDesc>>,
searchable_attributes: Option<&'a [String]>,
geo_strategy: new::GeoSortStrategy,
terms_matching_strategy: TermsMatchingStrategy,
scoring_strategy: ScoringStrategy,
words_limit: usize,
exhaustive_number_hits: bool,
rtxn: &'a heed::RoTxn<'a>,
@@ -57,10 +45,8 @@ impl<'a> Search<'a> {
offset: 0,
limit: 20,
sort_criteria: None,
searchable_attributes: None,
geo_strategy: new::GeoSortStrategy::default(),
terms_matching_strategy: TermsMatchingStrategy::default(),
scoring_strategy: Default::default(),
exhaustive_number_hits: false,
words_limit: 10,
rtxn,
@@ -93,21 +79,11 @@ impl<'a> Search<'a> {
self
}
pub fn searchable_attributes(&mut self, searchable: &'a [String]) -> &mut Search<'a> {
self.searchable_attributes = Some(searchable);
self
}
pub fn terms_matching_strategy(&mut self, value: TermsMatchingStrategy) -> &mut Search<'a> {
self.terms_matching_strategy = value;
self
}
pub fn scoring_strategy(&mut self, value: ScoringStrategy) -> &mut Search<'a> {
self.scoring_strategy = value;
self
}
pub fn words_limit(&mut self, value: usize) -> &mut Search<'a> {
self.words_limit = value;
self
@@ -124,7 +100,7 @@ impl<'a> Search<'a> {
self
}
/// Forces the search to exhaustively compute the number of candidates,
/// Force the search to exhastivelly compute the number of candidates,
/// this will increase the search time but allows finite pagination.
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
self.exhaustive_number_hits = exhaustive_number_hits;
@@ -133,18 +109,12 @@ impl<'a> Search<'a> {
pub fn execute(&self) -> Result<SearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
if let Some(searchable_attributes) = self.searchable_attributes {
ctx.searchable_attributes(searchable_attributes)?;
}
let PartialSearchResult { located_query_terms, candidates, documents_ids, document_scores } =
let PartialSearchResult { located_query_terms, candidates, documents_ids } =
execute_search(
&mut ctx,
&self.query,
&self.vector,
self.terms_matching_strategy,
self.scoring_strategy,
self.exhaustive_number_hits,
&self.filter,
&self.sort_criteria,
@@ -162,7 +132,7 @@ impl<'a> Search<'a> {
None => MatchingWords::default(),
};
Ok(SearchResult { matching_words, candidates, document_scores, documents_ids })
Ok(SearchResult { matching_words, candidates, documents_ids })
}
}
@@ -175,10 +145,8 @@ impl fmt::Debug for Search<'_> {
offset,
limit,
sort_criteria,
searchable_attributes,
geo_strategy: _,
terms_matching_strategy,
scoring_strategy,
words_limit,
exhaustive_number_hits,
rtxn: _,
@@ -191,9 +159,7 @@ impl fmt::Debug for Search<'_> {
.field("offset", offset)
.field("limit", limit)
.field("sort_criteria", sort_criteria)
.field("searchable_attributes", searchable_attributes)
.field("terms_matching_strategy", terms_matching_strategy)
.field("scoring_strategy", scoring_strategy)
.field("exhaustive_number_hits", exhaustive_number_hits)
.field("words_limit", words_limit)
.finish()
@@ -204,8 +170,8 @@ impl fmt::Debug for Search<'_> {
pub struct SearchResult {
pub matching_words: MatchingWords,
pub candidates: RoaringBitmap,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@@ -243,195 +209,6 @@ pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA {
}
}
pub struct SearchForFacetValues<'a> {
query: Option<String>,
facet: String,
search_query: Search<'a>,
}
impl<'a> SearchForFacetValues<'a> {
pub fn new(facet: String, search_query: Search<'a>) -> SearchForFacetValues<'a> {
SearchForFacetValues { query: None, facet, search_query }
}
pub fn query(&mut self, query: impl Into<String>) -> &mut Self {
self.query = Some(query.into());
self
}
fn one_original_value_of(
&self,
field_id: FieldId,
facet_str: &str,
any_docid: DocumentId,
) -> Result<Option<String>> {
let index = self.search_query.index;
let rtxn = self.search_query.rtxn;
let key: (FieldId, _, &str) = (field_id, any_docid, facet_str);
Ok(index.field_id_docid_facet_strings.get(rtxn, &key)?.map(|v| v.to_owned()))
}
pub fn execute(&self) -> Result<Vec<FacetValueHit>> {
let index = self.search_query.index;
let rtxn = self.search_query.rtxn;
let filterable_fields = index.filterable_fields(rtxn)?;
if !filterable_fields.contains(&self.facet) {
return Err(UserError::InvalidFacetSearchFacetName {
field: self.facet.clone(),
valid_fields: filterable_fields.into_iter().collect(),
}
.into());
}
let fields_ids_map = index.fields_ids_map(rtxn)?;
let fid = match fields_ids_map.id(&self.facet) {
Some(fid) => fid,
// we return an empty list of results when the attribute has been
// set as filterable but no document contains this field (yet).
None => return Ok(Vec::new()),
};
let fst = match self.search_query.index.facet_id_string_fst.get(rtxn, &BEU16::new(fid))? {
Some(fst) => fst,
None => return Ok(vec![]),
};
let search_candidates = self.search_query.execute()?.candidates;
match self.query.as_ref() {
Some(query) => {
let query = normalize_facet(query);
let query = query.as_str();
let authorize_typos = self.search_query.index.authorize_typos(rtxn)?;
let field_authorizes_typos =
!self.search_query.index.exact_attributes_ids(rtxn)?.contains(&fid);
if authorize_typos && field_authorizes_typos {
let mut results = vec![];
let exact_words_fst = self.search_query.index.exact_words(rtxn)?;
if exact_words_fst.map_or(false, |fst| fst.contains(query)) {
let key = FacetGroupKey { field_id: fid, level: 0, left_bound: query };
if let Some(FacetGroupValue { bitmap, .. }) =
index.facet_id_string_docids.get(rtxn, &key)?
{
let count = search_candidates.intersection_len(&bitmap);
if count != 0 {
let value = self
.one_original_value_of(fid, query, bitmap.min().unwrap())?
.unwrap_or_else(|| query.to_string());
results.push(FacetValueHit { value, count });
}
}
} else {
let one_typo = self.search_query.index.min_word_len_one_typo(rtxn)?;
let two_typos = self.search_query.index.min_word_len_two_typos(rtxn)?;
let is_prefix = true;
let automaton = if query.len() < one_typo as usize {
build_dfa(query, 0, is_prefix)
} else if query.len() < two_typos as usize {
build_dfa(query, 1, is_prefix)
} else {
build_dfa(query, 2, is_prefix)
};
let mut stream = fst.search(automaton).into_stream();
let mut length = 0;
while let Some(facet_value) = stream.next() {
let value = std::str::from_utf8(facet_value)?;
let key = FacetGroupKey { field_id: fid, level: 0, left_bound: value };
let docids = match index.facet_id_string_docids.get(rtxn, &key)? {
Some(FacetGroupValue { bitmap, .. }) => bitmap,
None => {
error!(
"the facet value is missing from the facet database: {key:?}"
);
continue;
}
};
let count = search_candidates.intersection_len(&docids);
if count != 0 {
let value = self
.one_original_value_of(fid, value, docids.min().unwrap())?
.unwrap_or_else(|| query.to_string());
results.push(FacetValueHit { value, count });
length += 1;
}
if length >= MAX_NUMBER_OF_FACETS {
break;
}
}
}
Ok(results)
} else {
let automaton = Str::new(query).starts_with();
let mut stream = fst.search(automaton).into_stream();
let mut results = vec![];
let mut length = 0;
while let Some(facet_value) = stream.next() {
let value = std::str::from_utf8(facet_value)?;
let key = FacetGroupKey { field_id: fid, level: 0, left_bound: value };
let docids = match index.facet_id_string_docids.get(rtxn, &key)? {
Some(FacetGroupValue { bitmap, .. }) => bitmap,
None => {
error!(
"the facet value is missing from the facet database: {key:?}"
);
continue;
}
};
let count = search_candidates.intersection_len(&docids);
if count != 0 {
let value = self
.one_original_value_of(fid, value, docids.min().unwrap())?
.unwrap_or_else(|| query.to_string());
results.push(FacetValueHit { value, count });
length += 1;
}
if length >= MAX_NUMBER_OF_FACETS {
break;
}
}
Ok(results)
}
}
None => {
let mut results = vec![];
let mut length = 0;
let prefix = FacetGroupKey { field_id: fid, level: 0, left_bound: "" };
for result in index.facet_id_string_docids.prefix_iter(rtxn, &prefix)? {
let (FacetGroupKey { left_bound, .. }, FacetGroupValue { bitmap, .. }) =
result?;
let count = search_candidates.intersection_len(&bitmap);
if count != 0 {
let value = self
.one_original_value_of(fid, left_bound, bitmap.min().unwrap())?
.unwrap_or_else(|| left_bound.to_string());
results.push(FacetValueHit { value, count });
length += 1;
}
if length >= MAX_NUMBER_OF_FACETS {
break;
}
}
Ok(results)
}
}
}
}
#[derive(Debug, Clone, serde::Serialize, PartialEq)]
pub struct FacetValueHit {
/// The original facet value
pub value: String,
/// The number of documents associated to this facet
pub count: u64,
}
#[cfg(test)]
mod test {
#[allow(unused_imports)]

View File

@@ -3,18 +3,14 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
use super::SearchContext;
use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput};
use crate::Result;
pub struct BucketSortOutput {
pub docids: Vec<u32>,
pub scores: Vec<Vec<ScoreDetails>>,
pub all_candidates: RoaringBitmap,
}
// TODO: would probably be good to regroup some of these inside of a struct?
#[allow(clippy::too_many_arguments)]
pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
ctx: &mut SearchContext<'ctx>,
mut ranking_rules: Vec<BoxRankingRule<'ctx, Q>>,
@@ -22,7 +18,6 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
universe: &RoaringBitmap,
from: usize,
length: usize,
scoring_strategy: ScoringStrategy,
logger: &mut dyn SearchLogger<Q>,
) -> Result<BucketSortOutput> {
logger.initial_query(query);
@@ -36,11 +31,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
};
if universe.len() < from as u64 {
return Ok(BucketSortOutput {
docids: vec![],
scores: vec![],
all_candidates: universe.clone(),
});
return Ok(BucketSortOutput { docids: vec![], all_candidates: universe.clone() });
}
if ranking_rules.is_empty() {
if let Some(distinct_fid) = distinct_fid {
@@ -58,32 +49,22 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
}
let mut all_candidates = universe - excluded;
all_candidates.extend(results.iter().copied());
return Ok(BucketSortOutput {
scores: vec![Default::default(); results.len()],
docids: results,
all_candidates,
});
return Ok(BucketSortOutput { docids: results, all_candidates });
} else {
let docids: Vec<u32> = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput {
scores: vec![Default::default(); docids.len()],
docids,
all_candidates: universe.clone(),
});
let docids = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput { docids, all_candidates: universe.clone() });
};
}
let ranking_rules_len = ranking_rules.len();
logger.start_iteration_ranking_rule(0, ranking_rules[0].as_ref(), query, universe);
ranking_rules[0].start_iteration(ctx, logger, universe, query)?;
let mut ranking_rule_scores: Vec<ScoreDetails> = vec![];
let mut ranking_rule_universes: Vec<RoaringBitmap> =
vec![RoaringBitmap::default(); ranking_rules_len];
ranking_rule_universes[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
/// Finish iterating over the current ranking rule, yielding
@@ -108,15 +89,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
} else {
cur_ranking_rule_index -= 1;
}
if ranking_rule_scores.len() > cur_ranking_rule_index {
ranking_rule_scores.pop();
}
};
}
let mut all_candidates = universe.clone();
let mut valid_docids = vec![];
let mut valid_scores = vec![];
let mut cur_offset = 0usize;
macro_rules! maybe_add_to_results {
@@ -127,44 +104,32 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
length,
logger,
&mut valid_docids,
&mut valid_scores,
&mut all_candidates,
&mut ranking_rule_universes,
&mut ranking_rules,
cur_ranking_rule_index,
&mut cur_offset,
distinct_fid,
&ranking_rule_scores,
$candidates,
)?;
};
}
while valid_docids.len() < length {
// The universe for this bucket is zero, so we don't need to sort
// anything, just go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].is_empty()
|| (scoring_strategy == ScoringStrategy::Skip
&& ranking_rule_universes[cur_ranking_rule_index].len() == 1)
{
// The universe for this bucket is zero or one element, so we don't need to sort
// anything, just extend the results and go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].len() <= 1 {
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
maybe_add_to_results!(bucket);
back!();
continue;
}
let Some(next_bucket) = ranking_rules[cur_ranking_rule_index].next_bucket(
ctx,
logger,
&ranking_rule_universes[cur_ranking_rule_index],
)?
else {
let Some(next_bucket) = ranking_rules[cur_ranking_rule_index].next_bucket(ctx, logger, &ranking_rule_universes[cur_ranking_rule_index])? else {
back!();
continue;
};
ranking_rule_scores.push(next_bucket.score);
logger.next_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index].as_ref(),
@@ -178,11 +143,10 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1
|| (scoring_strategy == ScoringStrategy::Skip && next_bucket.candidates.len() <= 1)
|| next_bucket.candidates.len() <= 1
|| cur_offset + (next_bucket.candidates.len() as usize) < from
{
maybe_add_to_results!(next_bucket.candidates);
ranking_rule_scores.pop();
continue;
}
@@ -202,7 +166,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
)?;
}
Ok(BucketSortOutput { docids: valid_docids, scores: valid_scores, all_candidates })
Ok(BucketSortOutput { docids: valid_docids, all_candidates })
}
/// Add the candidates to the results. Take `distinct`, `from`, `length`, and `cur_offset`
@@ -215,18 +179,14 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
logger: &mut dyn SearchLogger<Q>,
valid_docids: &mut Vec<u32>,
valid_scores: &mut Vec<Vec<ScoreDetails>>,
all_candidates: &mut RoaringBitmap,
ranking_rule_universes: &mut [RoaringBitmap],
ranking_rules: &mut [BoxRankingRule<'ctx, Q>],
cur_ranking_rule_index: usize,
cur_offset: &mut usize,
distinct_fid: Option<u16>,
ranking_rule_scores: &[ScoreDetails],
candidates: RoaringBitmap,
) -> Result<()> {
// First apply the distinct rule on the candidates, reducing the universes if necessary
@@ -271,17 +231,13 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
let candidates =
candidates.iter().take(length - valid_docids.len()).copied().collect::<Vec<_>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
} else {
// if we have passed the offset already, add some of the documents (up to the limit)
let candidates = candidates.iter().take(length - valid_docids.len()).collect::<Vec<u32>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
*cur_offset += candidates.len() as usize;

View File

@@ -4,13 +4,12 @@ use std::hash::Hash;
use fxhash::FxHashMap;
use heed::types::ByteSlice;
use heed::{BytesEncode, Database, RoTxn};
use heed::{BytesDecode, BytesEncode, Database, RoTxn};
use roaring::RoaringBitmap;
use super::interner::Interned;
use super::Word;
use crate::heed_codec::{BytesDecodeOwned, StrBEU16Codec};
use crate::update::{merge_cbo_roaring_bitmaps, MergeFn};
use crate::heed_codec::StrBEU16Codec;
use crate::{
CboRoaringBitmapCodec, CboRoaringBitmapLenCodec, Result, RoaringBitmapCodec, SearchContext,
};
@@ -23,104 +22,50 @@ use crate::{
#[derive(Default)]
pub struct DatabaseCache<'ctx> {
pub word_pair_proximity_docids:
FxHashMap<(u8, Interned<String>, Interned<String>), Option<Cow<'ctx, [u8]>>>,
FxHashMap<(u8, Interned<String>, Interned<String>), Option<&'ctx [u8]>>,
pub word_prefix_pair_proximity_docids:
FxHashMap<(u8, Interned<String>, Interned<String>), Option<Cow<'ctx, [u8]>>>,
FxHashMap<(u8, Interned<String>, Interned<String>), Option<&'ctx [u8]>>,
pub prefix_word_pair_proximity_docids:
FxHashMap<(u8, Interned<String>, Interned<String>), Option<Cow<'ctx, [u8]>>>,
pub word_docids: FxHashMap<Interned<String>, Option<Cow<'ctx, [u8]>>>,
pub exact_word_docids: FxHashMap<Interned<String>, Option<Cow<'ctx, [u8]>>>,
pub word_prefix_docids: FxHashMap<Interned<String>, Option<Cow<'ctx, [u8]>>>,
pub exact_word_prefix_docids: FxHashMap<Interned<String>, Option<Cow<'ctx, [u8]>>>,
FxHashMap<(u8, Interned<String>, Interned<String>), Option<&'ctx [u8]>>,
pub word_docids: FxHashMap<Interned<String>, Option<&'ctx [u8]>>,
pub exact_word_docids: FxHashMap<Interned<String>, Option<&'ctx [u8]>>,
pub word_prefix_docids: FxHashMap<Interned<String>, Option<&'ctx [u8]>>,
pub exact_word_prefix_docids: FxHashMap<Interned<String>, Option<&'ctx [u8]>>,
pub words_fst: Option<fst::Set<Cow<'ctx, [u8]>>>,
pub word_position_docids: FxHashMap<(Interned<String>, u16), Option<Cow<'ctx, [u8]>>>,
pub word_prefix_position_docids: FxHashMap<(Interned<String>, u16), Option<Cow<'ctx, [u8]>>>,
pub word_position_docids: FxHashMap<(Interned<String>, u16), Option<&'ctx [u8]>>,
pub word_prefix_position_docids: FxHashMap<(Interned<String>, u16), Option<&'ctx [u8]>>,
pub word_positions: FxHashMap<Interned<String>, Vec<u16>>,
pub word_prefix_positions: FxHashMap<Interned<String>, Vec<u16>>,
pub word_fid_docids: FxHashMap<(Interned<String>, u16), Option<Cow<'ctx, [u8]>>>,
pub word_prefix_fid_docids: FxHashMap<(Interned<String>, u16), Option<Cow<'ctx, [u8]>>>,
pub word_fid_docids: FxHashMap<(Interned<String>, u16), Option<&'ctx [u8]>>,
pub word_prefix_fid_docids: FxHashMap<(Interned<String>, u16), Option<&'ctx [u8]>>,
pub word_fids: FxHashMap<Interned<String>, Vec<u16>>,
pub word_prefix_fids: FxHashMap<Interned<String>, Vec<u16>>,
}
impl<'ctx> DatabaseCache<'ctx> {
fn get_value<'v, K1, KC, DC>(
fn get_value<'v, K1, KC>(
txn: &'ctx RoTxn,
cache_key: K1,
db_key: &'v KC::EItem,
cache: &mut FxHashMap<K1, Option<Cow<'ctx, [u8]>>>,
cache: &mut FxHashMap<K1, Option<&'ctx [u8]>>,
db: Database<KC, ByteSlice>,
) -> Result<Option<DC::DItem>>
) -> Result<Option<&'ctx [u8]>>
where
K1: Copy + Eq + Hash,
KC: BytesEncode<'v>,
DC: BytesDecodeOwned,
{
if let Entry::Vacant(entry) = cache.entry(cache_key) {
let bitmap_ptr = db.get(txn, db_key)?.map(Cow::Borrowed);
entry.insert(bitmap_ptr);
}
match cache.get(&cache_key).unwrap() {
Some(Cow::Borrowed(bytes)) => {
DC::bytes_decode_owned(bytes).ok_or(heed::Error::Decoding.into()).map(Some)
let bitmap_ptr = match cache.entry(cache_key) {
Entry::Occupied(bitmap_ptr) => *bitmap_ptr.get(),
Entry::Vacant(entry) => {
let bitmap_ptr = db.get(txn, db_key)?;
entry.insert(bitmap_ptr);
bitmap_ptr
}
Some(Cow::Owned(bytes)) => {
DC::bytes_decode_owned(bytes).ok_or(heed::Error::Decoding.into()).map(Some)
}
None => Ok(None),
}
}
fn get_value_from_keys<'v, K1, KC, DC>(
txn: &'ctx RoTxn,
cache_key: K1,
db_keys: &'v [KC::EItem],
cache: &mut FxHashMap<K1, Option<Cow<'ctx, [u8]>>>,
db: Database<KC, ByteSlice>,
merger: MergeFn,
) -> Result<Option<DC::DItem>>
where
K1: Copy + Eq + Hash,
KC: BytesEncode<'v>,
DC: BytesDecodeOwned,
KC::EItem: Sized,
{
if let Entry::Vacant(entry) = cache.entry(cache_key) {
let bitmap_ptr: Option<Cow<'ctx, [u8]>> = match db_keys {
[] => None,
[key] => db.get(txn, key)?.map(Cow::Borrowed),
keys => {
let bitmaps = keys
.iter()
.filter_map(|key| db.get(txn, key).transpose())
.map(|v| v.map(Cow::Borrowed))
.collect::<std::result::Result<Vec<Cow<[u8]>>, _>>()?;
if bitmaps.is_empty() {
None
} else {
Some(merger(&[], &bitmaps[..])?)
}
}
};
entry.insert(bitmap_ptr);
}
match cache.get(&cache_key).unwrap() {
Some(Cow::Borrowed(bytes)) => {
DC::bytes_decode_owned(bytes).ok_or(heed::Error::Decoding.into()).map(Some)
}
Some(Cow::Owned(bytes)) => {
DC::bytes_decode_owned(bytes).ok_or(heed::Error::Decoding.into()).map(Some)
}
None => Ok(None),
}
};
Ok(bitmap_ptr)
}
}
impl<'ctx> SearchContext<'ctx> {
pub fn get_words_fst(&mut self) -> Result<fst::Set<Cow<'ctx, [u8]>>> {
if let Some(fst) = self.db_cache.words_fst.clone() {
@@ -154,41 +99,30 @@ impl<'ctx> SearchContext<'ctx> {
/// Retrieve or insert the given value in the `word_docids` database.
fn get_db_word_docids(&mut self, word: Interned<String>) -> Result<Option<RoaringBitmap>> {
match &self.restricted_fids {
Some(restricted_fids) => {
let interned = self.word_interner.get(word).as_str();
let keys: Vec<_> = restricted_fids.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
word,
&keys[..],
&mut self.db_cache.word_docids,
self.index.word_fid_docids.remap_data_type::<ByteSlice>(),
merge_cbo_roaring_bitmaps,
)
}
None => DatabaseCache::get_value::<_, _, RoaringBitmapCodec>(
self.txn,
word,
self.word_interner.get(word).as_str(),
&mut self.db_cache.word_docids,
self.index.word_docids.remap_data_type::<ByteSlice>(),
),
}
DatabaseCache::get_value(
self.txn,
word,
self.word_interner.get(word).as_str(),
&mut self.db_cache.word_docids,
self.index.word_docids.remap_data_type::<ByteSlice>(),
)?
.map(|bytes| RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
fn get_db_exact_word_docids(
&mut self,
word: Interned<String>,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, RoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
word,
self.word_interner.get(word).as_str(),
&mut self.db_cache.exact_word_docids,
self.index.exact_word_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn word_prefix_docids(&mut self, prefix: Word) -> Result<Option<RoaringBitmap>> {
@@ -216,41 +150,30 @@ impl<'ctx> SearchContext<'ctx> {
&mut self,
prefix: Interned<String>,
) -> Result<Option<RoaringBitmap>> {
match &self.restricted_fids {
Some(restricted_fids) => {
let interned = self.word_interner.get(prefix).as_str();
let keys: Vec<_> = restricted_fids.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
prefix,
&keys[..],
&mut self.db_cache.word_prefix_docids,
self.index.word_prefix_fid_docids.remap_data_type::<ByteSlice>(),
merge_cbo_roaring_bitmaps,
)
}
None => DatabaseCache::get_value::<_, _, RoaringBitmapCodec>(
self.txn,
prefix,
self.word_interner.get(prefix).as_str(),
&mut self.db_cache.word_prefix_docids,
self.index.word_prefix_docids.remap_data_type::<ByteSlice>(),
),
}
DatabaseCache::get_value(
self.txn,
prefix,
self.word_interner.get(prefix).as_str(),
&mut self.db_cache.word_prefix_docids,
self.index.word_prefix_docids.remap_data_type::<ByteSlice>(),
)?
.map(|bytes| RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
fn get_db_exact_word_prefix_docids(
&mut self,
prefix: Interned<String>,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, RoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
prefix,
self.word_interner.get(prefix).as_str(),
&mut self.db_cache.exact_word_prefix_docids,
self.index.exact_word_prefix_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_pair_proximity_docids(
@@ -259,7 +182,7 @@ impl<'ctx> SearchContext<'ctx> {
word2: Interned<String>,
proximity: u8,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(proximity, word1, word2),
&(
@@ -269,7 +192,9 @@ impl<'ctx> SearchContext<'ctx> {
),
&mut self.db_cache.word_pair_proximity_docids,
self.index.word_pair_proximity_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_pair_proximity_docids_len(
@@ -278,7 +203,7 @@ impl<'ctx> SearchContext<'ctx> {
word2: Interned<String>,
proximity: u8,
) -> Result<Option<u64>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapLenCodec>(
DatabaseCache::get_value(
self.txn,
(proximity, word1, word2),
&(
@@ -288,7 +213,11 @@ impl<'ctx> SearchContext<'ctx> {
),
&mut self.db_cache.word_pair_proximity_docids,
self.index.word_pair_proximity_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| {
CboRoaringBitmapLenCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into())
})
.transpose()
}
pub fn get_db_word_prefix_pair_proximity_docids(
@@ -297,7 +226,7 @@ impl<'ctx> SearchContext<'ctx> {
prefix2: Interned<String>,
proximity: u8,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(proximity, word1, prefix2),
&(
@@ -307,7 +236,9 @@ impl<'ctx> SearchContext<'ctx> {
),
&mut self.db_cache.word_prefix_pair_proximity_docids,
self.index.word_prefix_pair_proximity_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_prefix_word_pair_proximity_docids(
&mut self,
@@ -315,7 +246,7 @@ impl<'ctx> SearchContext<'ctx> {
right: Interned<String>,
proximity: u8,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(proximity, left_prefix, right),
&(
@@ -325,7 +256,9 @@ impl<'ctx> SearchContext<'ctx> {
),
&mut self.db_cache.prefix_word_pair_proximity_docids,
self.index.prefix_word_pair_proximity_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_fid_docids(
@@ -333,18 +266,15 @@ impl<'ctx> SearchContext<'ctx> {
word: Interned<String>,
fid: u16,
) -> Result<Option<RoaringBitmap>> {
// if the requested fid isn't in the restricted list, return None.
if self.restricted_fids.as_ref().map_or(false, |fids| !fids.contains(&fid)) {
return Ok(None);
}
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(word, fid),
&(self.word_interner.get(word).as_str(), fid),
&mut self.db_cache.word_fid_docids,
self.index.word_fid_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_prefix_fid_docids(
@@ -352,18 +282,15 @@ impl<'ctx> SearchContext<'ctx> {
word_prefix: Interned<String>,
fid: u16,
) -> Result<Option<RoaringBitmap>> {
// if the requested fid isn't in the restricted list, return None.
if self.restricted_fids.as_ref().map_or(false, |fids| !fids.contains(&fid)) {
return Ok(None);
}
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(word_prefix, fid),
&(self.word_interner.get(word_prefix).as_str(), fid),
&mut self.db_cache.word_prefix_fid_docids,
self.index.word_prefix_fid_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_fids(&mut self, word: Interned<String>) -> Result<Vec<u16>> {
@@ -382,7 +309,7 @@ impl<'ctx> SearchContext<'ctx> {
for result in remap_key_type {
let ((_, fid), value) = result?;
// filling other caches to avoid searching for them again
self.db_cache.word_fid_docids.insert((word, fid), Some(Cow::Borrowed(value)));
self.db_cache.word_fid_docids.insert((word, fid), Some(value));
fids.push(fid);
}
entry.insert(fids.clone());
@@ -408,9 +335,7 @@ impl<'ctx> SearchContext<'ctx> {
for result in remap_key_type {
let ((_, fid), value) = result?;
// filling other caches to avoid searching for them again
self.db_cache
.word_prefix_fid_docids
.insert((word_prefix, fid), Some(Cow::Borrowed(value)));
self.db_cache.word_prefix_fid_docids.insert((word_prefix, fid), Some(value));
fids.push(fid);
}
entry.insert(fids.clone());
@@ -425,13 +350,15 @@ impl<'ctx> SearchContext<'ctx> {
word: Interned<String>,
position: u16,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(word, position),
&(self.word_interner.get(word).as_str(), position),
&mut self.db_cache.word_position_docids,
self.index.word_position_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_prefix_position_docids(
@@ -439,13 +366,15 @@ impl<'ctx> SearchContext<'ctx> {
word_prefix: Interned<String>,
position: u16,
) -> Result<Option<RoaringBitmap>> {
DatabaseCache::get_value::<_, _, CboRoaringBitmapCodec>(
DatabaseCache::get_value(
self.txn,
(word_prefix, position),
&(self.word_interner.get(word_prefix).as_str(), position),
&mut self.db_cache.word_prefix_position_docids,
self.index.word_prefix_position_docids.remap_data_type::<ByteSlice>(),
)
)?
.map(|bytes| CboRoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding.into()))
.transpose()
}
pub fn get_db_word_positions(&mut self, word: Interned<String>) -> Result<Vec<u16>> {
@@ -464,9 +393,7 @@ impl<'ctx> SearchContext<'ctx> {
for result in remap_key_type {
let ((_, position), value) = result?;
// filling other caches to avoid searching for them again
self.db_cache
.word_position_docids
.insert((word, position), Some(Cow::Borrowed(value)));
self.db_cache.word_position_docids.insert((word, position), Some(value));
positions.push(position);
}
entry.insert(positions.clone());
@@ -497,7 +424,7 @@ impl<'ctx> SearchContext<'ctx> {
// filling other caches to avoid searching for them again
self.db_cache
.word_prefix_position_docids
.insert((word_prefix, position), Some(Cow::Borrowed(value)));
.insert((word_prefix, position), Some(value));
positions.push(position);
}
entry.insert(positions.clone());

View File

@@ -26,6 +26,7 @@ pub fn apply_distinct_rule(
ctx: &mut SearchContext,
field_id: u16,
candidates: &RoaringBitmap,
// TODO: add a universe here, such that the `excluded` are a subset of the universe?
) -> Result<DistinctOutput> {
let mut excluded = RoaringBitmap::new();
let mut remaining = RoaringBitmap::new();

View File

@@ -2,7 +2,6 @@ use roaring::{MultiOps, RoaringBitmap};
use super::query_graph::QueryGraph;
use super::ranking_rules::{RankingRule, RankingRuleOutput};
use crate::score_details::{self, ScoreDetails};
use crate::search::new::query_graph::QueryNodeData;
use crate::search::new::query_term::ExactTerm;
use crate::{Result, SearchContext, SearchLogger};
@@ -207,7 +206,7 @@ impl State {
)?;
intersection &= &candidates;
if !intersection.is_empty() {
// Although not really worth it in terms of performance,
// TODO: although not really worth it in terms of performance,
// if would be good to put this in cache for the sake of consistency
let candidates_with_exact_word_count = if count_all_positions < u8::MAX as usize {
ctx.index
@@ -245,13 +244,7 @@ impl State {
candidates &= universe;
(
State::AttributeStarts(query_graph.clone(), candidates_per_attribute),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::ExactMatch,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::AttributeStarts(query_graph, candidates_per_attribute) => {
@@ -264,24 +257,12 @@ impl State {
candidates &= universe;
(
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesStart,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::Empty(query_graph) => (
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates: universe.clone(),
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::NoExactMatch,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates: universe.clone() }),
),
};
(state, output)

View File

@@ -8,7 +8,6 @@ use rstar::RTree;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::heed_codec::facet::{FieldDocIdFacetCodec, OrderedF64Codec};
use crate::score_details::{self, ScoreDetails};
use crate::{
distance_between_two_points, lat_lng_to_xyz, GeoPoint, Index, Result, SearchContext,
SearchLogger,
@@ -81,7 +80,7 @@ pub struct GeoSort<Q: RankingRuleQueryTrait> {
field_ids: Option<[u16; 2]>,
rtree: Option<RTree<GeoPoint>>,
cached_sorted_docids: VecDeque<(u32, [f64; 2])>,
cached_sorted_docids: VecDeque<u32>,
geo_candidates: RoaringBitmap,
}
@@ -131,7 +130,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&self.point);
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_back(point.data);
self.cached_sorted_docids.push_back(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -143,7 +142,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&opposite_of(self.point));
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_front(point.data);
self.cached_sorted_docids.push_front(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -178,7 +177,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
// computing the distance between two points is expensive thus we cache the result
documents
.sort_by_cached_key(|(_, p)| distance_between_two_points(&self.point, p) as usize);
self.cached_sorted_docids.extend(documents.into_iter());
self.cached_sorted_docids.extend(documents.into_iter().map(|(doc_id, _)| doc_id));
};
Ok(())
@@ -221,19 +220,12 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
logger: &mut dyn SearchLogger<Q>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Q>>> {
assert!(universe.len() > 1);
let query = self.query.as_ref().unwrap().clone();
self.geo_candidates &= universe;
if self.geo_candidates.is_empty() {
return Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: None,
}),
}));
return Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }));
}
let ascending = self.ascending;
@@ -244,16 +236,11 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
cache.pop_back()
}
};
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
while let Some(id) = next(&mut self.cached_sorted_docids) {
if self.geo_candidates.contains(id) {
return Ok(Some(RankingRuleOutput {
query,
candidates: RoaringBitmap::from_iter([id]),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: Some(point),
}),
}));
}
}

View File

@@ -50,7 +50,6 @@ use super::ranking_rule_graph::{
};
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
use crate::score_details::Rank;
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::PathVisitor;
use crate::{Result, TermsMatchingStrategy};
@@ -119,8 +118,6 @@ pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
all_costs: MappedInterner<QueryNode, Vec<u64>>,
/// An index in the first element of `all_distances`, giving the cost of the next bucket
cur_cost: u64,
/// One above the highest possible cost for this rule
next_max_cost: u64,
}
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
@@ -134,20 +131,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
_universe: &RoaringBitmap,
query_graph: &QueryGraph,
) -> Result<()> {
// the `next_max_cost` is the successor integer to the maximum cost of the paths in the graph.
//
// When there is a matching strategy, it also factors the additional costs of:
// 1. The words that are matched in phrases
// 2. Skipping words (by adding them to the paths with a cost)
let mut next_max_cost = 1;
let removal_cost = if let Some(terms_matching_strategy) = self.terms_matching_strategy {
// add the cost of the phrase to the next_max_cost
next_max_cost += query_graph
.words_in_phrases_count(ctx)
// remove 1 from the words in phrases count, because when there is a phrase we can now have a document
// where only the phrase is matching, and none of the non-phrase words.
// With the `1` that `next_max_cost` is initialized with, this gets counted twice.
.saturating_sub(1) as u64;
match terms_matching_strategy {
TermsMatchingStrategy::Last => {
let removal_order =
@@ -155,12 +139,13 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
let mut forbidden_nodes =
SmallBitmap::for_interned_values_in(&query_graph.nodes);
let mut costs = query_graph.nodes.map(|_| None);
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
let mut cost = 100;
for ns in removal_order {
for n in ns.iter() {
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
*costs.get_mut(n) = Some((cost, forbidden_nodes.clone()));
}
forbidden_nodes.union(&ns);
cost += 100;
}
costs
}
@@ -177,16 +162,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
// Then pre-compute the cost of all paths from each node to the end node
let all_costs = graph.find_all_costs_to_end();
next_max_cost +=
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0);
let state = GraphBasedRankingRuleState {
graph,
conditions_cache: condition_docids_cache,
dead_ends_cache,
all_costs,
cur_cost: 0,
next_max_cost,
};
self.state = Some(state);
@@ -200,15 +181,21 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
logger: &mut dyn SearchLogger<QueryGraph>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
// If universe.len() <= 1, the bucket sort algorithm
// should not have called this function.
assert!(universe.len() > 1);
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
// should never happen
let mut state = self.state.take().unwrap();
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
// Retrieve the cost of the paths to compute
let Some(&cost) = all_costs.iter().find(|c| **c >= state.cur_cost) else {
self.state = None;
return Ok(None);
let Some(&cost) = state
.all_costs
.get(state.graph.query_graph.root_node)
.iter()
.find(|c| **c >= state.cur_cost) else {
self.state = None;
return Ok(None);
};
state.cur_cost = cost + 1;
@@ -220,12 +207,8 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
dead_ends_cache,
all_costs,
cur_cost: _,
next_max_cost,
} = &mut state;
let rank = *next_max_cost - cost;
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
let mut universe = universe.clone();
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
@@ -312,6 +295,8 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
// We modify the next query graph so that it only contains the subgraph
// that was used to compute this bucket
// But we only do it in case the bucket length is >1, because otherwise
// we know the child ranking rule won't be called anyway
let paths: Vec<Vec<(Option<LocatedQueryTermSubset>, LocatedQueryTermSubset)>> = good_paths
.into_iter()
@@ -340,7 +325,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
self.state = Some(state);
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket }))
}
fn end_iteration(

View File

@@ -32,7 +32,7 @@ impl<T> Interned<T> {
#[derive(Clone)]
pub struct DedupInterner<T> {
stable_store: Vec<T>,
lookup: FxHashMap<T, Interned<T>>,
lookup: FxHashMap<T, Interned<T>>, // TODO: Arc
}
impl<T> Default for DedupInterner<T> {
fn default() -> Self {

View File

@@ -1,4 +1,5 @@
/// Maximum number of tokens we consider in a single search.
// TODO: Loic, find proper value here so we don't overflow the interner.
pub const MAX_TOKEN_COUNT: usize = 1_000;
/// Maximum number of prefixes that can be derived from a single word.

View File

@@ -80,9 +80,7 @@ impl MatchingWords {
let word = self.word_interner.get(*word);
// if the word is a prefix we match using starts_with.
if located_words.is_prefix && token.lemma().starts_with(word) {
let Some((char_index, c)) =
word.char_indices().take(located_words.original_char_count).last()
else {
let Some((char_index, c)) = word.char_indices().take(located_words.original_char_count).last() else {
continue;
};
let prefix_length = char_index + c.len_utf8();
@@ -258,8 +256,7 @@ pub(crate) mod tests {
let temp_index = temp_index_with_documents();
let rtxn = temp_index.read_txn().unwrap();
let mut ctx = SearchContext::new(&temp_index, &rtxn);
let mut builder = TokenizerBuilder::default();
let tokenizer = builder.build();
let tokenizer = TokenizerBuilder::new().build();
let tokens = tokenizer.tokenize("split this world");
let query_terms = located_query_terms_from_tokens(&mut ctx, tokens, None).unwrap();
let matching_words = MatchingWords::new(ctx, query_terms);

Some files were not shown because too many files have changed in this diff Show More