mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-12-16 01:16:56 +00:00
Compare commits
23 Commits
v1.14.0-rc
...
prototype-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
80d7aa7bdc | ||
|
|
94b43001db | ||
|
|
796a325972 | ||
|
|
1db550ec7f | ||
|
|
418fa47963 | ||
|
|
0656a0d515 | ||
|
|
e36a8c50b9 | ||
|
|
08ff135ad6 | ||
|
|
f729864466 | ||
|
|
94ea263bef | ||
|
|
0e475cb5e6 | ||
|
|
62de70b73c | ||
|
|
7707fb18dd | ||
|
|
bb2e9419d3 | ||
|
|
cf68713145 | ||
|
|
811143cbe9 | ||
|
|
c670e9a39b | ||
|
|
65f1b13475 | ||
|
|
db7ce03763 | ||
|
|
7ed9adde29 | ||
|
|
f9807ba32e | ||
|
|
8c8cc59a6c | ||
|
|
f540a69ac3 |
5
Cargo.lock
generated
5
Cargo.lock
generated
@@ -1,6 +1,6 @@
|
||||
# This file is automatically @generated by Cargo.
|
||||
# It is not intended for manual editing.
|
||||
version = 3
|
||||
version = 4
|
||||
|
||||
[[package]]
|
||||
name = "actix-codec"
|
||||
@@ -394,8 +394,7 @@ checksum = "96d30a06541fbafbc7f82ed10c06164cfbd2c401138f6addd8404629c4b16711"
|
||||
[[package]]
|
||||
name = "arroy"
|
||||
version = "0.6.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "08e6111f351d004bd13e95ab540721272136fd3218b39d3ec95a2ea1c4e6a0a6"
|
||||
source = "git+https://github.com/meilisearch/arroy?branch=no-simd-x86-arroy#2ebbed058a6e3292707486e5a57d754d94f3fa2a"
|
||||
dependencies = [
|
||||
"bytemuck",
|
||||
"byteorder",
|
||||
|
||||
@@ -625,8 +625,8 @@ impl IndexScheduler {
|
||||
task_id: Option<TaskId>,
|
||||
dry_run: bool,
|
||||
) -> Result<Task> {
|
||||
// if the task doesn't delete anything and 50% of the task queue is full, we must refuse to enqueue the incomming task
|
||||
if !matches!(&kind, KindWithContent::TaskDeletion { tasks, .. } if !tasks.is_empty())
|
||||
// if the task doesn't delete or cancel anything and 40% of the task queue is full, we must refuse to enqueue the incoming task
|
||||
if !matches!(&kind, KindWithContent::TaskDeletion { tasks, .. } | KindWithContent::TaskCancelation { tasks, .. } if !tasks.is_empty())
|
||||
&& (self.env.non_free_pages_size()? * 100) / self.env.info().map_size as u64 > 40
|
||||
{
|
||||
return Err(Error::NoSpaceLeftInTaskQueue);
|
||||
|
||||
@@ -292,8 +292,6 @@ impl Queue {
|
||||
return Ok(task);
|
||||
}
|
||||
|
||||
// Get rid of the mutability.
|
||||
let task = task;
|
||||
self.tasks.register(wtxn, &task)?;
|
||||
|
||||
Ok(task)
|
||||
|
||||
@@ -364,7 +364,7 @@ fn test_task_queue_is_full() {
|
||||
// we won't be able to test this error in an integration test thus as a best effort test I still ensure the error return the expected error code
|
||||
snapshot!(format!("{:?}", result.error_code()), @"NoSpaceLeftOnDevice");
|
||||
|
||||
// Even the task deletion that doesn't delete anything shouldn't be accepted
|
||||
// Even the task deletion and cancelation that don't delete anything should be refused
|
||||
let result = index_scheduler
|
||||
.register(
|
||||
KindWithContent::TaskDeletion { query: S("test"), tasks: RoaringBitmap::new() },
|
||||
@@ -373,10 +373,39 @@ fn test_task_queue_is_full() {
|
||||
)
|
||||
.unwrap_err();
|
||||
snapshot!(result, @"Meilisearch cannot receive write operations because the limit of the task database has been reached. Please delete tasks to continue performing write operations.");
|
||||
let result = index_scheduler
|
||||
.register(
|
||||
KindWithContent::TaskCancelation { query: S("test"), tasks: RoaringBitmap::new() },
|
||||
None,
|
||||
false,
|
||||
)
|
||||
.unwrap_err();
|
||||
snapshot!(result, @"Meilisearch cannot receive write operations because the limit of the task database has been reached. Please delete tasks to continue performing write operations.");
|
||||
|
||||
// we won't be able to test this error in an integration test thus as a best effort test I still ensure the error return the expected error code
|
||||
snapshot!(format!("{:?}", result.error_code()), @"NoSpaceLeftOnDevice");
|
||||
|
||||
// But a task deletion that delete something should works
|
||||
// But a task cancelation that cancel something should work
|
||||
index_scheduler
|
||||
.register(
|
||||
KindWithContent::TaskCancelation { query: S("test"), tasks: (0..100).collect() },
|
||||
None,
|
||||
false,
|
||||
)
|
||||
.unwrap();
|
||||
handle.advance_one_successful_batch();
|
||||
|
||||
// But we should still be forbidden from enqueuing new tasks
|
||||
let result = index_scheduler
|
||||
.register(
|
||||
KindWithContent::IndexCreation { index_uid: S("doggo"), primary_key: None },
|
||||
None,
|
||||
false,
|
||||
)
|
||||
.unwrap_err();
|
||||
snapshot!(result, @"Meilisearch cannot receive write operations because the limit of the task database has been reached. Please delete tasks to continue performing write operations.");
|
||||
|
||||
// And a task deletion that delete something should works
|
||||
index_scheduler
|
||||
.register(
|
||||
KindWithContent::TaskDeletion { query: S("test"), tasks: (0..100).collect() },
|
||||
|
||||
@@ -20,6 +20,7 @@ use std::path::PathBuf;
|
||||
use std::sync::atomic::{AtomicBool, AtomicU32, Ordering};
|
||||
use std::sync::Arc;
|
||||
|
||||
use convert_case::{Case, Casing as _};
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::heed::{Env, WithoutTls};
|
||||
use meilisearch_types::milli;
|
||||
@@ -381,7 +382,10 @@ impl IndexScheduler {
|
||||
Less => "-",
|
||||
};
|
||||
|
||||
Some((dbname.to_string(), format!("{post:#.2} ({sign}{diff:#.2})").into()))
|
||||
Some((
|
||||
dbname.to_case(Case::Camel),
|
||||
format!("{post:#.2} ({sign}{diff:#.2})").into(),
|
||||
))
|
||||
})
|
||||
.into_iter()
|
||||
.flatten()
|
||||
|
||||
@@ -454,7 +454,10 @@ impl ErrorCode for milli::Error {
|
||||
}
|
||||
UserError::CriterionError(_) => Code::InvalidSettingsRankingRules,
|
||||
UserError::InvalidGeoField { .. } => Code::InvalidDocumentGeoField,
|
||||
UserError::InvalidVectorDimensions { .. } => Code::InvalidVectorDimensions,
|
||||
UserError::InvalidVectorDimensions { .. }
|
||||
| UserError::InvalidIndexingVectorDimensions { .. } => {
|
||||
Code::InvalidVectorDimensions
|
||||
}
|
||||
UserError::InvalidVectorsMapType { .. }
|
||||
| UserError::InvalidVectorsEmbedderConf { .. } => Code::InvalidVectorsType,
|
||||
UserError::TooManyVectors(_, _) => Code::TooManyVectors,
|
||||
|
||||
@@ -518,7 +518,7 @@ impl From<index_scheduler::IndexStats> for IndexStats {
|
||||
.inner_stats
|
||||
.number_of_documents
|
||||
.unwrap_or(stats.inner_stats.documents_database_stats.number_of_entries()),
|
||||
raw_document_db_size: stats.inner_stats.documents_database_stats.total_value_size(),
|
||||
raw_document_db_size: stats.inner_stats.documents_database_stats.total_size(),
|
||||
avg_document_size: stats.inner_stats.documents_database_stats.average_value_size(),
|
||||
is_indexing: stats.is_indexing,
|
||||
number_of_embeddings: stats.inner_stats.number_of_embeddings,
|
||||
|
||||
@@ -157,11 +157,14 @@ async fn delete_document_by_filter() {
|
||||
index.wait_task(task.uid()).await.succeeded();
|
||||
|
||||
let (stats, _) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 4,
|
||||
"rawDocumentDbSize": 42,
|
||||
"avgDocumentSize": 10,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -208,11 +211,14 @@ async fn delete_document_by_filter() {
|
||||
"###);
|
||||
|
||||
let (stats, _) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 16,
|
||||
"avgDocumentSize": 8,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -278,11 +284,14 @@ async fn delete_document_by_filter() {
|
||||
"###);
|
||||
|
||||
let (stats, _) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 1,
|
||||
"rawDocumentDbSize": 12,
|
||||
"avgDocumentSize": 12,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
|
||||
@@ -28,12 +28,15 @@ async fn import_dump_v1_movie_raw() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -185,12 +188,15 @@ async fn import_dump_v1_movie_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -355,12 +361,15 @@ async fn import_dump_v1_rubygems_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 8606,
|
||||
"avgDocumentSize": 162,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -522,12 +531,15 @@ async fn import_dump_v2_movie_raw() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -679,12 +691,15 @@ async fn import_dump_v2_movie_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -846,12 +861,15 @@ async fn import_dump_v2_rubygems_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 8606,
|
||||
"avgDocumentSize": 162,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1010,12 +1028,15 @@ async fn import_dump_v3_movie_raw() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1167,12 +1188,15 @@ async fn import_dump_v3_movie_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1334,12 +1358,15 @@ async fn import_dump_v3_rubygems_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 8606,
|
||||
"avgDocumentSize": 162,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1498,12 +1525,15 @@ async fn import_dump_v4_movie_raw() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1655,12 +1685,15 @@ async fn import_dump_v4_movie_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 21965,
|
||||
"avgDocumentSize": 414,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1822,12 +1855,15 @@ async fn import_dump_v4_rubygems_with_settings() {
|
||||
let (stats, code) = index.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 53,
|
||||
"rawDocumentDbSize": 8606,
|
||||
"avgDocumentSize": 162,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -1994,11 +2030,14 @@ async fn import_dump_v5() {
|
||||
|
||||
let (stats, code) = index1.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 10,
|
||||
"rawDocumentDbSize": 6782,
|
||||
"avgDocumentSize": 678,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -2031,12 +2070,15 @@ async fn import_dump_v5() {
|
||||
let (stats, code) = index2.stats().await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(
|
||||
json_string!(stats),
|
||||
json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}),
|
||||
@r###"
|
||||
{
|
||||
"numberOfDocuments": 10,
|
||||
"rawDocumentDbSize": 6782,
|
||||
"avgDocumentSize": 678,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
|
||||
@@ -110,11 +110,14 @@ async fn add_remove_embeddings() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 27,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 5,
|
||||
"numberOfEmbeddedDocuments": 2,
|
||||
@@ -135,11 +138,14 @@ async fn add_remove_embeddings() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 27,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 3,
|
||||
"numberOfEmbeddedDocuments": 2,
|
||||
@@ -160,11 +166,14 @@ async fn add_remove_embeddings() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 27,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 2,
|
||||
"numberOfEmbeddedDocuments": 2,
|
||||
@@ -186,11 +195,14 @@ async fn add_remove_embeddings() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 27,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 2,
|
||||
"numberOfEmbeddedDocuments": 1,
|
||||
@@ -236,11 +248,14 @@ async fn add_remove_embedded_documents() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 27,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 5,
|
||||
"numberOfEmbeddedDocuments": 2,
|
||||
@@ -257,11 +272,14 @@ async fn add_remove_embedded_documents() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 1,
|
||||
"rawDocumentDbSize": 13,
|
||||
"avgDocumentSize": 13,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 3,
|
||||
"numberOfEmbeddedDocuments": 1,
|
||||
@@ -290,11 +308,14 @@ async fn update_embedder_settings() {
|
||||
index.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 108,
|
||||
"avgDocumentSize": 54,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -326,11 +347,14 @@ async fn update_embedder_settings() {
|
||||
server.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let (stats, _code) = index.stats().await;
|
||||
snapshot!(json_string!(stats), @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[size]",
|
||||
".avgDocumentSize" => "[size]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 2,
|
||||
"rawDocumentDbSize": 108,
|
||||
"avgDocumentSize": 54,
|
||||
"rawDocumentDbSize": "[size]",
|
||||
"avgDocumentSize": "[size]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 3,
|
||||
"numberOfEmbeddedDocuments": 2,
|
||||
|
||||
@@ -133,7 +133,9 @@ async fn check_the_index_scheduler(server: &Server) {
|
||||
let (stats, _) = server.stats().await;
|
||||
assert_json_snapshot!(stats, {
|
||||
".databaseSize" => "[bytes]",
|
||||
".usedDatabaseSize" => "[bytes]"
|
||||
".usedDatabaseSize" => "[bytes]",
|
||||
".indexes.kefir.rawDocumentDbSize" => "[bytes]",
|
||||
".indexes.kefir.avgDocumentSize" => "[bytes]",
|
||||
},
|
||||
@r###"
|
||||
{
|
||||
@@ -143,8 +145,8 @@ async fn check_the_index_scheduler(server: &Server) {
|
||||
"indexes": {
|
||||
"kefir": {
|
||||
"numberOfDocuments": 1,
|
||||
"rawDocumentDbSize": 109,
|
||||
"avgDocumentSize": 109,
|
||||
"rawDocumentDbSize": "[bytes]",
|
||||
"avgDocumentSize": "[bytes]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -217,7 +219,9 @@ async fn check_the_index_scheduler(server: &Server) {
|
||||
let (stats, _) = server.stats().await;
|
||||
assert_json_snapshot!(stats, {
|
||||
".databaseSize" => "[bytes]",
|
||||
".usedDatabaseSize" => "[bytes]"
|
||||
".usedDatabaseSize" => "[bytes]",
|
||||
".indexes.kefir.rawDocumentDbSize" => "[bytes]",
|
||||
".indexes.kefir.avgDocumentSize" => "[bytes]",
|
||||
},
|
||||
@r###"
|
||||
{
|
||||
@@ -227,8 +231,8 @@ async fn check_the_index_scheduler(server: &Server) {
|
||||
"indexes": {
|
||||
"kefir": {
|
||||
"numberOfDocuments": 1,
|
||||
"rawDocumentDbSize": 109,
|
||||
"avgDocumentSize": 109,
|
||||
"rawDocumentDbSize": "[bytes]",
|
||||
"avgDocumentSize": "[bytes]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
@@ -245,11 +249,14 @@ async fn check_the_index_scheduler(server: &Server) {
|
||||
"###);
|
||||
let index = server.index("kefir");
|
||||
let (stats, _) = index.stats().await;
|
||||
snapshot!(stats, @r###"
|
||||
snapshot!(json_string!(stats, {
|
||||
".rawDocumentDbSize" => "[bytes]",
|
||||
".avgDocumentSize" => "[bytes]",
|
||||
}), @r###"
|
||||
{
|
||||
"numberOfDocuments": 1,
|
||||
"rawDocumentDbSize": 109,
|
||||
"avgDocumentSize": 109,
|
||||
"rawDocumentDbSize": "[bytes]",
|
||||
"avgDocumentSize": "[bytes]",
|
||||
"isIndexing": false,
|
||||
"numberOfEmbeddings": 0,
|
||||
"numberOfEmbeddedDocuments": 0,
|
||||
|
||||
@@ -164,6 +164,87 @@ async fn add_remove_user_provided() {
|
||||
"###);
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn user_provide_mismatched_embedding_dimension() {
|
||||
let server = Server::new().await;
|
||||
let index = server.index("doggo");
|
||||
|
||||
let (response, code) = index
|
||||
.update_settings(json!({
|
||||
"embedders": {
|
||||
"manual": {
|
||||
"source": "userProvided",
|
||||
"dimensions": 3,
|
||||
}
|
||||
},
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"202 Accepted");
|
||||
server.wait_task(response.uid()).await.succeeded();
|
||||
|
||||
let documents = json!([
|
||||
{"id": 0, "name": "kefir", "_vectors": { "manual": [0, 0] }},
|
||||
]);
|
||||
let (value, code) = index.add_documents(documents, None).await;
|
||||
snapshot!(code, @"202 Accepted");
|
||||
let task = index.wait_task(value.uid()).await;
|
||||
snapshot!(task, @r###"
|
||||
{
|
||||
"uid": "[uid]",
|
||||
"batchUid": "[batch_uid]",
|
||||
"indexUid": "doggo",
|
||||
"status": "failed",
|
||||
"type": "documentAdditionOrUpdate",
|
||||
"canceledBy": null,
|
||||
"details": {
|
||||
"receivedDocuments": 1,
|
||||
"indexedDocuments": 0
|
||||
},
|
||||
"error": {
|
||||
"message": "Index `doggo`: Invalid vector dimensions in document with id `0` in `._vectors.manual`.\n - note: embedding #0 has dimensions 2\n - note: embedder `manual` requires 3",
|
||||
"code": "invalid_vector_dimensions",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_vector_dimensions"
|
||||
},
|
||||
"duration": "[duration]",
|
||||
"enqueuedAt": "[date]",
|
||||
"startedAt": "[date]",
|
||||
"finishedAt": "[date]"
|
||||
}
|
||||
"###);
|
||||
|
||||
let new_document = json!([
|
||||
{"id": 0, "name": "kefir", "_vectors": { "manual": [[0, 0], [1, 1], [2, 2]] }},
|
||||
]);
|
||||
let (response, code) = index.add_documents(new_document, None).await;
|
||||
snapshot!(code, @"202 Accepted");
|
||||
let task = index.wait_task(response.uid()).await;
|
||||
snapshot!(task, @r###"
|
||||
{
|
||||
"uid": "[uid]",
|
||||
"batchUid": "[batch_uid]",
|
||||
"indexUid": "doggo",
|
||||
"status": "failed",
|
||||
"type": "documentAdditionOrUpdate",
|
||||
"canceledBy": null,
|
||||
"details": {
|
||||
"receivedDocuments": 1,
|
||||
"indexedDocuments": 0
|
||||
},
|
||||
"error": {
|
||||
"message": "Index `doggo`: Invalid vector dimensions in document with id `0` in `._vectors.manual`.\n - note: embedding #0 has dimensions 2\n - note: embedder `manual` requires 3",
|
||||
"code": "invalid_vector_dimensions",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_vector_dimensions"
|
||||
},
|
||||
"duration": "[duration]",
|
||||
"enqueuedAt": "[date]",
|
||||
"startedAt": "[date]",
|
||||
"finishedAt": "[date]"
|
||||
}
|
||||
"###);
|
||||
}
|
||||
|
||||
async fn generate_default_user_provided_documents(server: &Server) -> Index {
|
||||
let index = server.index("doggo");
|
||||
|
||||
|
||||
@@ -87,7 +87,7 @@ rhai = { git = "https://github.com/rhaiscript/rhai", rev = "ef3df63121d27aacd838
|
||||
"no_time",
|
||||
"sync",
|
||||
] }
|
||||
arroy = "0.6.1"
|
||||
arroy = { git = "https://github.com/meilisearch/arroy", branch = "no-simd-x86-arroy" }
|
||||
rand = "0.8.5"
|
||||
tracing = "0.1.41"
|
||||
ureq = { version = "2.12.1", features = ["json"] }
|
||||
|
||||
@@ -1,8 +1,13 @@
|
||||
use heed::types::Bytes;
|
||||
use std::mem;
|
||||
|
||||
use heed::Database;
|
||||
use heed::DatabaseStat;
|
||||
use heed::RoTxn;
|
||||
use heed::Unspecified;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::BEU32;
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, Default)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
/// The stats of a database.
|
||||
@@ -20,58 +25,24 @@ impl DatabaseStats {
|
||||
///
|
||||
/// This function iterates over the whole database and computes the stats.
|
||||
/// It is not efficient and should be cached somewhere.
|
||||
pub(crate) fn new(database: Database<Bytes, Bytes>, rtxn: &RoTxn<'_>) -> heed::Result<Self> {
|
||||
let mut database_stats =
|
||||
Self { number_of_entries: 0, total_key_size: 0, total_value_size: 0 };
|
||||
pub(crate) fn new(
|
||||
database: Database<BEU32, Unspecified>,
|
||||
rtxn: &RoTxn<'_>,
|
||||
) -> heed::Result<Self> {
|
||||
let DatabaseStat { page_size, depth: _, branch_pages, leaf_pages, overflow_pages, entries } =
|
||||
database.stat(rtxn)?;
|
||||
|
||||
let mut iter = database.iter(rtxn)?;
|
||||
while let Some((key, value)) = iter.next().transpose()? {
|
||||
let key_size = key.len() as u64;
|
||||
let value_size = value.len() as u64;
|
||||
database_stats.total_key_size += key_size;
|
||||
database_stats.total_value_size += value_size;
|
||||
}
|
||||
// We first take the total size without overflow pages as the overflow pages contains the values and only that.
|
||||
let total_size = (branch_pages + leaf_pages + overflow_pages) * page_size as usize;
|
||||
// We compute an estimated size for the keys.
|
||||
let total_key_size = entries * (mem::size_of::<u32>() + 4);
|
||||
let total_value_size = total_size - total_key_size;
|
||||
|
||||
database_stats.number_of_entries = database.len(rtxn)?;
|
||||
|
||||
Ok(database_stats)
|
||||
}
|
||||
|
||||
/// Recomputes the stats of the database and returns the new stats.
|
||||
///
|
||||
/// This function is used to update the stats of the database when some keys are modified.
|
||||
/// It is more efficient than the `new` function because it does not iterate over the whole database but only the modified keys comparing the before and after states.
|
||||
pub(crate) fn recompute<I, K>(
|
||||
mut stats: Self,
|
||||
database: Database<Bytes, Bytes>,
|
||||
before_rtxn: &RoTxn<'_>,
|
||||
after_rtxn: &RoTxn<'_>,
|
||||
modified_keys: I,
|
||||
) -> heed::Result<Self>
|
||||
where
|
||||
I: IntoIterator<Item = K>,
|
||||
K: AsRef<[u8]>,
|
||||
{
|
||||
for key in modified_keys {
|
||||
let key = key.as_ref();
|
||||
if let Some(value) = database.get(after_rtxn, key)? {
|
||||
let key_size = key.len() as u64;
|
||||
let value_size = value.len() as u64;
|
||||
stats.total_key_size = stats.total_key_size.saturating_add(key_size);
|
||||
stats.total_value_size = stats.total_value_size.saturating_add(value_size);
|
||||
}
|
||||
|
||||
if let Some(value) = database.get(before_rtxn, key)? {
|
||||
let key_size = key.len() as u64;
|
||||
let value_size = value.len() as u64;
|
||||
stats.total_key_size = stats.total_key_size.saturating_sub(key_size);
|
||||
stats.total_value_size = stats.total_value_size.saturating_sub(value_size);
|
||||
}
|
||||
}
|
||||
|
||||
stats.number_of_entries = database.len(after_rtxn)?;
|
||||
|
||||
Ok(stats)
|
||||
Ok(Self {
|
||||
number_of_entries: entries as u64,
|
||||
total_key_size: total_key_size as u64,
|
||||
total_value_size: total_value_size as u64,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn average_key_size(&self) -> u64 {
|
||||
@@ -86,6 +57,10 @@ impl DatabaseStats {
|
||||
self.number_of_entries
|
||||
}
|
||||
|
||||
pub fn total_size(&self) -> u64 {
|
||||
self.total_key_size + self.total_value_size
|
||||
}
|
||||
|
||||
pub fn total_key_size(&self) -> u64 {
|
||||
self.total_key_size
|
||||
}
|
||||
|
||||
@@ -129,6 +129,14 @@ and can not be more than 511 bytes.", .document_id.to_string()
|
||||
InvalidGeoField(#[from] GeoError),
|
||||
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
|
||||
InvalidVectorDimensions { expected: usize, found: usize },
|
||||
#[error("Invalid vector dimensions in document with id `{document_id}` in `._vectors.{embedder_name}`.\n - note: embedding #{embedding_index} has dimensions {found}\n - note: embedder `{embedder_name}` requires {expected}")]
|
||||
InvalidIndexingVectorDimensions {
|
||||
embedder_name: String,
|
||||
document_id: String,
|
||||
embedding_index: usize,
|
||||
expected: usize,
|
||||
found: usize,
|
||||
},
|
||||
#[error("The `_vectors` field in the document with id: `{document_id}` is not an object. Was expecting an object with a key for each embedder with manually provided vectors, but instead got `{value}`")]
|
||||
InvalidVectorsMapType { document_id: String, value: Value },
|
||||
#[error("Bad embedder configuration in the document with id: `{document_id}`. {error}")]
|
||||
|
||||
@@ -411,38 +411,6 @@ impl Index {
|
||||
Ok(count.unwrap_or_default())
|
||||
}
|
||||
|
||||
/// Updates the stats of the documents database based on the previous stats and the modified docids.
|
||||
pub fn update_documents_stats(
|
||||
&self,
|
||||
wtxn: &mut RwTxn<'_>,
|
||||
modified_docids: roaring::RoaringBitmap,
|
||||
) -> Result<()> {
|
||||
let before_rtxn = self.read_txn()?;
|
||||
let document_stats = match self.documents_stats(&before_rtxn)? {
|
||||
Some(before_stats) => DatabaseStats::recompute(
|
||||
before_stats,
|
||||
self.documents.remap_types(),
|
||||
&before_rtxn,
|
||||
wtxn,
|
||||
modified_docids.iter().map(|docid| docid.to_be_bytes()),
|
||||
)?,
|
||||
None => {
|
||||
// This should never happen when there are already documents in the index, the documents stats should be present.
|
||||
// If it happens, it means that the index was not properly initialized/upgraded.
|
||||
debug_assert_eq!(
|
||||
self.documents.len(&before_rtxn)?,
|
||||
0,
|
||||
"The documents stats should be present when there are documents in the index"
|
||||
);
|
||||
tracing::warn!("No documents stats found, creating new ones");
|
||||
DatabaseStats::new(self.documents.remap_types(), &*wtxn)?
|
||||
}
|
||||
};
|
||||
|
||||
self.put_documents_stats(wtxn, document_stats)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Writes the stats of the documents database.
|
||||
pub fn put_documents_stats(
|
||||
&self,
|
||||
|
||||
@@ -173,16 +173,18 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
ranking_rule_scores.push(ScoreDetails::Skipped);
|
||||
|
||||
// remove candidates from the universe without adding them to result if their score is below the threshold
|
||||
if let Some(ranking_score_threshold) = ranking_score_threshold {
|
||||
let current_score = ScoreDetails::global_score(ranking_rule_scores.iter());
|
||||
if current_score < ranking_score_threshold {
|
||||
all_candidates -= bucket | &ranking_rule_universes[cur_ranking_rule_index];
|
||||
back!();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
let is_below_threshold =
|
||||
ranking_score_threshold.is_some_and(|ranking_score_threshold| {
|
||||
let current_score = ScoreDetails::global_score(ranking_rule_scores.iter());
|
||||
current_score < ranking_score_threshold
|
||||
});
|
||||
|
||||
maybe_add_to_results!(bucket);
|
||||
if is_below_threshold {
|
||||
all_candidates -= &bucket;
|
||||
all_candidates -= &ranking_rule_universes[cur_ranking_rule_index];
|
||||
} else {
|
||||
maybe_add_to_results!(bucket);
|
||||
}
|
||||
|
||||
ranking_rule_scores.pop();
|
||||
|
||||
@@ -237,23 +239,24 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
|
||||
);
|
||||
|
||||
// remove candidates from the universe without adding them to result if their score is below the threshold
|
||||
if let Some(ranking_score_threshold) = ranking_score_threshold {
|
||||
let is_below_threshold = ranking_score_threshold.is_some_and(|ranking_score_threshold| {
|
||||
let current_score = ScoreDetails::global_score(ranking_rule_scores.iter());
|
||||
if current_score < ranking_score_threshold {
|
||||
all_candidates -=
|
||||
next_bucket.candidates | &ranking_rule_universes[cur_ranking_rule_index];
|
||||
back!();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
current_score < ranking_score_threshold
|
||||
});
|
||||
|
||||
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
|
||||
|
||||
if cur_ranking_rule_index == ranking_rules_len - 1
|
||||
|| (scoring_strategy == ScoringStrategy::Skip && next_bucket.candidates.len() <= 1)
|
||||
|| cur_offset + (next_bucket.candidates.len() as usize) < from
|
||||
|| is_below_threshold
|
||||
{
|
||||
maybe_add_to_results!(next_bucket.candidates);
|
||||
if is_below_threshold {
|
||||
all_candidates -= &next_bucket.candidates;
|
||||
all_candidates -= &ranking_rule_universes[cur_ranking_rule_index];
|
||||
} else {
|
||||
maybe_add_to_results!(next_bucket.candidates);
|
||||
}
|
||||
ranking_rule_scores.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@ pub use self::helpers::*;
|
||||
pub use self::transform::{Transform, TransformOutput};
|
||||
use super::facet::clear_facet_levels_based_on_settings_diff;
|
||||
use super::new::StdResult;
|
||||
use crate::database_stats::DatabaseStats;
|
||||
use crate::documents::{obkv_to_object, DocumentsBatchReader};
|
||||
use crate::error::{Error, InternalError};
|
||||
use crate::index::{PrefixSearch, PrefixSettings};
|
||||
@@ -476,7 +477,8 @@ where
|
||||
|
||||
if !settings_diff.settings_update_only {
|
||||
// Update the stats of the documents database when there is a document update.
|
||||
self.index.update_documents_stats(self.wtxn, modified_docids)?;
|
||||
let stats = DatabaseStats::new(self.index.documents.remap_data_type(), self.wtxn)?;
|
||||
self.index.put_documents_stats(self.wtxn, stats)?;
|
||||
}
|
||||
// We write the field distribution into the main database
|
||||
self.index.put_field_distribution(self.wtxn, &field_distribution)?;
|
||||
|
||||
@@ -121,6 +121,7 @@ impl<'a, 'b, 'extractor> Extractor<'extractor> for EmbeddingExtractor<'a, 'b> {
|
||||
// do we have set embeddings?
|
||||
if let Some(embeddings) = new_vectors.embeddings {
|
||||
chunks.set_vectors(
|
||||
update.external_document_id(),
|
||||
update.docid(),
|
||||
embeddings
|
||||
.into_vec(&context.doc_alloc, embedder_name)
|
||||
@@ -128,7 +129,7 @@ impl<'a, 'b, 'extractor> Extractor<'extractor> for EmbeddingExtractor<'a, 'b> {
|
||||
document_id: update.external_document_id().to_string(),
|
||||
error: error.to_string(),
|
||||
})?,
|
||||
);
|
||||
)?;
|
||||
} else if new_vectors.regenerate {
|
||||
let new_rendered = prompt.render_document(
|
||||
update.external_document_id(),
|
||||
@@ -209,6 +210,7 @@ impl<'a, 'b, 'extractor> Extractor<'extractor> for EmbeddingExtractor<'a, 'b> {
|
||||
chunks.set_regenerate(insertion.docid(), new_vectors.regenerate);
|
||||
if let Some(embeddings) = new_vectors.embeddings {
|
||||
chunks.set_vectors(
|
||||
insertion.external_document_id(),
|
||||
insertion.docid(),
|
||||
embeddings
|
||||
.into_vec(&context.doc_alloc, embedder_name)
|
||||
@@ -218,7 +220,7 @@ impl<'a, 'b, 'extractor> Extractor<'extractor> for EmbeddingExtractor<'a, 'b> {
|
||||
.to_string(),
|
||||
error: error.to_string(),
|
||||
})?,
|
||||
);
|
||||
)?;
|
||||
} else if new_vectors.regenerate {
|
||||
let rendered = prompt.render_document(
|
||||
insertion.external_document_id(),
|
||||
@@ -273,6 +275,7 @@ struct Chunks<'a, 'b, 'extractor> {
|
||||
embedder: &'a Embedder,
|
||||
embedder_id: u8,
|
||||
embedder_name: &'a str,
|
||||
dimensions: usize,
|
||||
prompt: &'a Prompt,
|
||||
possible_embedding_mistakes: &'a PossibleEmbeddingMistakes,
|
||||
user_provided: &'a RefCell<EmbeddingExtractorData<'extractor>>,
|
||||
@@ -297,6 +300,7 @@ impl<'a, 'b, 'extractor> Chunks<'a, 'b, 'extractor> {
|
||||
let capacity = embedder.prompt_count_in_chunk_hint() * embedder.chunk_count_hint();
|
||||
let texts = BVec::with_capacity_in(capacity, doc_alloc);
|
||||
let ids = BVec::with_capacity_in(capacity, doc_alloc);
|
||||
let dimensions = embedder.dimensions();
|
||||
Self {
|
||||
texts,
|
||||
ids,
|
||||
@@ -309,6 +313,7 @@ impl<'a, 'b, 'extractor> Chunks<'a, 'b, 'extractor> {
|
||||
embedder_name,
|
||||
user_provided,
|
||||
has_manual_generation: None,
|
||||
dimensions,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -490,7 +495,25 @@ impl<'a, 'b, 'extractor> Chunks<'a, 'b, 'extractor> {
|
||||
}
|
||||
}
|
||||
|
||||
fn set_vectors(&self, docid: DocumentId, embeddings: Vec<Embedding>) {
|
||||
fn set_vectors(
|
||||
&self,
|
||||
external_docid: &'a str,
|
||||
docid: DocumentId,
|
||||
embeddings: Vec<Embedding>,
|
||||
) -> Result<()> {
|
||||
for (embedding_index, embedding) in embeddings.iter().enumerate() {
|
||||
if embedding.len() != self.dimensions {
|
||||
return Err(UserError::InvalidIndexingVectorDimensions {
|
||||
expected: self.dimensions,
|
||||
found: embedding.len(),
|
||||
embedder_name: self.embedder_name.to_string(),
|
||||
document_id: external_docid.to_string(),
|
||||
embedding_index,
|
||||
}
|
||||
.into());
|
||||
}
|
||||
}
|
||||
self.sender.set_vectors(docid, self.embedder_id, embeddings).unwrap();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -234,7 +234,6 @@ where
|
||||
embedders,
|
||||
field_distribution,
|
||||
document_ids,
|
||||
modified_docids,
|
||||
)?;
|
||||
|
||||
Ok(congestion)
|
||||
|
||||
@@ -7,12 +7,13 @@ use itertools::{merge_join_by, EitherOrBoth};
|
||||
use super::document_changes::IndexingContext;
|
||||
use crate::facet::FacetType;
|
||||
use crate::index::main_key::{WORDS_FST_KEY, WORDS_PREFIXES_FST_KEY};
|
||||
use crate::progress::Progress;
|
||||
use crate::update::del_add::DelAdd;
|
||||
use crate::update::facet::new_incremental::FacetsUpdateIncremental;
|
||||
use crate::update::facet::{FACET_GROUP_SIZE, FACET_MAX_GROUP_SIZE, FACET_MIN_LEVEL_SIZE};
|
||||
use crate::update::new::facet_search_builder::FacetSearchBuilder;
|
||||
use crate::update::new::merger::FacetFieldIdDelta;
|
||||
use crate::update::new::steps::IndexingStep;
|
||||
use crate::update::new::steps::{IndexingStep, PostProcessingFacets, PostProcessingWords};
|
||||
use crate::update::new::word_fst_builder::{PrefixData, PrefixDelta, WordFstBuilder};
|
||||
use crate::update::new::words_prefix_docids::{
|
||||
compute_exact_word_prefix_docids, compute_word_prefix_docids, compute_word_prefix_fid_docids,
|
||||
@@ -33,11 +34,23 @@ where
|
||||
{
|
||||
let index = indexing_context.index;
|
||||
indexing_context.progress.update_progress(IndexingStep::PostProcessingFacets);
|
||||
compute_facet_level_database(index, wtxn, facet_field_ids_delta, &mut global_fields_ids_map)?;
|
||||
compute_facet_search_database(index, wtxn, global_fields_ids_map)?;
|
||||
compute_facet_level_database(
|
||||
index,
|
||||
wtxn,
|
||||
facet_field_ids_delta,
|
||||
&mut global_fields_ids_map,
|
||||
indexing_context.progress,
|
||||
)?;
|
||||
compute_facet_search_database(index, wtxn, global_fields_ids_map, indexing_context.progress)?;
|
||||
indexing_context.progress.update_progress(IndexingStep::PostProcessingWords);
|
||||
if let Some(prefix_delta) = compute_word_fst(index, wtxn)? {
|
||||
compute_prefix_database(index, wtxn, prefix_delta, indexing_context.grenad_parameters)?;
|
||||
if let Some(prefix_delta) = compute_word_fst(index, wtxn, indexing_context.progress)? {
|
||||
compute_prefix_database(
|
||||
index,
|
||||
wtxn,
|
||||
prefix_delta,
|
||||
indexing_context.grenad_parameters,
|
||||
indexing_context.progress,
|
||||
)?;
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
@@ -48,21 +61,32 @@ fn compute_prefix_database(
|
||||
wtxn: &mut RwTxn,
|
||||
prefix_delta: PrefixDelta,
|
||||
grenad_parameters: &GrenadParameters,
|
||||
progress: &Progress,
|
||||
) -> Result<()> {
|
||||
let PrefixDelta { modified, deleted } = prefix_delta;
|
||||
// Compute word prefix docids
|
||||
|
||||
progress.update_progress(PostProcessingWords::WordPrefixDocids);
|
||||
compute_word_prefix_docids(wtxn, index, &modified, &deleted, grenad_parameters)?;
|
||||
// Compute exact word prefix docids
|
||||
|
||||
progress.update_progress(PostProcessingWords::ExactWordPrefixDocids);
|
||||
compute_exact_word_prefix_docids(wtxn, index, &modified, &deleted, grenad_parameters)?;
|
||||
// Compute word prefix fid docids
|
||||
|
||||
progress.update_progress(PostProcessingWords::WordPrefixFieldIdDocids);
|
||||
compute_word_prefix_fid_docids(wtxn, index, &modified, &deleted, grenad_parameters)?;
|
||||
// Compute word prefix position docids
|
||||
|
||||
progress.update_progress(PostProcessingWords::WordPrefixPositionDocids);
|
||||
compute_word_prefix_position_docids(wtxn, index, &modified, &deleted, grenad_parameters)
|
||||
}
|
||||
|
||||
#[tracing::instrument(level = "trace", skip_all, target = "indexing")]
|
||||
fn compute_word_fst(index: &Index, wtxn: &mut RwTxn) -> Result<Option<PrefixDelta>> {
|
||||
fn compute_word_fst(
|
||||
index: &Index,
|
||||
wtxn: &mut RwTxn,
|
||||
progress: &Progress,
|
||||
) -> Result<Option<PrefixDelta>> {
|
||||
let rtxn = index.read_txn()?;
|
||||
progress.update_progress(PostProcessingWords::WordFst);
|
||||
|
||||
let words_fst = index.words_fst(&rtxn)?;
|
||||
let mut word_fst_builder = WordFstBuilder::new(&words_fst)?;
|
||||
let prefix_settings = index.prefix_settings(&rtxn)?;
|
||||
@@ -112,8 +136,10 @@ fn compute_facet_search_database(
|
||||
index: &Index,
|
||||
wtxn: &mut RwTxn,
|
||||
global_fields_ids_map: GlobalFieldsIdsMap,
|
||||
progress: &Progress,
|
||||
) -> Result<()> {
|
||||
let rtxn = index.read_txn()?;
|
||||
progress.update_progress(PostProcessingFacets::FacetSearch);
|
||||
|
||||
// if the facet search is not enabled, we can skip the rest of the function
|
||||
if !index.facet_search(wtxn)? {
|
||||
@@ -171,10 +197,16 @@ fn compute_facet_level_database(
|
||||
wtxn: &mut RwTxn,
|
||||
mut facet_field_ids_delta: FacetFieldIdsDelta,
|
||||
global_fields_ids_map: &mut GlobalFieldsIdsMap,
|
||||
progress: &Progress,
|
||||
) -> Result<()> {
|
||||
let rtxn = index.read_txn()?;
|
||||
|
||||
let filterable_attributes_rules = index.filterable_attributes_rules(&rtxn)?;
|
||||
for (fid, delta) in facet_field_ids_delta.consume_facet_string_delta() {
|
||||
let mut deltas: Vec<_> = facet_field_ids_delta.consume_facet_string_delta().collect();
|
||||
// We move all bulks at the front and incrementals (others) at the end.
|
||||
deltas.sort_by_key(|(_, delta)| if let FacetFieldIdDelta::Bulk = delta { 0 } else { 1 });
|
||||
|
||||
for (fid, delta) in deltas {
|
||||
// skip field ids that should not be facet leveled
|
||||
let Some(metadata) = global_fields_ids_map.metadata(fid) else {
|
||||
continue;
|
||||
@@ -187,11 +219,13 @@ fn compute_facet_level_database(
|
||||
let _entered = span.enter();
|
||||
match delta {
|
||||
FacetFieldIdDelta::Bulk => {
|
||||
progress.update_progress(PostProcessingFacets::StringsBulk);
|
||||
tracing::debug!(%fid, "bulk string facet processing");
|
||||
FacetsUpdateBulk::new_not_updating_level_0(index, vec![fid], FacetType::String)
|
||||
.execute(wtxn)?
|
||||
}
|
||||
FacetFieldIdDelta::Incremental(delta_data) => {
|
||||
progress.update_progress(PostProcessingFacets::StringsIncremental);
|
||||
tracing::debug!(%fid, len=%delta_data.len(), "incremental string facet processing");
|
||||
FacetsUpdateIncremental::new(
|
||||
index,
|
||||
@@ -207,16 +241,22 @@ fn compute_facet_level_database(
|
||||
}
|
||||
}
|
||||
|
||||
for (fid, delta) in facet_field_ids_delta.consume_facet_number_delta() {
|
||||
let mut deltas: Vec<_> = facet_field_ids_delta.consume_facet_number_delta().collect();
|
||||
// We move all bulks at the front and incrementals (others) at the end.
|
||||
deltas.sort_by_key(|(_, delta)| if let FacetFieldIdDelta::Bulk = delta { 0 } else { 1 });
|
||||
|
||||
for (fid, delta) in deltas {
|
||||
let span = tracing::trace_span!(target: "indexing::facet_field_ids", "number");
|
||||
let _entered = span.enter();
|
||||
match delta {
|
||||
FacetFieldIdDelta::Bulk => {
|
||||
progress.update_progress(PostProcessingFacets::NumbersBulk);
|
||||
tracing::debug!(%fid, "bulk number facet processing");
|
||||
FacetsUpdateBulk::new_not_updating_level_0(index, vec![fid], FacetType::Number)
|
||||
.execute(wtxn)?
|
||||
}
|
||||
FacetFieldIdDelta::Incremental(delta_data) => {
|
||||
progress.update_progress(PostProcessingFacets::NumbersIncremental);
|
||||
tracing::debug!(%fid, len=%delta_data.len(), "incremental number facet processing");
|
||||
FacetsUpdateIncremental::new(
|
||||
index,
|
||||
|
||||
@@ -7,6 +7,7 @@ use rand::SeedableRng as _;
|
||||
use time::OffsetDateTime;
|
||||
|
||||
use super::super::channel::*;
|
||||
use crate::database_stats::DatabaseStats;
|
||||
use crate::documents::PrimaryKey;
|
||||
use crate::fields_ids_map::metadata::FieldIdMapWithMetadata;
|
||||
use crate::index::IndexEmbeddingConfig;
|
||||
@@ -142,7 +143,6 @@ pub(super) fn update_index(
|
||||
embedders: EmbeddingConfigs,
|
||||
field_distribution: std::collections::BTreeMap<String, u64>,
|
||||
document_ids: roaring::RoaringBitmap,
|
||||
modified_docids: roaring::RoaringBitmap,
|
||||
) -> Result<()> {
|
||||
index.put_fields_ids_map(wtxn, new_fields_ids_map.as_fields_ids_map())?;
|
||||
if let Some(new_primary_key) = new_primary_key {
|
||||
@@ -153,7 +153,8 @@ pub(super) fn update_index(
|
||||
index.put_field_distribution(wtxn, &field_distribution)?;
|
||||
index.put_documents_ids(wtxn, &document_ids)?;
|
||||
index.set_updated_at(wtxn, &OffsetDateTime::now_utc())?;
|
||||
index.update_documents_stats(wtxn, modified_docids)?;
|
||||
let stats = DatabaseStats::new(index.documents.remap_data_type(), wtxn)?;
|
||||
index.put_documents_stats(wtxn, stats)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
||||
@@ -20,3 +20,23 @@ make_enum_progress! {
|
||||
Finalizing,
|
||||
}
|
||||
}
|
||||
|
||||
make_enum_progress! {
|
||||
pub enum PostProcessingFacets {
|
||||
StringsBulk,
|
||||
StringsIncremental,
|
||||
NumbersBulk,
|
||||
NumbersIncremental,
|
||||
FacetSearch,
|
||||
}
|
||||
}
|
||||
|
||||
make_enum_progress! {
|
||||
pub enum PostProcessingWords {
|
||||
WordFst,
|
||||
WordPrefixDocids,
|
||||
ExactWordPrefixDocids,
|
||||
WordPrefixFieldIdDocids,
|
||||
WordPrefixPositionDocids,
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user