Compare commits

..

84 Commits

Author SHA1 Message Date
ManyTheFish
e134d03a14 Add a test reproducing the bug 2024-10-03 12:04:59 +02:00
meili-bors[bot]
e78da35287 Merge #4930
4930: Return `UserError::InvalidDocumentId` for primary keys with a length greater than 512 bytes r=curquiza a=flevi29

# Pull Request

## Related issue
Fixes #4843

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?

Thank you so much for contributing to Meilisearch!


Co-authored-by: F. Levi <55688616+flevi29@users.noreply.github.com>
2024-09-30 15:55:05 +00:00
meili-bors[bot]
7f20c13f3f Merge #4943
4943: Correct broken links in README r=curquiza a=iornstein

# Pull Request

## Related issue
Fixes #4942

## What does this PR do?
- Corrects some broken links in the README. My suspicion is that some of these documentation articles were moved around without someone updating links in the README.

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)? _(well the contributing guidelines led me to create an issue first)_
- [x] Have you read the contributing guidelines? _yes_
- [x] Have you made sure that the title is accurate and descriptive of the changes? _yes_

Thank you so much for contributing to Meilisearch!


Co-authored-by: Ian Ornstein <ian.ornstein@gmail.com>
2024-09-19 19:22:04 +00:00
meili-bors[bot]
462a2329f1 Merge #4941
4941: Implement the binary quantization in meilisearch r=irevoire a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4873

## What does this PR do?
- Add a settings for the binary quantization
- Once enabled, the bq cannot be disabled

TODO:
- [ ] Missing a bunch of tests

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-09-19 15:50:24 +00:00
Tamo
f6483cf15d apply review comment 2024-09-19 16:47:06 +02:00
meili-bors[bot]
bd34ed01d9 Merge #4945
4945: Add swedish in default pipelines r=dureuill a=ManyTheFish

# Summary
## Fix Swedish support

In Swedish the characters `å`/`ä`/`ö` are completely different than `a` or `o`  and should not be normalized as the same character.
because the Swedish specialized pipeline was not activated by default, these characters were normalized even with the settings:
```json
{
  "localizedAttributes": [ { "locales": ["swe"], "attributePatterns": ["*"] } ]
}
```

## Update Charabia adding German support

German segmentation will now be activated using the setting:
```json
{
  "localizedAttributes": [ { "locales": ["deu"], "attributePatterns": ["*"] } ]
}
```

# TODO

- [x] Activate Swedish Pipeline
- [x] Add a test to avoid future regressions
- [x] Update Charabia


Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-09-19 14:42:03 +00:00
Tamo
74199f328d Make clippy happy 2024-09-19 16:27:34 +02:00
Tamo
1113c42de0 fix broken comments 2024-09-19 16:18:36 +02:00
ManyTheFish
465afe01b2 Add test for German 2024-09-19 16:09:01 +02:00
ManyTheFish
7d6768e4c4 Add german tokenization pipeline 2024-09-19 16:09:01 +02:00
ManyTheFish
f77661ec44 Update Charabia v0.9.1 2024-09-19 16:08:59 +02:00
Tamo
b8fd85a46d Get rids of useless collect before an iteration on the readers 2024-09-19 15:57:38 +02:00
Tamo
fd43c6c404 Improve the error message explaining you can't un-bq an embedder 2024-09-19 15:51:29 +02:00
Tamo
2564ec1496 Update milli/src/index.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 15:41:44 +02:00
Tamo
b6b73fe41c Update milli/src/update/settings.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 15:41:14 +02:00
Tamo
6dde41cc46 stop using a local version of arroy and instead point to the git repo with the rev 2024-09-19 15:25:38 +02:00
Tamo
163f8023a1 remove debug println 2024-09-19 12:13:25 +02:00
Tamo
2b120b89e4 update the test now that the embedder must be specified 2024-09-19 12:08:59 +02:00
Tamo
84f842233d snapshots the embedder settings in the dump import with vector test 2024-09-19 12:00:58 +02:00
Tamo
633537ccd7 fix updating documents without updating the settings 2024-09-19 12:00:58 +02:00
Tamo
e8d7c00d30 add a test on the settings value 2024-09-19 12:00:58 +02:00
Tamo
3f6301dbc9 fix the missing embedder name in the error message when trying to disable the binary quantization 2024-09-19 12:00:58 +02:00
Tamo
ca71b63ed1 adds integration tests 2024-09-19 12:00:58 +02:00
Tamo
2b6952eda1 rename the ArroyReader to an ArroyWrapper since it can read and write 2024-09-19 12:00:58 +02:00
Tamo
79f29eed3c fix the tests and the arroy_readers method 2024-09-19 12:00:58 +02:00
Tamo
cc45e264ca implement the binary quantization in meilisearch 2024-09-19 12:00:56 +02:00
meili-bors[bot]
5f474a640d Merge #4938
4938: Remove default embedder r=ManyTheFish a=dureuill

# Pull Request

## Related issue
Fixes #4738 

## What does this PR do?

[See public usage](https://meilisearch.notion.site/v1-11-AI-search-changes-0e37727193884a70999f254fa953ce6e#1044b06b651f80edb9d4ef6dc367bad0)

- Remove `hybrid.embedder` boolean from analytics because embedder is now mandatory and so the boolean would always be `true`
- Rework search kind so that a search without query but with vector is a vector search regardless of (non-zero) semantic ratio


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 09:17:14 +00:00
ManyTheFish
bbaee3dbc6 Add Swedish pipeline in all-tokenization feature 2024-09-19 08:34:51 +02:00
ManyTheFish
877717cb26 Add a test using Swedish documents 2024-09-19 08:34:04 +02:00
Ian Ornstein
716817122a Correct broken links in README 2024-09-18 16:30:29 -05:00
meili-bors[bot]
ff523a2357 Merge #4939
4939: Introduce the `STARTS WITH` filter operator r=irevoire a=Kerollmops

This PR fixes #4872 by introducing the `STARTS WITH` filter operator and gating it under the _contains filter_ experimental feature along with the `CONTAINS` one. I also updated [the experimental feature discussion page](https://github.com/orgs/meilisearch/discussions/763).

Co-authored-by: Clément Renault <clement@meilisearch.com>
2024-09-18 10:19:48 +00:00
meili-bors[bot]
29c3aca72a Merge #4929
4929: Add facets support to federated r=Kerollmops a=dureuill

# Pull Request

## Related issue 

- Fixes #4932 (sprint issue)
- Fixes  #4913 (user-opened issue)

## What does this PR do?

See [public usage](https://meilisearch.notion.site/v1-11-Federated-search-59b30e03383c40729d7541a3dffb0069)

> [!CAUTION]
> This PR introduces a 🚨**breaking change**🚨: `queries.facets` when `federation` is present and non-`null` is now **an error**

### Implementation standpoint:

- Facet distribution: fix issue where truncated facet distribution would have a wrong order
- facet distribution: implement Display for OrderBy


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-18 09:47:20 +00:00
Louis Dureuil
00f8d03f43 Use f32::min and f32::max 2024-09-18 11:46:10 +02:00
Clément Renault
50981ea778 Update the error messages 2024-09-18 11:44:29 +02:00
Louis Dureuil
c2caff1716 Remove obsolete enum 2024-09-18 11:26:43 +02:00
meili-bors[bot]
4c355bede7 Merge #4937
4937: Support iso 639 1 r=ManyTheFish a=ManyTheFish

# Pull Request

## Related issue
Fixes #4827

## What does this PR do?
- Add iso-639-1 variants to the Locales enum
- Convert iso-639-1 into iso-639-3


Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-09-18 05:29:32 +00:00
Louis Dureuil
174d69ff72 Don't override max value in indexes 2024-09-17 18:16:14 +02:00
Louis Dureuil
52a52f97cf Update tests 2024-09-17 17:49:12 +02:00
Louis Dureuil
5de4b48552 Fixup error messages 2024-09-17 17:49:00 +02:00
Louis Dureuil
df648ce7a6 Update tests 2024-09-17 17:40:14 +02:00
Louis Dureuil
af8edab21d Remove mention of sort order and recommend changing index settings on inconsistent order error 2024-09-17 17:39:51 +02:00
Louis Dureuil
c42746c4cd Update tests 2024-09-17 17:22:14 +02:00
Louis Dureuil
98b77aec66 Remove runtime sortFacetValuesBy 2024-09-17 17:22:03 +02:00
Clément Renault
54d3ba3357 Fix tests that check error message content 2024-09-17 17:14:39 +02:00
ManyTheFish
6e058709f2 Rustfmt 2024-09-17 17:02:06 +02:00
ManyTheFish
0fbf9ea5b1 Factorize using macro 2024-09-17 17:00:03 +02:00
Clément Renault
9f1fb4b425 Introduce the STARTS WITH filter operator gated under an experimental feature 2024-09-17 16:44:11 +02:00
Louis Dureuil
1120a5296c Update tests 2024-09-17 16:30:43 +02:00
Louis Dureuil
a35a339c3d Touchup error message 2024-09-17 16:30:43 +02:00
Louis Dureuil
cac5836f6f Remove hybrid.embedder boolean from analytics because embedder is now mandatory 2024-09-17 16:30:43 +02:00
Louis Dureuil
5239ae0297 Rework search kind so that a search without query but with vector is a vector search regardless of semantic ratio 2024-09-17 16:30:43 +02:00
Louis Dureuil
2fdb1d8018 SearchQueryGet can fail 2024-09-17 16:30:43 +02:00
Louis Dureuil
3c5e363554 Remove default embedders 2024-09-17 16:30:43 +02:00
Louis Dureuil
da0dd6febf Make embedder mandatory 2024-09-17 16:30:43 +02:00
ManyTheFish
a197d63ab6 simplify tests 2024-09-17 15:30:12 +02:00
ManyTheFish
390eadb733 Support iso-639-1 2024-09-17 15:01:01 +02:00
meili-bors[bot]
93f0317b94 Merge #4936
4936: Update version for the next release (v1.11.0) in Cargo.toml r=curquiza a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: curquiza <curquiza@users.noreply.github.com>
2024-09-17 11:47:08 +00:00
curquiza
29ff02f3ff Update version for the next release (v1.11.0) in Cargo.toml 2024-09-17 11:45:48 +00:00
Louis Dureuil
d9e0df74ea update test 2024-09-17 10:39:48 +02:00
Louis Dureuil
dc8a662209 federated queries: adjust error message 2024-09-17 10:39:48 +02:00
Louis Dureuil
6732dd95d7 Update tests 2024-09-17 10:39:48 +02:00
Louis Dureuil
95da428dc8 Use route in federated 2024-09-17 10:39:48 +02:00
Louis Dureuil
38c4be1c8e compute_facets accepts Route argument to fixup error code 2024-09-17 10:39:48 +02:00
Louis Dureuil
91dfab317f New error 2024-09-17 10:39:48 +02:00
Louis Dureuil
47e3c4b5c3 Add new tests 2024-09-17 10:39:48 +02:00
Louis Dureuil
533f1d4345 Federated search: support facets 2024-09-17 10:39:48 +02:00
Louis Dureuil
7b55462610 BREAKING CHANGE: errors if queries.facets in federated search 2024-09-17 10:39:48 +02:00
Louis Dureuil
f6114a1ff2 Introduce ComputedFacets and compute_facet_distribution_stats 2024-09-17 10:39:48 +02:00
Louis Dureuil
7c084b1286 SearchQueriesWithIndex changes 2024-09-17 10:39:47 +02:00
Louis Dureuil
57f9517a98 Required changes to IndexUid 2024-09-17 10:39:47 +02:00
Louis Dureuil
72cc573e0a Add new error types 2024-09-17 10:39:47 +02:00
Louis Dureuil
a48b1d5a79 Update existing tests following error message changes 2024-09-17 10:39:47 +02:00
Louis Dureuil
a94a87ee54 Slightly changes existing error messages 2024-09-17 10:39:47 +02:00
F. Levi
e098cc8320 Make comparison simpler, add IndexUid error details similarly 2024-09-17 00:16:15 +03:00
F. Levi
ec815fa368 Format 2024-09-16 23:59:48 +03:00
F. Levi
4a922a176f Add test for > 512 byte ID 2024-09-16 23:53:34 +03:00
F. Levi
51bc7b3173 Update tests 2024-09-16 22:22:24 +03:00
meili-bors[bot]
4b55ba68bc Merge #4911
4911: Bump quinn-proto from 0.11.3 to 0.11.8 r=Kerollmops a=dependabot[bot]

Bumps [quinn-proto](https://github.com/quinn-rs/quinn) from 0.11.3 to 0.11.8.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a href="https://github.com/quinn-rs/quinn/releases">quinn-proto's releases</a>.</em></p>
<blockquote>
<h2>quinn-proto 0.11.5</h2>
<h2>What's Changed</h2>
<ul>
<li>No workspace lints by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1955">quinn-rs/quinn#1955</a></li>
</ul>
<h2>quinn-proto 0.11.4</h2>
<h2>What's Changed</h2>
<ul>
<li>Fix panic in example due to unset default crypto provider by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1882">quinn-rs/quinn#1882</a></li>
<li>Fix zero-length connection IDs by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1883">quinn-rs/quinn#1883</a></li>
<li>Add support for NetBSD, fix OpenBSD by <a href="https://github.com/flub"><code>`@​flub</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1884">quinn-rs/quinn#1884</a></li>
<li>docs(udp): replace AsRawFd and AsRawSocket with AsFd and AsSocket by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1890">quinn-rs/quinn#1890</a></li>
<li>Resolve stopped/received_reset futures on lost connections by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1886">quinn-rs/quinn#1886</a></li>
<li>Bump version numbers (quinn 0.11.2, -proto 0.11.3) by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1891">quinn-rs/quinn#1891</a></li>
<li>udp: bump version to 0.5.2 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1892">quinn-rs/quinn#1892</a></li>
<li>docs(quinn): Clarify effects of setting AckFrequencyConfig by <a href="https://github.com/gretchenfrage"><code>`@​gretchenfrage</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1894">quinn-rs/quinn#1894</a></li>
<li>Apply clippy suggestions from Rust 1.79 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1895">quinn-rs/quinn#1895</a></li>
<li>Only send MAX_STREAMS when &gt;1/8 of flow control window is consumed  by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1898">quinn-rs/quinn#1898</a></li>
<li>fix: remove unused dependency tracing-attributes by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1903">quinn-rs/quinn#1903</a></li>
<li>proto: make initial destination cid configurable  by <a href="https://github.com/thynson"><code>`@​thynson</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1897">quinn-rs/quinn#1897</a></li>
<li>Allow configuring rng seed through <code>EndpointConfig</code> by <a href="https://github.com/aochagavia"><code>`@​aochagavia</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1901">quinn-rs/quinn#1901</a></li>
<li>quinn: introduce waking helpers by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1908">quinn-rs/quinn#1908</a></li>
<li>Wake blocked streams on 0-RTT rejection by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1905">quinn-rs/quinn#1905</a></li>
<li>Upgrade to rustc-hash 2 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1909">quinn-rs/quinn#1909</a></li>
<li>Fix unnecessary Incoming warning on Endpoint drop by <a href="https://github.com/gretchenfrage"><code>`@​gretchenfrage</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1907">quinn-rs/quinn#1907</a></li>
<li>Revise and add additional 0-rtt doc comments by <a href="https://github.com/gretchenfrage"><code>`@​gretchenfrage</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1826">quinn-rs/quinn#1826</a></li>
<li>docs: remove reference to sendmmsg by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1914">quinn-rs/quinn#1914</a></li>
<li>Fix debug assert with reordered ACKs by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1893">quinn-rs/quinn#1893</a></li>
<li>quinn: Make <code>Endpoint::client</code> dual-stack V6 by default by <a href="https://github.com/gretchenfrage"><code>`@​gretchenfrage</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1913">quinn-rs/quinn#1913</a></li>
<li>bench(udp): measure non-GSO &amp; GSO on localhost by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1915">quinn-rs/quinn#1915</a></li>
<li>proto: avoid overflow in handshake done statistic by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1918">quinn-rs/quinn#1918</a></li>
<li>Use workspace dependencies for all external dependencies by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1919">quinn-rs/quinn#1919</a></li>
<li>Fix lack of reexport of ConnectionStats and ResetError by <a href="https://github.com/TirushOne"><code>`@​TirushOne</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1920">quinn-rs/quinn#1920</a></li>
<li>[non-breaking] deps(udp): make tracing optional and add optional log by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1923">quinn-rs/quinn#1923</a></li>
<li>fix(udp): feature flag tracing in windows.rs by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1932">quinn-rs/quinn#1932</a></li>
<li>Bump MSRV to 1.70 following tokio 1.39 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1939">quinn-rs/quinn#1939</a></li>
<li>Raise default idle timeout to 30 seconds by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1938">quinn-rs/quinn#1938</a></li>
<li>Discard pre-handshake packets after the handshake by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1937">quinn-rs/quinn#1937</a></li>
<li>Apply suggestions from Clippy 1.80 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1941">quinn-rs/quinn#1941</a></li>
<li>chore(quinn): feature flag socket2 imports by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1933">quinn-rs/quinn#1933</a></li>
<li>refactor: move rust-version to workspace Cargo.toml by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1940">quinn-rs/quinn#1940</a></li>
<li>chore: move common package data to workspace Cargo.toml by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1943">quinn-rs/quinn#1943</a></li>
<li>Endpoint stats interface by <a href="https://github.com/ryleung-solana"><code>`@​ryleung-solana</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1900">quinn-rs/quinn#1900</a></li>
<li>Expose the Handshake Confirmed state by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1944">quinn-rs/quinn#1944</a></li>
<li>Exclude metrics with freestanding getters from EndpointStats by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1945">quinn-rs/quinn#1945</a></li>
<li>Fix incorrect initial DCID indexing on retried connections by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1946">quinn-rs/quinn#1946</a></li>
<li>Add expect message to unwrap in PacketBuilder by <a href="https://github.com/casey"><code>`@​casey</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1951">quinn-rs/quinn#1951</a></li>
<li>Revert &quot;proto: yield transport error for Initial packets with no CRYPTO&quot; by <a href="https://github.com/Ralith"><code>`@​Ralith</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1952">quinn-rs/quinn#1952</a></li>
<li>refactor(udp): introduce log facade by <a href="https://github.com/mxinden"><code>`@​mxinden</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1935">quinn-rs/quinn#1935</a></li>
<li>Update cargo-deny-action to v2 by <a href="https://github.com/djc"><code>`@​djc</code></a>` in <a href="https://redirect.github.com/quinn-rs/quinn/pull/1953">quinn-rs/quinn#1953</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a href="7c09b02073"><code>7c09b02</code></a> proto: bump version to 0.11.8 for release (<a href="https://redirect.github.com/quinn-rs/quinn/issues/1981">#1981</a>)</li>
<li><a href="59bccd2e7e"><code>59bccd2</code></a> Version bump <code>quinn</code> to enforce patched <code>quinn-proto</code></li>
<li><a href="a8ec510fd1"><code>a8ec510</code></a> proto: avoid panicking on rustls server config errors</li>
<li><a href="c26e8cd2f7"><code>c26e8cd</code></a> Bump versions</li>
<li><a href="e01609ccd8"><code>e01609c</code></a> Merge commit from fork</li>
<li><a href="c292a3c6a6"><code>c292a3c</code></a> Fix and test validation of IDCID length</li>
<li><a href="bb02a12a84"><code>bb02a12</code></a> fix(.github/android): use API level 26</li>
<li><a href="5e5cc93645"><code>5e5cc93</code></a> fix(.github/android): pass matrix.target and increase api to v26</li>
<li><a href="cef42cccef"><code>cef42cc</code></a> fix(udp): typo in sendmsg error log</li>
<li><a href="edf16a6f10"><code>edf16a6</code></a> ci(rust.yml): add workflow testing feature permutations</li>
<li>Additional commits viewable in <a href="https://github.com/quinn-rs/quinn/compare/quinn-proto-0.11.3...quinn-proto-0.11.8">compare view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=quinn-proto&package-manager=cargo&previous-version=0.11.3&new-version=0.11.8)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting ``@dependabot` rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- ``@dependabot` rebase` will rebase this PR
- ``@dependabot` recreate` will recreate this PR, overwriting any edits that have been made to it
- ``@dependabot` merge` will merge this PR after your CI passes on it
- ``@dependabot` squash and merge` will squash and merge this PR after your CI passes on it
- ``@dependabot` cancel merge` will cancel a previously requested merge and block automerging
- ``@dependabot` reopen` will reopen this PR if it is closed
- ``@dependabot` close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- ``@dependabot` show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency
- ``@dependabot` ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- ``@dependabot` ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- ``@dependabot` ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/meilisearch/meilisearch/network/alerts).

</details>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-16 13:32:32 +00:00
F. Levi
dcb61f8b3a Return error for primary keys with a length greater than 512 bytes 2024-09-14 11:34:13 +03:00
Louis Dureuil
23e14138bb facet distribution: implement Display for OrderBy 2024-09-12 17:43:50 +02:00
Louis Dureuil
e44325683a Facet distribution: fix issue where truncated facet distribution would have a wrong order 2024-09-12 17:43:49 +02:00
meili-bors[bot]
02c2b660f8 Merge #4920
4920: Change OpenAI default model r=dureuill a=dureuill

# Pull Request

## Related issue
Fixes #4856

See also [public usage](https://meilisearch.notion.site/v1-11-AI-search-changes-0e37727193884a70999f254fa953ce6e#b4685a48c4784262a149ec307ec58671)

## What does this PR do?
- make the `text-embedding-3-small` the default model for OpenAI instead of `text-embedding-ada-002`. Existing embedders are not impacted


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-11 07:08:39 +00:00
Louis Dureuil
f18e9cb7b3 Change openai default model 2024-09-09 13:09:35 +02:00
dependabot[bot]
3f3cebf5f9 Bump quinn-proto from 0.11.3 to 0.11.8
Bumps [quinn-proto](https://github.com/quinn-rs/quinn) from 0.11.3 to 0.11.8.
- [Release notes](https://github.com/quinn-rs/quinn/releases)
- [Commits](https://github.com/quinn-rs/quinn/compare/quinn-proto-0.11.3...quinn-proto-0.11.8)

---
updated-dependencies:
- dependency-name: quinn-proto
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-09-03 20:50:30 +00:00
79 changed files with 6943 additions and 4379 deletions

66
Cargo.lock generated
View File

@@ -387,14 +387,14 @@ checksum = "96d30a06541fbafbc7f82ed10c06164cfbd2c401138f6addd8404629c4b16711"
[[package]]
name = "arroy"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2ece9e5347e7fdaaea3181dec7f916677ad5f3fcbac183648ce1924eb4aeef9a"
source = "git+https://github.com/meilisearch/arroy/?rev=2386594dfb009ce08821a925ccc89fb8e30bf73d#2386594dfb009ce08821a925ccc89fb8e30bf73d"
dependencies = [
"bytemuck",
"byteorder",
"heed",
"log",
"memmap2",
"nohash",
"ordered-float",
"rand",
"rayon",
@@ -471,7 +471,7 @@ checksum = "72b3254f16251a8381aa12e40e3c4d2f0199f8c6508fbecb9d91f575e0fbb8c6"
[[package]]
name = "benchmarks"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"bytes",
@@ -527,7 +527,7 @@ dependencies = [
"proc-macro2",
"quote",
"regex",
"rustc-hash",
"rustc-hash 1.1.0",
"shlex",
"syn 2.0.60",
]
@@ -652,7 +652,7 @@ dependencies = [
[[package]]
name = "build-info"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"time",
@@ -933,9 +933,9 @@ dependencies = [
[[package]]
name = "charabia"
version = "0.9.0"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03cd8f290cae94934cdd0103c14c2de9faf2d7d85be0d24d511af2bf1b14119d"
checksum = "55ff52497324e7d168505a16949ae836c14595606fab94687238d2f6c8d4c798"
dependencies = [
"aho-corasick",
"csv",
@@ -1622,7 +1622,7 @@ dependencies = [
[[package]]
name = "dump"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"big_s",
@@ -1834,7 +1834,7 @@ checksum = "9fc0510504f03c51ada170672ac806f1f105a88aa97a5281117e1ddc3368e51a"
[[package]]
name = "file-store"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"tempfile",
"thiserror",
@@ -1856,7 +1856,7 @@ dependencies = [
[[package]]
name = "filter-parser"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"insta",
"nom",
@@ -1876,7 +1876,7 @@ dependencies = [
[[package]]
name = "flatten-serde-json"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"criterion",
"serde_json",
@@ -2000,7 +2000,7 @@ dependencies = [
[[package]]
name = "fuzzers"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"arbitrary",
"clap",
@@ -2552,7 +2552,7 @@ checksum = "206ca75c9c03ba3d4ace2460e57b189f39f43de612c2f85836e65c929701bb2d"
[[package]]
name = "index-scheduler"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"arroy",
@@ -2746,7 +2746,7 @@ dependencies = [
[[package]]
name = "json-depth-checker"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"criterion",
"serde_json",
@@ -3365,7 +3365,7 @@ checksum = "490cc448043f947bae3cbee9c203358d62dbee0db12107a74be5c30ccfd09771"
[[package]]
name = "meili-snap"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"insta",
"md5",
@@ -3374,7 +3374,7 @@ dependencies = [
[[package]]
name = "meilisearch"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"actix-cors",
"actix-http",
@@ -3463,7 +3463,7 @@ dependencies = [
[[package]]
name = "meilisearch-auth"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"base64 0.22.1",
"enum-iterator",
@@ -3482,7 +3482,7 @@ dependencies = [
[[package]]
name = "meilisearch-types"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"actix-web",
"anyhow",
@@ -3512,7 +3512,7 @@ dependencies = [
[[package]]
name = "meilitool"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"clap",
@@ -3543,7 +3543,7 @@ dependencies = [
[[package]]
name = "milli"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"arroy",
"big_s",
@@ -3686,6 +3686,12 @@ version = "0.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d02c0b00610773bb7fc61d85e13d86c7858cbdf00e1a120bfc41bc055dbaa0e"
[[package]]
name = "nohash"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0f889fb66f7acdf83442c35775764b51fed3c606ab9cee51500dbde2cf528ca"
[[package]]
name = "nom"
version = "7.1.3"
@@ -3977,7 +3983,7 @@ checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"
[[package]]
name = "permissive-json-pointer"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"big_s",
"serde_json",
@@ -4308,7 +4314,7 @@ dependencies = [
"pin-project-lite",
"quinn-proto",
"quinn-udp",
"rustc-hash",
"rustc-hash 1.1.0",
"rustls",
"thiserror",
"tokio",
@@ -4317,14 +4323,14 @@ dependencies = [
[[package]]
name = "quinn-proto"
version = "0.11.3"
version = "0.11.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ddf517c03a109db8100448a4be38d498df8a210a99fe0e1b9eaf39e78c640efe"
checksum = "fadfaed2cd7f389d0161bb73eeb07b7b78f8691047a6f3e73caaeae55310a4a6"
dependencies = [
"bytes",
"rand",
"ring",
"rustc-hash",
"rustc-hash 2.0.0",
"rustls",
"slab",
"thiserror",
@@ -4697,6 +4703,12 @@ version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2"
[[package]]
name = "rustc-hash"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "583034fd73374156e66797ed8e5b0d5690409c9226b22d87cb7f19821c05d152"
[[package]]
name = "rustc_version"
version = "0.4.0"
@@ -5348,7 +5360,7 @@ dependencies = [
"fancy-regex 0.12.0",
"lazy_static",
"parking_lot",
"rustc-hash",
"rustc-hash 1.1.0",
]
[[package]]
@@ -6362,7 +6374,7 @@ dependencies = [
[[package]]
name = "xtask"
version = "1.10.1"
version = "1.11.0"
dependencies = [
"anyhow",
"build-info",

View File

@@ -22,7 +22,7 @@ members = [
]
[workspace.package]
version = "1.10.1"
version = "1.11.0"
authors = [
"Quentin de Quelen <quentin@dequelen.me>",
"Clément Renault <clement@meilisearch.com>",

View File

@@ -45,14 +45,14 @@ See the list of all our example apps in our [demos repository](https://github.co
## ✨ Features
- **Hybrid search:** Combine the best of both [semantic](https://www.meilisearch.com/docs/learn/experimental/vector_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) & full-text search to get the most relevant results
- **Search-as-you-type:** Find & display results in less than 50 milliseconds to provide an intuitive experience
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/configuration/typo_tolerance?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/relevancy/typo_tolerance_settings?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
- **[Filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) and [faceted search](https://www.meilisearch.com/docs/learn/fine_tuning_results/faceted_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** enhance your users' search experience with custom filters and build a faceted search interface in a few lines of code
- **[Sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** sort results based on price, date, or pretty much anything else your users need
- **[Synonym support](https://www.meilisearch.com/docs/learn/configuration/synonyms?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** configure synonyms to include more relevant content in your search results
- **[Synonym support](https://www.meilisearch.com/docs/learn/relevancy/synonyms?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** configure synonyms to include more relevant content in your search results
- **[Geosearch](https://www.meilisearch.com/docs/learn/fine_tuning_results/geosearch?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** filter and sort documents based on geographic data
- **[Extensive language support](https://www.meilisearch.com/docs/learn/what_is_meilisearch/language?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** search datasets in any language, with optimized support for Chinese, Japanese, Hebrew, and languages using the Latin alphabet
- **[Security management](https://www.meilisearch.com/docs/learn/security/master_api_keys?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** control which users can access what data with API keys that allow fine-grained permissions handling
- **[Multi-Tenancy](https://www.meilisearch.com/docs/learn/security/tenant_tokens?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** personalize search results for any number of application tenants
- **[Multi-Tenancy](https://www.meilisearch.com/docs/learn/security/multitenancy_tenant_tokens?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** personalize search results for any number of application tenants
- **Highly Customizable:** customize Meilisearch to your specific needs or use our out-of-the-box and hassle-free presets
- **[RESTful API](https://www.meilisearch.com/docs/reference/api/overview?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** integrate Meilisearch in your technical stack with our plugins and SDKs
- **Easy to install, deploy, and maintain**

View File

@@ -255,6 +255,8 @@ pub(crate) mod test {
}
"###);
insta::assert_json_snapshot!(vector_index.settings().unwrap());
{
let documents: Result<Vec<_>> = vector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();

View File

@@ -1,783 +1,56 @@
---
source: dump/src/reader/mod.rs
expression: document
expression: vector_index.settings().unwrap()
---
{
"id": "e3",
"desc": "overriden vector + map",
"_vectors": {
"default": [
0.2,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
],
"toto": [
0.1
]
}
"displayedAttributes": [
"*"
],
"searchableAttributes": [
"*"
],
"filterableAttributes": [],
"sortableAttributes": [],
"rankingRules": [
"words",
"typo",
"proximity",
"attribute",
"sort",
"exactness"
],
"stopWords": [],
"nonSeparatorTokens": [],
"separatorTokens": [],
"dictionary": [],
"synonyms": {},
"distinctAttribute": null,
"proximityPrecision": "byWord",
"typoTolerance": {
"enabled": true,
"minWordSizeForTypos": {
"oneTypo": 5,
"twoTypos": 9
},
"disableOnWords": [],
"disableOnAttributes": []
},
"faceting": {
"maxValuesPerFacet": 100,
"sortFacetValuesBy": {
"*": "alpha"
}
},
"pagination": {
"maxTotalHits": 1000
},
"embedders": {
"default": {
"source": "huggingFace",
"model": "BAAI/bge-base-en-v1.5",
"revision": "617ca489d9e86b49b8167676d8220688b99db36e",
"documentTemplate": "{% for field in fields %} {{ field.name }}: {{ field.value }}\n{% endfor %}"
}
},
"searchCutoffMs": null
}

View File

@@ -0,0 +1,780 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e0",
"desc": "overriden vector",
"_vectors": {
"default": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
]
}
}

View File

@@ -74,7 +74,8 @@ impl Display for IndexUidFormatError {
f,
"invalid index uid `{}`, the uid must be an integer \
or a string containing only alphanumeric characters \
a-z A-Z 0-9, hyphens - and underscores _.",
a-z A-Z 0-9, hyphens - and underscores _, \
and can not be more than 400 bytes.",
self.invalid_uid,
)
}

View File

@@ -74,7 +74,8 @@ impl Display for IndexUidFormatError {
f,
"invalid index uid `{}`, the uid must be an integer \
or a string containing only alphanumeric characters \
a-z A-Z 0-9, hyphens - and underscores _.",
a-z A-Z 0-9, hyphens - and underscores _, \
and can not be more than 400 bytes.",
self.invalid_uid,
)
}

View File

@@ -27,6 +27,7 @@ pub enum Condition<'a> {
LowerThanOrEqual(Token<'a>),
Between { from: Token<'a>, to: Token<'a> },
Contains { keyword: Token<'a>, word: Token<'a> },
StartsWith { keyword: Token<'a>, word: Token<'a> },
}
/// condition = value ("==" | ">" ...) value
@@ -121,6 +122,34 @@ pub fn parse_not_contains(input: Span) -> IResult<FilterCondition> {
))
}
/// starts with = value "CONTAINS" value
pub fn parse_starts_with(input: Span) -> IResult<FilterCondition> {
let (input, (fid, starts_with, value)) =
tuple((parse_value, tag("STARTS WITH"), cut(parse_value)))(input)?;
Ok((
input,
FilterCondition::Condition {
fid,
op: StartsWith { keyword: Token { span: starts_with, value: None }, word: value },
},
))
}
/// starts with = value "NOT" WS+ "CONTAINS" value
pub fn parse_not_starts_with(input: Span) -> IResult<FilterCondition> {
let keyword = tuple((tag("NOT"), multispace1, tag("STARTS WITH")));
let (input, (fid, (_not, _spaces, starts_with), value)) =
tuple((parse_value, keyword, cut(parse_value)))(input)?;
Ok((
input,
FilterCondition::Not(Box::new(FilterCondition::Condition {
fid,
op: StartsWith { keyword: Token { span: starts_with, value: None }, word: value },
})),
))
}
/// to = value value "TO" WS+ value
pub fn parse_to(input: Span) -> IResult<FilterCondition> {
let (input, (key, from, _, _, to)) =

View File

@@ -146,7 +146,7 @@ impl<'a> Display for Error<'a> {
}
ErrorKind::InvalidPrimary => {
let text = if input.trim().is_empty() { "but instead got nothing.".to_string() } else { format!("at `{}`.", escaped_input) };
writeln!(f, "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` {}", text)?
writeln!(f, "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` {}", text)?
}
ErrorKind::InvalidEscapedNumber => {
writeln!(f, "Found an invalid escaped sequence number: `{}`.", escaped_input)?

View File

@@ -49,7 +49,7 @@ use std::fmt::Debug;
pub use condition::{parse_condition, parse_to, Condition};
use condition::{
parse_contains, parse_exists, parse_is_empty, parse_is_not_empty, parse_is_not_null,
parse_is_null, parse_not_contains, parse_not_exists,
parse_is_null, parse_not_contains, parse_not_exists, parse_not_starts_with, parse_starts_with,
};
use error::{cut_with_err, ExpectedValueKind, NomErrorExt};
pub use error::{Error, ErrorKind};
@@ -166,7 +166,8 @@ impl<'a> FilterCondition<'a> {
| Condition::LowerThan(_)
| Condition::LowerThanOrEqual(_)
| Condition::Between { .. } => None,
Condition::Contains { keyword, word: _ } => Some(keyword),
Condition::Contains { keyword, word: _ }
| Condition::StartsWith { keyword, word: _ } => Some(keyword),
},
FilterCondition::Not(this) => this.use_contains_operator(),
FilterCondition::Or(seq) | FilterCondition::And(seq) => {
@@ -484,6 +485,8 @@ fn parse_primary(input: Span, depth: usize) -> IResult<FilterCondition> {
parse_to,
parse_contains,
parse_not_contains,
parse_starts_with,
parse_not_starts_with,
// the next lines are only for error handling and are written at the end to have the less possible performance impact
parse_geo,
parse_geo_distance,
@@ -567,6 +570,7 @@ impl<'a> std::fmt::Display for Condition<'a> {
Condition::LowerThanOrEqual(token) => write!(f, "<= {token}"),
Condition::Between { from, to } => write!(f, "{from} TO {to}"),
Condition::Contains { word, keyword: _ } => write!(f, "CONTAINS {word}"),
Condition::StartsWith { word, keyword: _ } => write!(f, "STARTS WITH {word}"),
}
}
}
@@ -680,6 +684,13 @@ pub mod tests {
insta::assert_snapshot!(p("NOT subscribers NOT CONTAINS 'hello'"), @"{subscribers} CONTAINS {hello}");
insta::assert_snapshot!(p("subscribers NOT CONTAINS 'hello'"), @"NOT ({subscribers} CONTAINS {hello})");
// Test STARTS WITH + NOT STARTS WITH
insta::assert_snapshot!(p("subscribers STARTS WITH 'hel'"), @"{subscribers} STARTS WITH {hel}");
insta::assert_snapshot!(p("NOT subscribers STARTS WITH 'hel'"), @"NOT ({subscribers} STARTS WITH {hel})");
insta::assert_snapshot!(p("subscribers NOT STARTS WITH hel"), @"NOT ({subscribers} STARTS WITH {hel})");
insta::assert_snapshot!(p("NOT subscribers NOT STARTS WITH 'hel'"), @"{subscribers} STARTS WITH {hel}");
insta::assert_snapshot!(p("subscribers NOT STARTS WITH 'hel'"), @"NOT ({subscribers} STARTS WITH {hel})");
// Test nested NOT
insta::assert_snapshot!(p("NOT NOT NOT NOT x = 5"), @"{x} = {5}");
insta::assert_snapshot!(p("NOT NOT (NOT NOT x = 5)"), @"{x} = {5}");
@@ -751,7 +762,7 @@ pub mod tests {
"###);
insta::assert_snapshot!(p("'OR'"), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `\'OR\'`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `\'OR\'`.
1:5 'OR'
"###);
@@ -761,12 +772,12 @@ pub mod tests {
"###);
insta::assert_snapshot!(p("channel Ponce"), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `channel Ponce`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `channel Ponce`.
1:14 channel Ponce
"###);
insta::assert_snapshot!(p("channel = Ponce OR"), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` but instead got nothing.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` but instead got nothing.
19:19 channel = Ponce OR
"###);
@@ -851,12 +862,12 @@ pub mod tests {
"###);
insta::assert_snapshot!(p("colour NOT EXIST"), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `colour NOT EXIST`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `colour NOT EXIST`.
1:17 colour NOT EXIST
"###);
insta::assert_snapshot!(p("subscribers 100 TO1000"), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `subscribers 100 TO1000`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `subscribers 100 TO1000`.
1:23 subscribers 100 TO1000
"###);
@@ -919,35 +930,35 @@ pub mod tests {
"###);
insta::assert_snapshot!(p(r#"value NULL"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value NULL`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value NULL`.
1:11 value NULL
"###);
insta::assert_snapshot!(p(r#"value NOT NULL"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value NOT NULL`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value NOT NULL`.
1:15 value NOT NULL
"###);
insta::assert_snapshot!(p(r#"value EMPTY"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value EMPTY`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value EMPTY`.
1:12 value EMPTY
"###);
insta::assert_snapshot!(p(r#"value NOT EMPTY"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value NOT EMPTY`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value NOT EMPTY`.
1:16 value NOT EMPTY
"###);
insta::assert_snapshot!(p(r#"value IS"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value IS`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value IS`.
1:9 value IS
"###);
insta::assert_snapshot!(p(r#"value IS NOT"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value IS NOT`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value IS NOT`.
1:13 value IS NOT
"###);
insta::assert_snapshot!(p(r#"value IS EXISTS"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value IS EXISTS`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value IS EXISTS`.
1:16 value IS EXISTS
"###);
insta::assert_snapshot!(p(r#"value IS NOT EXISTS"#), @r###"
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `value IS NOT EXISTS`.
Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `value IS NOT EXISTS`.
1:20 value IS NOT EXISTS
"###);
}

View File

@@ -212,6 +212,8 @@ fn is_keyword(s: &str) -> bool {
| "NULL"
| "EMPTY"
| "CONTAINS"
| "STARTS"
| "WITH"
| "_geoRadius"
| "_geoBoundingBox"
)

View File

@@ -40,7 +40,7 @@ ureq = "2.10.0"
uuid = { version = "1.10.0", features = ["serde", "v4"] }
[dev-dependencies]
arroy = "0.4.0"
arroy = { git = "https://github.com/meilisearch/arroy/", rev = "2386594dfb009ce08821a925ccc89fb8e30bf73d" }
big_s = "1.0.2"
crossbeam = "0.8.4"
insta = { version = "1.39.0", features = ["json", "redactions"] }

View File

@@ -101,7 +101,7 @@ pub enum Error {
)]
InvalidTaskCanceledBy { canceled_by: String },
#[error(
"{index_uid} is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_)."
"{index_uid} is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes."
)]
InvalidIndexUid { index_uid: String },
#[error("Task `{0}` not found.")]

View File

@@ -87,7 +87,7 @@ impl RoFeatures {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Using `CONTAINS` in a filter",
disabled_action: "Using `CONTAINS` or `STARTS WITH` in a filter",
feature: "contains filter",
issue_link: "https://github.com/orgs/meilisearch/discussions/763",
}

View File

@@ -1477,7 +1477,7 @@ impl IndexScheduler {
.map(
|IndexEmbeddingConfig {
name,
config: milli::vector::EmbeddingConfig { embedder_options, prompt },
config: milli::vector::EmbeddingConfig { embedder_options, prompt, quantized },
..
}| {
let prompt =
@@ -1486,7 +1486,10 @@ impl IndexScheduler {
{
let embedders = self.embedders.read().unwrap();
if let Some(embedder) = embedders.get(&embedder_options) {
return Ok((name, (embedder.clone(), prompt)));
return Ok((
name,
(embedder.clone(), prompt, quantized.unwrap_or_default()),
));
}
}
@@ -1500,7 +1503,7 @@ impl IndexScheduler {
let mut embedders = self.embedders.write().unwrap();
embedders.insert(embedder_options, embedder.clone());
}
Ok((name, (embedder, prompt)))
Ok((name, (embedder, prompt, quantized.unwrap_or_default())))
},
)
.collect();
@@ -5197,7 +5200,7 @@ mod tests {
let simple_hf_name = name.clone();
let configs = index_scheduler.embedders(configs).unwrap();
let (hf_embedder, _) = configs.get(&simple_hf_name).unwrap();
let (hf_embedder, _, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
@@ -5519,6 +5522,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[1, 2]>,
},
@@ -5531,28 +5535,8 @@ mod tests {
// the document with the id 3 should keep its original embedding
let docid = index.external_documents_ids.get(&rtxn, "3").unwrap().unwrap();
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(&rtxn, i as u16, index.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader.unwrap().item_vector(&rtxn, docid).unwrap();
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
let embeddings = index.embeddings(&rtxn, docid).unwrap();
let embeddings = &embeddings["my_doggo_embedder"];
snapshot!(embeddings.len(), @"1");
assert!(embeddings[0].iter().all(|i| *i == 3.0), "{:?}", embeddings[0]);
@@ -5737,6 +5721,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[0]>,
},
@@ -5780,6 +5765,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[]>,
},

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@@ -66,3 +66,5 @@ khmer = ["milli/khmer"]
vietnamese = ["milli/vietnamese"]
# force swedish character recomposition
swedish-recomposition = ["milli/swedish-recomposition"]
# force german character recomposition
german = ["milli/german"]

View File

@@ -238,8 +238,14 @@ InvalidIndexLimit , InvalidRequest , BAD_REQUEST ;
InvalidIndexOffset , InvalidRequest , BAD_REQUEST ;
InvalidIndexPrimaryKey , InvalidRequest , BAD_REQUEST ;
InvalidIndexUid , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchFacetsByIndex , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchFacetOrder , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchFederated , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchFederationOptions , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchMaxValuesPerFacet , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchMergeFacets , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchQueryFacets , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchQueryPagination , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchQueryRankingRules , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchWeight , InvalidRequest , BAD_REQUEST ;
@@ -389,7 +395,10 @@ impl ErrorCode for milli::Error {
| UserError::InvalidSettingsDimensions { .. }
| UserError::InvalidUrl { .. }
| UserError::InvalidSettingsDocumentTemplateMaxBytes { .. }
| UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
| UserError::InvalidPrompt(_)
| UserError::InvalidDisableBinaryQuantization { .. } => {
Code::InvalidSettingsEmbedders
}
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
UserError::NoPrimaryKeyCandidateFound => Code::IndexPrimaryKeyNoCandidateFound,
@@ -534,7 +543,8 @@ impl fmt::Display for deserr_codes::InvalidSimilarId {
f,
"the value of `id` is invalid. \
A document identifier can be of type integer or string, \
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_)."
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), \
and can not be more than 512 bytes."
)
}
}

View File

@@ -1,3 +1,4 @@
use std::borrow::Borrow;
use std::error::Error;
use std::fmt;
use std::str::FromStr;
@@ -8,7 +9,7 @@ use crate::error::{Code, ErrorCode};
/// An index uid is composed of only ascii alphanumeric characters, - and _, between 1 and 400
/// bytes long
#[derive(Debug, Clone, PartialEq, Eq, Deserr)]
#[derive(Debug, Clone, PartialEq, Eq, Deserr, PartialOrd, Ord)]
#[deserr(try_from(String) = IndexUid::try_from -> IndexUidFormatError)]
pub struct IndexUid(String);
@@ -70,6 +71,12 @@ impl From<IndexUid> for String {
}
}
impl Borrow<String> for IndexUid {
fn borrow(&self) -> &String {
&self.0
}
}
#[derive(Debug)]
pub struct IndexUidFormatError {
pub invalid_uid: String,
@@ -81,7 +88,8 @@ impl fmt::Display for IndexUidFormatError {
f,
"`{}` is not a valid index uid. Index uid can be an \
integer or a string containing only alphanumeric \
characters, hyphens (-) and underscores (_).",
characters, hyphens (-) and underscores (_), \
and can not be more than 512 bytes.",
self.invalid_uid,
)
}

View File

@@ -1,134 +1,6 @@
use deserr::Deserr;
use milli::LocalizedAttributesRule;
use serde::{Deserialize, Serialize};
use serde_json::json;
/// Generate a Locale enum and its From and Into implementations for milli::tokenizer::Language.
///
/// this enum implements `Deserr` in order to be used in the API.
macro_rules! make_locale {
($($language:tt), +) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr, Serialize, Deserialize, Ord, PartialOrd)]
#[deserr(rename_all = camelCase)]
#[serde(rename_all = "camelCase")]
pub enum Locale {
$($language),+,
}
impl From<milli::tokenizer::Language> for Locale {
fn from(other: milli::tokenizer::Language) -> Locale {
match other {
$(milli::tokenizer::Language::$language => Locale::$language), +
}
}
}
impl From<Locale> for milli::tokenizer::Language {
fn from(other: Locale) -> milli::tokenizer::Language {
match other {
$(Locale::$language => milli::tokenizer::Language::$language), +,
}
}
}
#[derive(Debug)]
pub struct LocaleFormatError {
pub invalid_locale: String,
}
impl std::fmt::Display for LocaleFormatError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let valid_locales = [$(Locale::$language),+].iter().map(|l| format!("`{}`", json!(l).as_str().unwrap())).collect::<Vec<_>>().join(", ");
write!(f, "Unsupported locale `{}`, expected one of {}", self.invalid_locale, valid_locales)
}
}
};
}
make_locale! {
Epo,
Eng,
Rus,
Cmn,
Spa,
Por,
Ita,
Ben,
Fra,
Deu,
Ukr,
Kat,
Ara,
Hin,
Jpn,
Heb,
Yid,
Pol,
Amh,
Jav,
Kor,
Nob,
Dan,
Swe,
Fin,
Tur,
Nld,
Hun,
Ces,
Ell,
Bul,
Bel,
Mar,
Kan,
Ron,
Slv,
Hrv,
Srp,
Mkd,
Lit,
Lav,
Est,
Tam,
Vie,
Urd,
Tha,
Guj,
Uzb,
Pan,
Aze,
Ind,
Tel,
Pes,
Mal,
Ori,
Mya,
Nep,
Sin,
Khm,
Tuk,
Aka,
Zul,
Sna,
Afr,
Lat,
Slk,
Cat,
Tgl,
Hye
}
impl std::error::Error for LocaleFormatError {}
impl std::str::FromStr for Locale {
type Err = LocaleFormatError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
milli::tokenizer::Language::from_code(s)
.map(Self::from)
.ok_or(LocaleFormatError { invalid_locale: s.to_string() })
}
}
#[derive(Debug, Clone, PartialEq, Eq, Deserr, Serialize, Deserialize)]
#[deserr(rename_all = camelCase)]
@@ -155,3 +27,140 @@ impl From<LocalizedAttributesRuleView> for LocalizedAttributesRule {
}
}
}
/// Generate a Locale enum and its From and Into implementations for milli::tokenizer::Language.
///
/// this enum implements `Deserr` in order to be used in the API.
macro_rules! make_locale {
($(($iso_639_1:ident, $iso_639_1_str:expr) => ($iso_639_3:ident, $iso_639_3_str:expr),)+) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr, Serialize, Deserialize, Ord, PartialOrd)]
#[deserr(rename_all = camelCase)]
#[serde(rename_all = "camelCase")]
pub enum Locale {
$($iso_639_1,)+
$($iso_639_3,)+
Cmn,
}
impl From<milli::tokenizer::Language> for Locale {
fn from(other: milli::tokenizer::Language) -> Locale {
match other {
$(milli::tokenizer::Language::$iso_639_3 => Locale::$iso_639_3,)+
milli::tokenizer::Language::Cmn => Locale::Cmn,
}
}
}
impl From<Locale> for milli::tokenizer::Language {
fn from(other: Locale) -> milli::tokenizer::Language {
match other {
$(Locale::$iso_639_1 => milli::tokenizer::Language::$iso_639_3,)+
$(Locale::$iso_639_3 => milli::tokenizer::Language::$iso_639_3,)+
Locale::Cmn => milli::tokenizer::Language::Cmn,
}
}
}
impl std::str::FromStr for Locale {
type Err = LocaleFormatError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let locale = match s {
$($iso_639_1_str => Locale::$iso_639_1,)+
$($iso_639_3_str => Locale::$iso_639_3,)+
"cmn" => Locale::Cmn,
_ => return Err(LocaleFormatError { invalid_locale: s.to_string() }),
};
Ok(locale)
}
}
#[derive(Debug)]
pub struct LocaleFormatError {
pub invalid_locale: String,
}
impl std::fmt::Display for LocaleFormatError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut valid_locales = [$($iso_639_1_str),+,$($iso_639_3_str),+,"cmn"];
valid_locales.sort_by(|left, right| left.len().cmp(&right.len()).then(left.cmp(right)));
write!(f, "Unsupported locale `{}`, expected one of {}", self.invalid_locale, valid_locales.join(", "))
}
}
impl std::error::Error for LocaleFormatError {}
};
}
make_locale!(
(Af, "af") => (Afr, "afr"),
(Ak, "ak") => (Aka, "aka"),
(Am, "am") => (Amh, "amh"),
(Ar, "ar") => (Ara, "ara"),
(Az, "az") => (Aze, "aze"),
(Be, "be") => (Bel, "bel"),
(Bn, "bn") => (Ben, "ben"),
(Bg, "bg") => (Bul, "bul"),
(Ca, "ca") => (Cat, "cat"),
(Cs, "cs") => (Ces, "ces"),
(Da, "da") => (Dan, "dan"),
(De, "de") => (Deu, "deu"),
(El, "el") => (Ell, "ell"),
(En, "en") => (Eng, "eng"),
(Eo, "eo") => (Epo, "epo"),
(Et, "et") => (Est, "est"),
(Fi, "fi") => (Fin, "fin"),
(Fr, "fr") => (Fra, "fra"),
(Gu, "gu") => (Guj, "guj"),
(He, "he") => (Heb, "heb"),
(Hi, "hi") => (Hin, "hin"),
(Hr, "hr") => (Hrv, "hrv"),
(Hu, "hu") => (Hun, "hun"),
(Hy, "hy") => (Hye, "hye"),
(Id, "id") => (Ind, "ind"),
(It, "it") => (Ita, "ita"),
(Jv, "jv") => (Jav, "jav"),
(Ja, "ja") => (Jpn, "jpn"),
(Kn, "kn") => (Kan, "kan"),
(Ka, "ka") => (Kat, "kat"),
(Km, "km") => (Khm, "khm"),
(Ko, "ko") => (Kor, "kor"),
(La, "la") => (Lat, "lat"),
(Lv, "lv") => (Lav, "lav"),
(Lt, "lt") => (Lit, "lit"),
(Ml, "ml") => (Mal, "mal"),
(Mr, "mr") => (Mar, "mar"),
(Mk, "mk") => (Mkd, "mkd"),
(My, "my") => (Mya, "mya"),
(Ne, "ne") => (Nep, "nep"),
(Nl, "nl") => (Nld, "nld"),
(Nb, "nb") => (Nob, "nob"),
(Or, "or") => (Ori, "ori"),
(Pa, "pa") => (Pan, "pan"),
(Fa, "fa") => (Pes, "pes"),
(Pl, "pl") => (Pol, "pol"),
(Pt, "pt") => (Por, "por"),
(Ro, "ro") => (Ron, "ron"),
(Ru, "ru") => (Rus, "rus"),
(Si, "si") => (Sin, "sin"),
(Sk, "sk") => (Slk, "slk"),
(Sl, "sl") => (Slv, "slv"),
(Sn, "sn") => (Sna, "sna"),
(Es, "es") => (Spa, "spa"),
(Sr, "sr") => (Srp, "srp"),
(Sv, "sv") => (Swe, "swe"),
(Ta, "ta") => (Tam, "tam"),
(Te, "te") => (Tel, "tel"),
(Tl, "tl") => (Tgl, "tgl"),
(Th, "th") => (Tha, "tha"),
(Tk, "tk") => (Tuk, "tuk"),
(Tr, "tr") => (Tur, "tur"),
(Uk, "uk") => (Ukr, "ukr"),
(Ur, "ur") => (Urd, "urd"),
(Uz, "uz") => (Uzb, "uzb"),
(Vi, "vi") => (Vie, "vie"),
(Yi, "yi") => (Yid, "yid"),
(Zh, "zh") => (Zho, "zho"),
(Zu, "zu") => (Zul, "zul"),
);

View File

@@ -153,6 +153,7 @@ greek = ["meilisearch-types/greek"]
khmer = ["meilisearch-types/khmer"]
vietnamese = ["meilisearch-types/vietnamese"]
swedish-recomposition = ["meilisearch-types/swedish-recomposition"]
german = ["meilisearch-types/german"]
[package.metadata.mini-dashboard]
assets-url = "https://github.com/meilisearch/mini-dashboard/releases/download/v0.2.14/build.zip"

View File

@@ -646,8 +646,6 @@ pub struct SearchAggregator {
max_vector_size: usize,
// Whether the semantic ratio passed to a hybrid search equals the default ratio.
semantic_ratio: bool,
// Whether a non-default embedder was specified
embedder: bool,
hybrid: bool,
retrieve_vectors: bool,
@@ -795,7 +793,6 @@ impl SearchAggregator {
if let Some(hybrid) = hybrid {
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
ret.embedder = hybrid.embedder.is_some();
ret.hybrid = true;
}
@@ -863,7 +860,6 @@ impl SearchAggregator {
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
total_degraded,
total_used_negative_operator,
@@ -923,7 +919,6 @@ impl SearchAggregator {
self.retrieve_vectors |= retrieve_vectors;
self.semantic_ratio |= semantic_ratio;
self.hybrid |= hybrid;
self.embedder |= embedder;
// pagination
self.max_limit = self.max_limit.max(max_limit);
@@ -999,7 +994,6 @@ impl SearchAggregator {
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
total_degraded,
total_used_negative_operator,
@@ -1051,7 +1045,6 @@ impl SearchAggregator {
"hybrid": {
"enabled": hybrid,
"semantic_ratio": semantic_ratio,
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
@@ -1782,7 +1775,6 @@ pub struct SimilarAggregator {
used_syntax: HashMap<String, usize>,
// Whether a non-default embedder was specified
embedder: bool,
retrieve_vectors: bool,
// pagination
@@ -1803,7 +1795,7 @@ impl SimilarAggregator {
pub fn from_query(query: &SimilarQuery, request: &HttpRequest) -> Self {
let SimilarQuery {
id: _,
embedder,
embedder: _,
offset,
limit,
attributes_to_retrieve: _,
@@ -1851,7 +1843,6 @@ impl SimilarAggregator {
ret.show_ranking_score_details = *show_ranking_score_details;
ret.ranking_score_threshold = ranking_score_threshold.is_some();
ret.embedder = embedder.is_some();
ret.retrieve_vectors = *retrieve_vectors;
ret
@@ -1883,7 +1874,6 @@ impl SimilarAggregator {
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
ranking_score_threshold,
retrieve_vectors,
} = other;
@@ -1914,7 +1904,6 @@ impl SimilarAggregator {
*used_syntax = used_syntax.saturating_add(value);
}
self.embedder |= embedder;
self.retrieve_vectors |= retrieve_vectors;
// pagination
@@ -1948,7 +1937,6 @@ impl SimilarAggregator {
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
ranking_score_threshold,
retrieve_vectors,
} = self;
@@ -1980,9 +1968,6 @@ impl SimilarAggregator {
"vector": {
"retrieve_vectors": retrieve_vectors,
},
"hybrid": {
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,

View File

@@ -4,6 +4,7 @@ use byte_unit::{Byte, UnitType};
use meilisearch_types::document_formats::{DocumentFormatError, PayloadType};
use meilisearch_types::error::{Code, ErrorCode, ResponseError};
use meilisearch_types::index_uid::{IndexUid, IndexUidFormatError};
use meilisearch_types::milli::OrderBy;
use serde_json::Value;
use tokio::task::JoinError;
@@ -27,10 +28,20 @@ pub enum MeilisearchHttpError {
EmptyFilter,
#[error("Invalid syntax for the filter parameter: `expected {}, found: {1}`.", .0.join(", "))]
InvalidExpression(&'static [&'static str], Value),
#[error("Using `federationOptions` is not allowed in a non-federated search.\n Hint: remove `federationOptions` from query #{0} or add `federation: {{}}` to the request.")]
#[error("Using `federationOptions` is not allowed in a non-federated search.\n - Hint: remove `federationOptions` from query #{0} or add `federation` to the request.")]
FederationOptionsInNonFederatedRequest(usize),
#[error("Inside `.queries[{0}]`: Using pagination options is not allowed in federated queries.\n Hint: remove `{1}` from query #{0} or remove `federation: {{}}` from the request")]
#[error("Inside `.queries[{0}]`: Using pagination options is not allowed in federated queries.\n - Hint: remove `{1}` from query #{0} or remove `federation` from the request\n - Hint: pass `federation.limit` and `federation.offset` for pagination in federated search")]
PaginationInFederatedQuery(usize, &'static str),
#[error("Inside `.queries[{0}]`: Using facet options is not allowed in federated queries.\n - Hint: remove `facets` from query #{0} or remove `federation` from the request\n - Hint: pass `federation.facetsByIndex.{1}: {2:?}` for facets in federated search")]
FacetsInFederatedQuery(usize, String, Vec<String>),
#[error("Inconsistent order for values in facet `{facet}`: index `{previous_uid}` orders {previous_facet_order}, but index `{current_uid}` orders {index_facet_order}.\n - Hint: Remove `federation.mergeFacets` or change `faceting.sortFacetValuesBy` to be consistent in settings.")]
InconsistentFacetOrder {
facet: String,
previous_facet_order: OrderBy,
previous_uid: String,
index_facet_order: OrderBy,
current_uid: String,
},
#[error("A {0} payload is missing.")]
MissingPayload(PayloadType),
#[error("Too many search requests running at the same time: {0}. Retry after 10s.")]
@@ -61,7 +72,7 @@ pub enum MeilisearchHttpError {
DocumentFormat(#[from] DocumentFormatError),
#[error(transparent)]
Join(#[from] JoinError),
#[error("Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.")]
#[error("Invalid request: missing `hybrid` parameter when `vector` is present.")]
MissingSearchHybrid,
}
@@ -96,6 +107,10 @@ impl ErrorCode for MeilisearchHttpError {
MeilisearchHttpError::PaginationInFederatedQuery(_, _) => {
Code::InvalidMultiSearchQueryPagination
}
MeilisearchHttpError::FacetsInFederatedQuery(..) => Code::InvalidMultiSearchQueryFacets,
MeilisearchHttpError::InconsistentFacetOrder { .. } => {
Code::InvalidMultiSearchFacetOrder
}
}
}
}

View File

@@ -128,8 +128,10 @@ impl std::ops::Deref for SemanticRatioGet {
}
}
impl From<SearchQueryGet> for SearchQuery {
fn from(other: SearchQueryGet) -> Self {
impl TryFrom<SearchQueryGet> for SearchQuery {
type Error = ResponseError;
fn try_from(other: SearchQueryGet) -> Result<Self, Self::Error> {
let filter = match other.filter {
Some(f) => match serde_json::from_str(&f) {
Ok(v) => Some(v),
@@ -140,19 +142,28 @@ impl From<SearchQueryGet> for SearchQuery {
let hybrid = match (other.hybrid_embedder, other.hybrid_semantic_ratio) {
(None, None) => None,
(None, Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: None })
(None, Some(_)) => {
return Err(ResponseError::from_msg(
"`hybridEmbedder` is mandatory when `hybridSemanticRatio` is present".into(),
meilisearch_types::error::Code::InvalidHybridQuery,
));
}
(Some(embedder), None) => {
Some(HybridQuery { semantic_ratio: DEFAULT_SEMANTIC_RATIO(), embedder })
}
(Some(embedder), None) => Some(HybridQuery {
semantic_ratio: DEFAULT_SEMANTIC_RATIO(),
embedder: Some(embedder),
}),
(Some(embedder), Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: Some(embedder) })
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder })
}
};
Self {
if other.vector.is_some() && hybrid.is_none() {
return Err(ResponseError::from_msg(
"`hybridEmbedder` is mandatory when `vector` is present".into(),
meilisearch_types::error::Code::MissingSearchHybrid,
));
}
Ok(Self {
q: other.q,
vector: other.vector.map(CS::into_inner),
offset: other.offset.0,
@@ -179,7 +190,7 @@ impl From<SearchQueryGet> for SearchQuery {
hybrid,
ranking_score_threshold: other.ranking_score_threshold.map(|o| o.0),
locales: other.locales.map(|o| o.into_iter().collect()),
}
})
}
}
@@ -219,7 +230,7 @@ pub async fn search_with_url_query(
debug!(parameters = ?params, "Search get");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let mut query: SearchQuery = params.into_inner().into();
let mut query: SearchQuery = params.into_inner().try_into()?;
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
@@ -312,44 +323,36 @@ pub fn search_kind(
features.check_vector("Passing `hybrid` as a parameter")?;
}
// regardless of anything, always do a keyword search when we don't have a vector and the query is whitespace or missing
if query.vector.is_none() {
match &query.q {
Some(q) if q.trim().is_empty() => return Ok(SearchKind::KeywordOnly),
None => return Ok(SearchKind::KeywordOnly),
_ => {}
// handle with care, the order of cases matters, the semantics is subtle
match (query.q.as_deref(), &query.hybrid, query.vector.as_deref()) {
// empty query, no vector => placeholder search
(Some(q), _, None) if q.trim().is_empty() => Ok(SearchKind::KeywordOnly),
// no query, no vector => placeholder search
(None, _, None) => Ok(SearchKind::KeywordOnly),
// hybrid.semantic_ratio == 1.0 => vector
(_, Some(HybridQuery { semantic_ratio, embedder }), v) if **semantic_ratio == 1.0 => {
SearchKind::semantic(index_scheduler, index, embedder, v.map(|v| v.len()))
}
}
match &query.hybrid {
Some(HybridQuery { semantic_ratio, embedder }) if **semantic_ratio == 1.0 => {
Ok(SearchKind::semantic(
index_scheduler,
index,
embedder.as_deref(),
query.vector.as_ref().map(Vec::len),
)?)
}
Some(HybridQuery { semantic_ratio, embedder: _ }) if **semantic_ratio == 0.0 => {
// hybrid.semantic_ratio == 0.0 => keyword
(_, Some(HybridQuery { semantic_ratio, embedder: _ }), _) if **semantic_ratio == 0.0 => {
Ok(SearchKind::KeywordOnly)
}
Some(HybridQuery { semantic_ratio, embedder }) => Ok(SearchKind::hybrid(
// no query, hybrid, vector => semantic
(None, Some(HybridQuery { semantic_ratio: _, embedder }), Some(v)) => {
SearchKind::semantic(index_scheduler, index, embedder, Some(v.len()))
}
// query, no hybrid, no vector => keyword
(Some(_), None, None) => Ok(SearchKind::KeywordOnly),
// query, hybrid, maybe vector => hybrid
(Some(_), Some(HybridQuery { semantic_ratio, embedder }), v) => SearchKind::hybrid(
index_scheduler,
index,
embedder.as_deref(),
embedder,
**semantic_ratio,
query.vector.as_ref().map(Vec::len),
)?),
None => match (query.q.as_deref(), query.vector.as_deref()) {
(_query, None) => Ok(SearchKind::KeywordOnly),
(None, Some(_vector)) => Ok(SearchKind::semantic(
index_scheduler,
index,
None,
query.vector.as_ref().map(Vec::len),
)?),
(Some(_), Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
},
v.map(|v| v.len()),
),
(_, None, Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
}
}

View File

@@ -643,12 +643,19 @@ fn embedder_analytics(
.max()
});
let binary_quantization_used = setting.as_ref().map(|map| {
map.values()
.filter_map(|config| config.clone().set())
.any(|config| config.binary_quantized.set().is_some())
});
json!(
{
"total": setting.as_ref().map(|s| s.len()),
"sources": sources,
"document_template_used": document_template_used,
"document_template_max_bytes": document_template_max_bytes
"document_template_max_bytes": document_template_max_bytes,
"binary_quantization_used": binary_quantization_used,
}
)
}

View File

@@ -102,8 +102,8 @@ async fn similar(
let index = index_scheduler.index(&index_uid)?;
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
let (embedder_name, embedder, quantized) =
SearchKind::embedder(&index_scheduler, &index, &query.embedder, None)?;
tokio::task::spawn_blocking(move || {
perform_similar(
@@ -111,6 +111,7 @@ async fn similar(
query,
embedder_name,
embedder,
quantized,
retrieve_vectors,
index_scheduler.features(),
)
@@ -139,8 +140,8 @@ pub struct SimilarQueryGet {
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThresholdGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: Option<String>,
#[deserr(error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: String,
}
#[derive(Debug, Clone, Copy, PartialEq, deserr::Deserr)]

View File

@@ -616,7 +616,7 @@ mod tests {
let err = deserr_query_params::<TaskDeletionOrCancelationQuery>(params).unwrap_err();
snapshot!(meili_snap::json_string!(err), @r###"
{
"message": "Invalid value in parameter `indexUids[1]`: `hé` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value in parameter `indexUids[1]`: `hé` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -628,7 +628,7 @@ mod tests {
let err = deserr_query_params::<TaskDeletionOrCancelationQuery>(params).unwrap_err();
snapshot!(meili_snap::json_string!(err), @r###"
{
"message": "Invalid value in parameter `indexUids`: `hé` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value in parameter `indexUids`: `hé` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -9,20 +9,24 @@ use std::vec::{IntoIter, Vec};
use actix_http::StatusCode;
use index_scheduler::{IndexScheduler, RoFeatures};
use indexmap::IndexMap;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::{
InvalidMultiSearchWeight, InvalidSearchLimit, InvalidSearchOffset,
InvalidMultiSearchFacetsByIndex, InvalidMultiSearchMaxValuesPerFacet,
InvalidMultiSearchMergeFacets, InvalidMultiSearchWeight, InvalidSearchLimit,
InvalidSearchOffset,
};
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoreValue};
use meilisearch_types::milli::{self, DocumentId, TimeBudget};
use meilisearch_types::milli::{self, DocumentId, OrderBy, TimeBudget};
use roaring::RoaringBitmap;
use serde::Serialize;
use super::ranking_rules::{self, RankingRules};
use super::{
prepare_search, AttributesFormat, HitMaker, HitsInfo, RetrieveVectors, SearchHit, SearchKind,
SearchQuery, SearchQueryWithIndex,
compute_facet_distribution_stats, prepare_search, AttributesFormat, ComputedFacets, FacetStats,
HitMaker, HitsInfo, RetrieveVectors, SearchHit, SearchKind, SearchQuery, SearchQueryWithIndex,
};
use crate::error::MeilisearchHttpError;
use crate::routes::indexes::search::search_kind;
@@ -73,6 +77,17 @@ pub struct Federation {
pub limit: usize,
#[deserr(default = super::DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default, error = DeserrJsonError<InvalidMultiSearchFacetsByIndex>)]
pub facets_by_index: BTreeMap<IndexUid, Option<Vec<String>>>,
#[deserr(default, error = DeserrJsonError<InvalidMultiSearchMergeFacets>)]
pub merge_facets: Option<MergeFacets>,
}
#[derive(Copy, Clone, Debug, deserr::Deserr, Default)]
#[deserr(error = DeserrJsonError<InvalidMultiSearchMergeFacets>, rename_all = camelCase, deny_unknown_fields)]
pub struct MergeFacets {
#[deserr(default, error = DeserrJsonError<InvalidMultiSearchMaxValuesPerFacet>)]
pub max_values_per_facet: Option<usize>,
}
#[derive(Debug, deserr::Deserr)]
@@ -82,7 +97,7 @@ pub struct FederatedSearch {
#[deserr(default)]
pub federation: Option<Federation>,
}
#[derive(Serialize, Clone, PartialEq)]
#[derive(Serialize, Clone)]
#[serde(rename_all = "camelCase")]
pub struct FederatedSearchResult {
pub hits: Vec<SearchHit>,
@@ -93,6 +108,13 @@ pub struct FederatedSearchResult {
#[serde(skip_serializing_if = "Option::is_none")]
pub semantic_hit_count: Option<u32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_distribution: Option<BTreeMap<String, IndexMap<String, u64>>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_stats: Option<BTreeMap<String, FacetStats>>,
#[serde(skip_serializing_if = "FederatedFacets::is_empty")]
pub facets_by_index: FederatedFacets,
// These fields are only used for analytics purposes
#[serde(skip)]
pub degraded: bool,
@@ -109,6 +131,9 @@ impl fmt::Debug for FederatedSearchResult {
semantic_hit_count,
degraded,
used_negative_operator,
facet_distribution,
facet_stats,
facets_by_index,
} = self;
let mut debug = f.debug_struct("SearchResult");
@@ -122,9 +147,18 @@ impl fmt::Debug for FederatedSearchResult {
if *degraded {
debug.field("degraded", degraded);
}
if let Some(facet_distribution) = facet_distribution {
debug.field("facet_distribution", &facet_distribution);
}
if let Some(facet_stats) = facet_stats {
debug.field("facet_stats", &facet_stats);
}
if let Some(semantic_hit_count) = semantic_hit_count {
debug.field("semantic_hit_count", &semantic_hit_count);
}
if !facets_by_index.is_empty() {
debug.field("facets_by_index", &facets_by_index);
}
debug.finish()
}
@@ -313,16 +347,104 @@ struct SearchHitByIndex {
}
struct SearchResultByIndex {
index: String,
hits: Vec<SearchHitByIndex>,
candidates: RoaringBitmap,
estimated_total_hits: usize,
degraded: bool,
used_negative_operator: bool,
facets: Option<ComputedFacets>,
}
#[derive(Debug, Clone, Default, Serialize)]
pub struct FederatedFacets(pub BTreeMap<String, ComputedFacets>);
impl FederatedFacets {
pub fn insert(&mut self, index: String, facets: Option<ComputedFacets>) {
if let Some(facets) = facets {
self.0.insert(index, facets);
}
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn merge(
self,
MergeFacets { max_values_per_facet }: MergeFacets,
facet_order: BTreeMap<String, (String, OrderBy)>,
) -> Option<ComputedFacets> {
if self.is_empty() {
return None;
}
let mut distribution: BTreeMap<String, _> = Default::default();
let mut stats: BTreeMap<String, FacetStats> = Default::default();
for facets_by_index in self.0.into_values() {
for (facet, index_distribution) in facets_by_index.distribution {
match distribution.entry(facet) {
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(index_distribution);
}
std::collections::btree_map::Entry::Occupied(mut entry) => {
let distribution = entry.get_mut();
for (value, index_count) in index_distribution {
distribution
.entry(value)
.and_modify(|count| *count += index_count)
.or_insert(index_count);
}
}
}
}
for (facet, index_stats) in facets_by_index.stats {
match stats.entry(facet) {
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(index_stats);
}
std::collections::btree_map::Entry::Occupied(mut entry) => {
let stats = entry.get_mut();
stats.min = f64::min(stats.min, index_stats.min);
stats.max = f64::max(stats.max, index_stats.max);
}
}
}
}
// fixup order
for (facet, values) in &mut distribution {
let order_by = facet_order.get(facet).map(|(_, order)| *order).unwrap_or_default();
match order_by {
OrderBy::Lexicographic => {
values.sort_unstable_by(|left, _, right, _| left.cmp(right))
}
OrderBy::Count => {
values.sort_unstable_by(|_, left, _, right| {
left.cmp(right)
// biggest first
.reverse()
})
}
}
if let Some(max_values_per_facet) = max_values_per_facet {
values.truncate(max_values_per_facet)
};
}
Some(ComputedFacets { distribution, stats })
}
}
pub fn perform_federated_search(
index_scheduler: &IndexScheduler,
queries: Vec<SearchQueryWithIndex>,
federation: Federation,
mut federation: Federation,
features: RoFeatures,
) -> Result<FederatedSearchResult, ResponseError> {
let before_search = std::time::Instant::now();
@@ -342,6 +464,16 @@ pub fn perform_federated_search(
.into());
}
if let Some(facets) = federated_query.has_facets() {
let facets = facets.to_owned();
return Err(MeilisearchHttpError::FacetsInFederatedQuery(
query_index,
federated_query.index_uid.into_inner(),
facets,
)
.into());
}
let (index_uid, query, federation_options) = federated_query.into_index_query_federation();
queries_by_index.entry(index_uid.into_inner()).or_default().push(QueryByIndex {
@@ -353,13 +485,24 @@ pub fn perform_federated_search(
// 2. perform queries, merge and make hits index by index
let required_hit_count = federation.limit + federation.offset;
// In step (2), semantic_hit_count will be set to Some(0) if any search kind uses semantic
// Then in step (3), we'll update its value if there is any semantic search
let mut semantic_hit_count = None;
let mut results_by_index = Vec::with_capacity(queries_by_index.len());
let mut previous_query_data: Option<(RankingRules, usize, String)> = None;
// remember the order and name of first index for each facet when merging with index settings
// to detect if the order is inconsistent for a facet.
let mut facet_order: Option<BTreeMap<String, (String, OrderBy)>> = match federation.merge_facets
{
Some(MergeFacets { .. }) => Some(Default::default()),
_ => None,
};
for (index_uid, queries) in queries_by_index {
let first_query_index = queries.first().map(|query| query.query_index);
let index = match index_scheduler.index(&index_uid) {
Ok(index) => index,
Err(err) => {
@@ -367,9 +510,8 @@ pub fn perform_federated_search(
// Patch the HTTP status code to 400 as it defaults to 404 for `index_not_found`, but
// here the resource not found is not part of the URL.
err.code = StatusCode::BAD_REQUEST;
if let Some(query) = queries.first() {
err.message =
format!("Inside `.queries[{}]`: {}", query.query_index, err.message);
if let Some(query_index) = first_query_index {
err.message = format!("Inside `.queries[{}]`: {}", query_index, err.message);
}
return Err(err);
}
@@ -394,6 +536,23 @@ pub fn perform_federated_search(
let mut used_negative_operator = false;
let mut candidates = RoaringBitmap::new();
let facets_by_index = federation.facets_by_index.remove(&index_uid).flatten();
// TODO: recover the max size + facets_by_index as return value of this function so as not to ask it for all queries
if let Err(mut error) =
check_facet_order(&mut facet_order, &index_uid, &facets_by_index, &index, &rtxn)
{
error.message = format!(
"Inside `.federation.facetsByIndex.{index_uid}`: {error}{}",
if let Some(query_index) = first_query_index {
format!("\n - Note: index `{index_uid}` used in `.queries[{query_index}]`")
} else {
Default::default()
}
);
return Err(error);
}
// 2.1. Compute all candidates for each query in the index
let mut results_by_query = Vec::with_capacity(queries.len());
@@ -562,34 +721,116 @@ pub fn perform_federated_search(
.collect();
let merged_result = merged_result?;
let estimated_total_hits = candidates.len() as usize;
let facets = facets_by_index
.map(|facets_by_index| {
compute_facet_distribution_stats(
&facets_by_index,
&index,
&rtxn,
candidates,
super::Route::MultiSearch,
)
})
.transpose()
.map_err(|mut error| {
error.message = format!(
"Inside `.federation.facetsByIndex.{index_uid}`: {}{}",
error.message,
if let Some(query_index) = first_query_index {
format!("\n - Note: index `{index_uid}` used in `.queries[{query_index}]`")
} else {
Default::default()
}
);
error
})?;
results_by_index.push(SearchResultByIndex {
index: index_uid,
hits: merged_result,
candidates,
estimated_total_hits,
degraded,
used_negative_operator,
facets,
});
}
// bonus step, make sure to return an error if an index wants a non-faceted field, even if no query actually uses that index.
for (index_uid, facets) in federation.facets_by_index {
let index = match index_scheduler.index(&index_uid) {
Ok(index) => index,
Err(err) => {
let mut err = ResponseError::from(err);
// Patch the HTTP status code to 400 as it defaults to 404 for `index_not_found`, but
// here the resource not found is not part of the URL.
err.code = StatusCode::BAD_REQUEST;
err.message = format!(
"Inside `.federation.facetsByIndex.{index_uid}`: {}\n - Note: index `{index_uid}` is not used in queries",
err.message
);
return Err(err);
}
};
// Important: this is the only transaction we'll use for this index during this federated search
let rtxn = index.read_txn()?;
if let Err(mut error) =
check_facet_order(&mut facet_order, &index_uid, &facets, &index, &rtxn)
{
error.message = format!(
"Inside `.federation.facetsByIndex.{index_uid}`: {error}\n - Note: index `{index_uid}` is not used in queries",
);
return Err(error);
}
if let Some(facets) = facets {
if let Err(mut error) = compute_facet_distribution_stats(
&facets,
&index,
&rtxn,
Default::default(),
super::Route::MultiSearch,
) {
error.message =
format!("Inside `.federation.facetsByIndex.{index_uid}`: {}\n - Note: index `{index_uid}` is not used in queries", error.message);
return Err(error);
}
}
}
// 3. merge hits and metadata across indexes
// 3.1 merge metadata
let (estimated_total_hits, degraded, used_negative_operator) = {
let (estimated_total_hits, degraded, used_negative_operator, facets) = {
let mut estimated_total_hits = 0;
let mut degraded = false;
let mut used_negative_operator = false;
let mut facets: FederatedFacets = FederatedFacets::default();
for SearchResultByIndex {
index,
hits: _,
candidates,
estimated_total_hits: estimated_total_hits_by_index,
facets: facets_by_index,
degraded: degraded_by_index,
used_negative_operator: used_negative_operator_by_index,
} in &results_by_index
} in &mut results_by_index
{
estimated_total_hits += candidates.len() as usize;
estimated_total_hits += *estimated_total_hits_by_index;
degraded |= *degraded_by_index;
used_negative_operator |= *used_negative_operator_by_index;
let facets_by_index = std::mem::take(facets_by_index);
let index = std::mem::take(index);
facets.insert(index, facets_by_index);
}
(estimated_total_hits, degraded, used_negative_operator)
(estimated_total_hits, degraded, used_negative_operator, facets)
};
// 3.2 merge hits
@@ -606,6 +847,20 @@ pub fn perform_federated_search(
.map(|hit| hit.hit)
.collect();
let (facet_distribution, facet_stats, facets_by_index) =
match federation.merge_facets.zip(facet_order) {
Some((merge_facets, facet_order)) => {
let facets = facets.merge(merge_facets, facet_order);
let (facet_distribution, facet_stats) = facets
.map(|ComputedFacets { distribution, stats }| (distribution, stats))
.unzip();
(facet_distribution, facet_stats, FederatedFacets::default())
}
None => (None, None, facets),
};
let search_result = FederatedSearchResult {
hits: merged_hits,
processing_time_ms: before_search.elapsed().as_millis(),
@@ -617,7 +872,39 @@ pub fn perform_federated_search(
semantic_hit_count,
degraded,
used_negative_operator,
facet_distribution,
facet_stats,
facets_by_index,
};
Ok(search_result)
}
fn check_facet_order(
facet_order: &mut Option<BTreeMap<String, (String, OrderBy)>>,
current_index: &str,
facets_by_index: &Option<Vec<String>>,
index: &milli::Index,
rtxn: &milli::heed::RoTxn<'_>,
) -> Result<(), ResponseError> {
if let (Some(facet_order), Some(facets_by_index)) = (facet_order, facets_by_index) {
let index_facet_order = index.sort_facet_values_by(rtxn)?;
for facet in facets_by_index {
let index_facet_order = index_facet_order.get(facet);
let (previous_index, previous_facet_order) = facet_order
.entry(facet.to_owned())
.or_insert_with(|| (current_index.to_owned(), index_facet_order));
if previous_facet_order != &index_facet_order {
return Err(MeilisearchHttpError::InconsistentFacetOrder {
facet: facet.clone(),
previous_facet_order: *previous_facet_order,
previous_uid: previous_index.clone(),
current_uid: current_index.to_owned(),
index_facet_order,
}
.into());
}
}
};
Ok(())
}

View File

@@ -267,58 +267,54 @@ impl fmt::Debug for SearchQuery {
pub struct HybridQuery {
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
pub semantic_ratio: SemanticRatio,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(error = DeserrJsonError<InvalidEmbedder>)]
pub embedder: String,
}
#[derive(Clone)]
pub enum SearchKind {
KeywordOnly,
SemanticOnly { embedder_name: String, embedder: Arc<Embedder> },
Hybrid { embedder_name: String, embedder: Arc<Embedder>, semantic_ratio: f32 },
SemanticOnly { embedder_name: String, embedder: Arc<Embedder>, quantized: bool },
Hybrid { embedder_name: String, embedder: Arc<Embedder>, quantized: bool, semantic_ratio: f32 },
}
impl SearchKind {
pub(crate) fn semantic(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
let (embedder_name, embedder, quantized) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::SemanticOnly { embedder_name, embedder })
Ok(Self::SemanticOnly { embedder_name, embedder, quantized })
}
pub(crate) fn hybrid(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
semantic_ratio: f32,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
let (embedder_name, embedder, quantized) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
Ok(Self::Hybrid { embedder_name, embedder, quantized, semantic_ratio })
}
pub(crate) fn embedder(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
vector_len: Option<usize>,
) -> Result<(String, Arc<Embedder>), ResponseError> {
) -> Result<(String, Arc<Embedder>, bool), ResponseError> {
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name());
let embedder = embedders.get(embedder_name);
let embedder = embedder
let (embedder, _, quantized) = embedders
.get(embedder_name)
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
.map_err(milli::Error::from)?
.0;
.map_err(milli::Error::from)?;
if let Some(vector_len) = vector_len {
if vector_len != embedder.dimensions() {
@@ -332,7 +328,7 @@ impl SearchKind {
}
}
Ok((embedder_name.to_owned(), embedder))
Ok((embedder_name.to_owned(), embedder, quantized))
}
}
@@ -441,9 +437,6 @@ pub struct SearchQueryWithIndex {
}
impl SearchQueryWithIndex {
pub fn has_federation_options(&self) -> bool {
self.federation_options.is_some()
}
pub fn has_pagination(&self) -> Option<&'static str> {
if self.offset.is_some() {
Some("offset")
@@ -458,6 +451,10 @@ impl SearchQueryWithIndex {
}
}
pub fn has_facets(&self) -> Option<&[String]> {
self.facets.as_deref().filter(|v| !v.is_empty())
}
pub fn into_index_query_federation(self) -> (IndexUid, SearchQuery, Option<FederationOptions>) {
let SearchQueryWithIndex {
index_uid,
@@ -537,8 +534,8 @@ pub struct SimilarQuery {
pub limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidSimilarFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(error = DeserrJsonError<InvalidEmbedder>)]
pub embedder: String,
#[deserr(default, error = DeserrJsonError<InvalidSimilarAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarRetrieveVectors>)]
@@ -792,7 +789,7 @@ fn prepare_search<'t>(
search.query(q);
}
}
SearchKind::SemanticOnly { embedder_name, embedder } => {
SearchKind::SemanticOnly { embedder_name, embedder, quantized } => {
let vector = match query.vector.clone() {
Some(vector) => vector,
None => {
@@ -806,14 +803,19 @@ fn prepare_search<'t>(
}
};
search.semantic(embedder_name.clone(), embedder.clone(), Some(vector));
search.semantic(embedder_name.clone(), embedder.clone(), *quantized, Some(vector));
}
SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => {
SearchKind::Hybrid { embedder_name, embedder, quantized, semantic_ratio: _ } => {
if let Some(q) = &query.q {
search.query(q);
}
// will be embedded in hybrid search if necessary
search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone());
search.semantic(
embedder_name.clone(),
embedder.clone(),
*quantized,
query.vector.clone(),
);
}
}
@@ -987,39 +989,13 @@ pub fn perform_search(
HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits }
};
let (facet_distribution, facet_stats) = match facets {
Some(ref fields) => {
let mut facet_distribution = index.facets_distribution(&rtxn);
let max_values_by_facet = index
.max_values_per_facet(&rtxn)
.map_err(milli::Error::from)?
.map(|x| x as usize)
.unwrap_or(DEFAULT_VALUES_PER_FACET);
facet_distribution.max_values_per_facet(max_values_by_facet);
let sort_facet_values_by =
index.sort_facet_values_by(&rtxn).map_err(milli::Error::from)?;
if fields.iter().all(|f| f != "*") {
let fields: Vec<_> =
fields.iter().map(|n| (n, sort_facet_values_by.get(n))).collect();
facet_distribution.facets(fields);
}
let distribution = facet_distribution
.candidates(candidates)
.default_order_by(sort_facet_values_by.get("*"))
.execute()?;
let stats = facet_distribution.compute_stats()?;
(Some(distribution), Some(stats))
}
None => (None, None),
};
let facet_stats = facet_stats.map(|stats| {
stats.into_iter().map(|(k, (min, max))| (k, FacetStats { min, max })).collect()
});
let (facet_distribution, facet_stats) = facets
.map(move |facets| {
compute_facet_distribution_stats(&facets, index, &rtxn, candidates, Route::Search)
})
.transpose()?
.map(|ComputedFacets { distribution, stats }| (distribution, stats))
.unzip();
let result = SearchResult {
hits: documents,
@@ -1035,6 +1011,61 @@ pub fn perform_search(
Ok(result)
}
#[derive(Debug, Clone, Default, Serialize)]
pub struct ComputedFacets {
pub distribution: BTreeMap<String, IndexMap<String, u64>>,
pub stats: BTreeMap<String, FacetStats>,
}
enum Route {
Search,
MultiSearch,
}
fn compute_facet_distribution_stats<S: AsRef<str>>(
facets: &[S],
index: &Index,
rtxn: &RoTxn,
candidates: roaring::RoaringBitmap,
route: Route,
) -> Result<ComputedFacets, ResponseError> {
let mut facet_distribution = index.facets_distribution(rtxn);
let max_values_by_facet = index
.max_values_per_facet(rtxn)
.map_err(milli::Error::from)?
.map(|x| x as usize)
.unwrap_or(DEFAULT_VALUES_PER_FACET);
facet_distribution.max_values_per_facet(max_values_by_facet);
let sort_facet_values_by = index.sort_facet_values_by(rtxn).map_err(milli::Error::from)?;
// add specific facet if there is no placeholder
if facets.iter().all(|f| f.as_ref() != "*") {
let fields: Vec<_> =
facets.iter().map(|n| (n, sort_facet_values_by.get(n.as_ref()))).collect();
facet_distribution.facets(fields);
}
let distribution = facet_distribution
.candidates(candidates)
.default_order_by(sort_facet_values_by.get("*"))
.execute()
.map_err(|error| match (error, route) {
(
error @ milli::Error::UserError(milli::UserError::InvalidFacetsDistribution {
..
}),
Route::MultiSearch,
) => ResponseError::from_msg(error.to_string(), Code::InvalidMultiSearchFacets),
(error, _) => error.into(),
})?;
let stats = facet_distribution.compute_stats()?;
let stats = stats.into_iter().map(|(k, (min, max))| (k, FacetStats { min, max })).collect();
Ok(ComputedFacets { distribution, stats })
}
pub fn search_from_kind(
search_kind: SearchKind,
search: milli::Search<'_>,
@@ -1413,6 +1444,7 @@ pub fn perform_similar(
query: SimilarQuery,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
retrieve_vectors: RetrieveVectors,
features: RoFeatures,
) -> Result<SimilarResult, ResponseError> {
@@ -1441,8 +1473,16 @@ pub fn perform_similar(
));
};
let mut similar =
milli::Similar::new(internal_id, offset, limit, index, &rtxn, embedder_name, embedder);
let mut similar = milli::Similar::new(
internal_id,
offset,
limit,
index,
&rtxn,
embedder_name,
embedder,
quantized,
);
if let Some(ref filter) = query.filter {
if let Some(facets) = parse_filter(filter, Code::InvalidSimilarFilter, features)? {

View File

@@ -1023,7 +1023,7 @@ async fn error_document_add_create_index_bad_uid() {
snapshot!(json_string!(response),
@r###"
{
"message": "`883 fj!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`883 fj!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -1280,7 +1280,7 @@ async fn error_add_documents_bad_document_id() {
"indexedDocuments": 0
},
"error": {
"message": "Document identifier `\"foo & bar\"` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"message": "Document identifier `\"foo & bar\"` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_document_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_id"

View File

@@ -136,7 +136,7 @@ async fn get_all_documents_bad_filter() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `doggo`.\n1:6 doggo",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `doggo`.\n1:6 doggo",
"code": "invalid_document_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_filter"
@@ -525,7 +525,7 @@ async fn delete_document_by_filter() {
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `hello`.\n1:6 hello",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `hello`.\n1:6 hello",
"code": "invalid_document_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_filter"
@@ -723,7 +723,7 @@ async fn fetch_document_by_filter() {
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `cool doggo`.\n1:11 cool doggo",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `cool doggo`.\n1:11 cool doggo",
"code": "invalid_document_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_filter"

View File

@@ -11,7 +11,7 @@ async fn error_document_update_create_index_bad_uid() {
let (response, code) = index.update_documents(json!([{"id": 1}]), None).await;
let expected_response = json!({
"message": "`883 fj!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`883 fj!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -173,7 +173,7 @@ async fn error_update_documents_bad_document_id() {
assert_eq!(
response["error"]["message"],
json!(
r#"Document identifier `"foo & bar"` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_)."#
r#"Document identifier `"foo & bar"` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), and can not be more than 512 bytes."#
)
);
assert_eq!(response["error"]["code"], json!("invalid_document_id"));

View File

@@ -125,11 +125,11 @@ async fn create_index_with_primary_key() {
#[actix_rt::test]
async fn create_index_with_invalid_primary_key() {
let document = json!([ { "id": 2, "title": "Pride and Prejudice" } ]);
let documents = json!([ { "id": 2, "title": "Pride and Prejudice" } ]);
let server = Server::new().await;
let index = server.index("movies");
let (_response, code) = index.add_documents(document, Some("title")).await;
let (_response, code) = index.add_documents(documents, Some("title")).await;
assert_eq!(code, 202);
index.wait_task(0).await;
@@ -137,6 +137,17 @@ async fn create_index_with_invalid_primary_key() {
let (response, code) = index.get().await;
assert_eq!(code, 200);
assert_eq!(response["primaryKey"], json!(null));
let documents = json!([ { "id": "e".repeat(513) } ]);
let (_response, code) = index.add_documents(documents, Some("id")).await;
assert_eq!(code, 202);
index.wait_task(1).await;
let (response, code) = index.get().await;
assert_eq!(code, 200);
assert_eq!(response["primaryKey"], json!(null));
}
#[actix_rt::test]
@@ -192,7 +203,7 @@ async fn error_create_with_invalid_index_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.uid`: `test test#!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value at `.uid`: `test test#!` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -75,7 +75,7 @@ async fn create_index_bad_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.uid`: `the best doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value at `.uid`: `the best doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -136,7 +136,7 @@ async fn get_index_bad_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -232,7 +232,7 @@ async fn update_index_bad_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -247,7 +247,7 @@ async fn delete_index_bad_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -186,7 +186,7 @@ async fn get_invalid_index_uid() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "`this is not a valid index name` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`this is not a valid index name` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -646,7 +646,7 @@ async fn filter_invalid_syntax_object() {
.search(json!({"filter": "title & Glass"}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_search_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_filter"
@@ -669,7 +669,7 @@ async fn filter_invalid_syntax_array() {
.search(json!({"filter": ["title & Glass"]}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_search_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_filter"
@@ -1163,7 +1163,7 @@ async fn search_with_contains_without_enabling_the_feature() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using `CONTAINS` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"message": "Using `CONTAINS` or `STARTS WITH` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
@@ -1176,7 +1176,7 @@ async fn search_with_contains_without_enabling_the_feature() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using `CONTAINS` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n25:33 doggo != echo AND doggo CONTAINS kefir",
"message": "Using `CONTAINS` or `STARTS WITH` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n25:33 doggo != echo AND doggo CONTAINS kefir",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
@@ -1192,7 +1192,7 @@ async fn search_with_contains_without_enabling_the_feature() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using `CONTAINS` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"message": "Using `CONTAINS` or `STARTS WITH` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
@@ -1204,7 +1204,7 @@ async fn search_with_contains_without_enabling_the_feature() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using `CONTAINS` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"message": "Using `CONTAINS` or `STARTS WITH` in a filter requires enabling the `contains filter` experimental feature. See https://github.com/orgs/meilisearch/discussions/763\n7:15 doggo CONTAINS kefir",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"

View File

@@ -128,7 +128,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2, "embedder": "default"}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -137,7 +137,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -146,7 +146,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -161,7 +161,7 @@ async fn limit_offset() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true, "offset": 1, "limit": 1}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2, "embedder": "default"}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
@@ -174,7 +174,7 @@ async fn limit_offset() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.9}, "retrieveVectors": true, "offset": 1, "limit": 1}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.9, "embedder": "default"}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
@@ -188,8 +188,11 @@ async fn simple_search_hf() {
let server = Server::new().await;
let index = index_with_documents_hf(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) =
index.search_post(json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}})).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2, "embedder": "default"}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"0");
@@ -197,7 +200,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
// disable ranking score as the vectors between architectures are not equal
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.55}, "showRankingScore": false}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.55}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -206,7 +209,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.8}, "showRankingScore": false}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.8}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -215,7 +218,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Movie World", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
json!({"q": "Movie World", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -224,7 +227,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Wonder replacement", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
json!({"q": "Wonder replacement", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -237,7 +240,7 @@ async fn distribution_shift() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}, "retrieveVectors": true});
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "retrieveVectors": true});
let (response, code) = index.search_post(search.clone()).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9472135901451112}]"###);
@@ -271,7 +274,7 @@ async fn highlighter() {
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.2},
"hybrid": {"embedder": "default", "semanticRatio": 0.2},
"retrieveVectors": true,
"attributesToHighlight": [
"desc",
@@ -287,7 +290,7 @@ async fn highlighter() {
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.8},
"hybrid": {"embedder": "default", "semanticRatio": 0.8},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
@@ -304,7 +307,7 @@ async fn highlighter() {
// no highlighting on full semantic
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 1.0},
"hybrid": {"embedder": "default", "semanticRatio": 1.0},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
@@ -326,7 +329,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 1.2}}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": 1.2}}),
)
.await;
snapshot!(code, @"400 Bad Request");
@@ -341,7 +344,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": -0.8}}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": -0.8}}),
)
.await;
snapshot!(code, @"400 Bad Request");
@@ -357,7 +360,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": 1.2}),
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridEmbedder": "default", "hybridSemanticRatio": 1.2}),
)
.unwrap(),
)
@@ -375,7 +378,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": -0.2}),
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridEmbedder": "default", "hybridSemanticRatio": -0.2}),
)
.unwrap(),
)
@@ -398,7 +401,7 @@ async fn single_document() {
let (response, code) = index
.search_post(
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -414,7 +417,7 @@ async fn query_combination() {
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -423,7 +426,7 @@ async fn query_combination() {
// same with a different semantic ratio
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"hybrid": {"embedder": "default", "semanticRatio": 0.76}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -432,7 +435,7 @@ async fn query_combination() {
// wrong vector dimensions
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"400 Bad Request");
@@ -447,7 +450,7 @@ async fn query_combination() {
// full vector
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -456,7 +459,7 @@ async fn query_combination() {
// full keyword, without a query
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -465,7 +468,7 @@ async fn query_combination() {
// query + vector, full keyword => keyword
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -480,7 +483,7 @@ async fn query_combination() {
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.",
"message": "Invalid request: missing `hybrid` parameter when `vector` is present.",
"code": "missing_search_hybrid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#missing_search_hybrid"
@@ -490,7 +493,7 @@ async fn query_combination() {
// full vector, without a vector => error
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -507,7 +510,7 @@ async fn query_combination() {
// hybrid without a vector => full keyword
let (response, code) = index
.search_post(
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -523,7 +526,7 @@ async fn retrieve_vectors() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -573,7 +576,7 @@ async fn retrieve_vectors() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");

File diff suppressed because it is too large Load Diff

View File

@@ -1099,22 +1099,28 @@ async fn experimental_feature_vector_store() {
index.add_documents(json!(documents), None).await;
index.wait_task(0).await;
index
.search(json!({
let (response, code) = index
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
"hybrid": {
"embedder": "manual",
},
"showRankingScore": true
}), |response, code|{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
})
}))
.await;
{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
}
index
.search(json!({
"retrieveVectors": true,
@@ -1162,6 +1168,9 @@ async fn experimental_feature_vector_store() {
let (response, code) = index
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
"hybrid": {
"embedder": "manual",
},
"showRankingScore": true,
"retrieveVectors": true,
}))

File diff suppressed because it is too large Load Diff

View File

@@ -367,3 +367,50 @@ async fn search_on_exact_field() {
})
.await;
}
#[actix_rt::test]
async fn phrase_search_on_title() {
let server = Server::new().await;
let documents = json!([
{ "id": 8, "desc": "Document Review", "title": "Document Review Specialist II" },
{ "id": 5, "desc": "Document Review", "title": "Document Review Attorney" },
{ "id": 4, "desc": "Document Review", "title": "Document Review Manager - Cyber Incident Response (Remote)" },
{ "id": 3, "desc": "Document Review", "title": "Document Review Paralegal" },
{ "id": 2, "desc": "Document Review", "title": "Document Controller (Saudi National)" },
{ "id": 1, "desc": "Document Review", "title": "Document Reviewer" },
{ "id": 7, "desc": "Document Review", "title": "Document Review Specialist II" },
{ "id": 6, "desc": "Document Review", "title": "Document Review (Entry Level)" }
]);
let index = index_with_documents(&server, &documents).await;
index
.search(
json!({"q": "\"Document Review\"", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["title"]}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Document Review Specialist II"
},
{
"title": "Document Review Attorney"
},
{
"title": "Document Review Manager - Cyber Incident Response (Remote)"
},
{
"title": "Document Review Paralegal"
},
{
"title": "Document Review Specialist II"
},
{
"title": "Document Review (Entry Level)"
}
]
"###);
},
)
.await;
}

View File

@@ -330,7 +330,7 @@ async fn error_update_setting_unexisting_index_invalid_uid() {
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "`test##! ` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "`test##! ` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -18,7 +18,7 @@ async fn similar_unexisting_index() {
});
index
.similar(json!({"id": 287947}), |response, code| {
.similar(json!({"id": 287947, "embedder": "manual"}), |response, code| {
assert_eq!(code, 404);
assert_eq!(response, expected_response);
})
@@ -44,7 +44,7 @@ async fn similar_feature_not_enabled() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"id": 287947})).await;
let (response, code) = index.similar_post(json!({"id": 287947, "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -79,7 +79,7 @@ async fn similar_bad_id() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
@@ -172,7 +172,7 @@ async fn similar_invalid_id() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
@@ -199,7 +199,8 @@ async fn similar_not_found_id() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "definitely-doesnt-exist"})).await;
let (response, code) =
index.similar_post(json!({"id": "definitely-doesnt-exist", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -230,7 +231,8 @@ async fn similar_bad_offset() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "offset": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"id": 287947, "offset": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -241,7 +243,7 @@ async fn similar_bad_offset() {
}
"###);
let (response, code) = index.similar_get("?id=287947&offset=doggo").await;
let (response, code) = index.similar_get("?id=287947&offset=doggo&embedder=manual").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -272,7 +274,8 @@ async fn similar_bad_limit() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "limit": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"id": 287947, "limit": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -283,7 +286,7 @@ async fn similar_bad_limit() {
}
"###);
let (response, code) = index.similar_get("?id=287946&limit=doggo").await;
let (response, code) = index.similar_get("?id=287946&limit=doggo&embedder=manual").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -323,7 +326,8 @@ async fn similar_bad_filter() {
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (response, code) = index.similar_post(json!({ "id": 287947, "filter": true })).await;
let (response, code) =
index.similar_post(json!({ "id": 287947, "filter": true, "embedder": "manual" })).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -361,10 +365,10 @@ async fn filter_invalid_syntax_object() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 287947, "filter": "title & Glass"}), |response, code| {
.similar(json!({"id": 287947, "filter": "title & Glass", "embedder": "manual"}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
@@ -400,10 +404,10 @@ async fn filter_invalid_syntax_array() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 287947, "filter": ["title & Glass"]}), |response, code| {
.similar(json!({"id": 287947, "filter": ["title & Glass"], "embedder": "manual"}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
@@ -446,7 +450,7 @@ async fn filter_invalid_syntax_string() {
});
index
.similar(
json!({"id": 287947, "filter": "title = Glass XOR title = Glass"}),
json!({"id": 287947, "filter": "title = Glass XOR title = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
@@ -486,10 +490,13 @@ async fn filter_invalid_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["many = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["many = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -524,10 +531,13 @@ async fn filter_invalid_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "many = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "many = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -562,10 +572,13 @@ async fn filter_reserved_geo_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geo = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geo = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -600,10 +613,13 @@ async fn filter_reserved_geo_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geo = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geo = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -638,10 +654,13 @@ async fn filter_reserved_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoDistance = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geoDistance = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -676,10 +695,13 @@ async fn filter_reserved_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoDistance = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geoDistance = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -714,10 +736,13 @@ async fn filter_reserved_geo_point_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoPoint = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geoPoint = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -752,10 +777,13 @@ async fn filter_reserved_geo_point_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoPoint = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geoPoint = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -765,7 +793,8 @@ async fn similar_bad_retrieve_vectors() {
server.set_features(json!({"vectorStore": true})).await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"retrieveVectors": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"retrieveVectors": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -776,7 +805,8 @@ async fn similar_bad_retrieve_vectors() {
}
"###);
let (response, code) = index.similar_post(json!({"retrieveVectors": [true]})).await;
let (response, code) =
index.similar_post(json!({"retrieveVectors": [true], "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{

View File

@@ -80,9 +80,11 @@ async fn basic() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": 143, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
@@ -154,13 +156,16 @@ async fn basic() {
}
]
"###);
})
},
)
.await;
index
.similar(json!({"id": "299537", "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": "299537", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "How to Train Your Dragon: The Hidden World",
@@ -232,7 +237,8 @@ async fn basic() {
}
]
"###);
})
},
)
.await;
}
@@ -272,7 +278,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"4");
@@ -358,7 +364,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"3");
@@ -426,7 +432,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"2");
@@ -476,7 +482,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"1");
@@ -508,7 +514,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @"[]");
@@ -553,7 +559,7 @@ async fn filter() {
index
.similar(
json!({"id": 522681, "filter": "release_year = 2019", "retrieveVectors": true}),
json!({"id": 522681, "filter": "release_year = 2019", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
@@ -617,7 +623,7 @@ async fn filter() {
index
.similar(
json!({"id": 522681, "filter": "release_year < 2000", "retrieveVectors": true}),
json!({"id": 522681, "filter": "release_year < 2000", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
@@ -681,9 +687,11 @@ async fn limit_and_offset() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "limit": 1, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": 143, "limit": 1, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
@@ -704,12 +712,13 @@ async fn limit_and_offset() {
}
]
"###);
})
},
)
.await;
index
.similar(
json!({"id": 143, "limit": 1, "offset": 1, "retrieveVectors": true}),
json!({"id": 143, "limit": 1, "offset": 1, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"

View File

@@ -173,7 +173,7 @@ async fn task_bad_index_uids() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -184,7 +184,7 @@ async fn task_bad_index_uids() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"
@@ -195,7 +195,7 @@ async fn task_bad_index_uids() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_).",
"message": "Invalid value in parameter `indexUids`: `the good doggo` is not a valid index uid. Index uid can be an integer or a string containing only alphanumeric characters, hyphens (-) and underscores (_), and can not be more than 512 bytes.",
"code": "invalid_index_uid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_index_uid"

View File

@@ -0,0 +1,380 @@
use meili_snap::{json_string, snapshot};
use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
use crate::vector::generate_default_user_provided_documents;
#[actix_rt::test]
async fn retrieve_binary_quantize_status_in_the_settings() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3}"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3,"binaryQuantized":false}"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3,"binaryQuantized":true}"###);
}
#[actix_rt::test]
async fn binary_quantize_before_sending_documents() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await.succeeded();
// Make sure the documents are binary quantized
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
-1.0,
-1.0,
1.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
-1.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
}
#[actix_rt::test]
async fn binary_quantize_after_sending_documents() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await.succeeded();
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
// Make sure the documents are binary quantized
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
-1.0,
-1.0,
1.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
-1.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
}
#[actix_rt::test]
async fn try_to_disable_binary_quantization() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
let ret = server.wait_task(response.uid()).await;
snapshot!(ret, @r###"
{
"uid": "[uid]",
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false
}
}
},
"error": {
"message": "`.embedders.manual.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors.",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
}
#[actix_rt::test]
async fn binary_quantize_clear_documents() {
let server = Server::new().await;
let index = generate_default_user_provided_documents(&server).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (value, _code) = index.clear_all_documents().await;
index.wait_task(value.uid()).await.succeeded();
// Make sure the documents DB has been cleared
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [],
"offset": 0,
"limit": 20,
"total": 0
}
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) =
index.search_post(json!({ "hybrid": { "embedder": "manual" }, "vector": [1, 1, 1] })).await;
snapshot!(documents, @r###"
{
"hits": [],
"query": "",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 0,
"semanticHitCount": 0
}
"###);
}

View File

@@ -1,3 +1,4 @@
mod binary_quantized;
mod openai;
mod rest;
mod settings;
@@ -624,7 +625,8 @@ async fn clear_documents() {
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
let (documents, _code) =
index.search_post(json!({ "vector": [1, 1, 1], "hybrid": {"embedder": "manual"} })).await;
snapshot!(documents, @r###"
{
"hits": [],
@@ -685,7 +687,11 @@ async fn add_remove_one_vector_4588() {
let task = index.wait_task(value.uid()).await;
snapshot!(task, name: "document-deleted");
let (documents, _code) = index.search_post(json!({"vector": [1, 1, 1] })).await;
let (documents, _code) = index
.search_post(
json!({"vector": [1, 1, 1], "hybrid": {"semanticRatio": 1.0, "embedder": "manual"} }),
)
.await;
snapshot!(documents, @r###"
{
"hits": [

View File

@@ -449,7 +449,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"},
}))
.await;
snapshot!(code, @"200 OK");
@@ -489,7 +489,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -529,7 +529,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -616,7 +616,7 @@ async fn tokenize_long_text() {
"q": "grand chien de berger des montagnes",
"showRankingScore": true,
"attributesToRetrieve": ["id"],
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1064,7 +1064,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1104,7 +1104,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1144,7 +1144,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1295,7 +1295,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1335,7 +1335,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1375,7 +1375,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1525,7 +1525,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1565,7 +1565,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1605,7 +1605,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1756,7 +1756,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1796,7 +1796,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1836,7 +1836,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");

View File

@@ -218,7 +218,8 @@ async fn reset_embedder_documents() {
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
let (documents, _code) =
index.search_post(json!({ "vector": [1, 1, 1], "hybrid": {"embedder": "default"} })).await;
snapshot!(json_string!(documents), @r###"
{
"message": "Cannot find embedder with name `default`.",

View File

@@ -17,7 +17,7 @@ bincode = "1.3.3"
bstr = "1.9.1"
bytemuck = { version = "1.16.1", features = ["extern_crate_alloc"] }
byteorder = "1.5.0"
charabia = { version = "0.9.0", default-features = false }
charabia = { version = "0.9.1", default-features = false }
concat-arrays = "0.1.2"
crossbeam-channel = "0.5.13"
deserr = "0.6.2"
@@ -80,7 +80,7 @@ hf-hub = { git = "https://github.com/dureuill/hf-hub.git", branch = "rust_tls",
tiktoken-rs = "0.5.9"
liquid = "0.26.6"
rhai = { version = "1.19.0", features = ["serde", "no_module", "no_custom_syntax", "no_time", "sync"] }
arroy = "0.4.0"
arroy = { git = "https://github.com/meilisearch/arroy/", rev = "2386594dfb009ce08821a925ccc89fb8e30bf73d" }
rand = "0.8.5"
tracing = "0.1.40"
ureq = { version = "2.10.0", features = ["json"] }
@@ -106,6 +106,8 @@ all-tokenizations = [
"charabia/greek",
"charabia/khmer",
"charabia/vietnamese",
"charabia/swedish-recomposition",
"charabia/german-segmentation",
]
# Use POSIX semaphores instead of SysV semaphores in LMDB
@@ -138,6 +140,9 @@ khmer = ["charabia/khmer"]
# allow vietnamese specialized tokenization
vietnamese = ["charabia/vietnamese"]
# allow german specialized tokenization
german = ["charabia/german-segmentation"]
# force swedish character recomposition
swedish-recomposition = ["charabia/swedish-recomposition"]

View File

@@ -150,12 +150,13 @@ fn starts_with(selector: &str, key: &str) -> bool {
// FIXME: move to a DocumentId struct
fn validate_document_id(document_id: &str) -> Option<&str> {
if !document_id.is_empty()
&& document_id.chars().all(|c| matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '-' | '_'))
if document_id.is_empty()
|| document_id.len() > 512
|| !document_id.chars().all(|c| c.is_ascii_alphanumeric() || c == '-' || c == '_')
{
Some(document_id)
} else {
None
} else {
Some(document_id)
}
}
@@ -166,6 +167,7 @@ pub fn validate_document_id_value(document_id: Value) -> StdResult<String, UserE
Some(s) => Ok(s.to_string()),
None => Err(UserError::InvalidDocumentId { document_id: Value::String(string) }),
},
// a `u64` or `i64` cannot be more than 512 bytes once converted to a string
Value::Number(number) if !number.is_f64() => Ok(number.to_string()),
content => Err(UserError::InvalidDocumentId { document_id: content }),
}

View File

@@ -106,7 +106,8 @@ pub enum UserError {
#[error(
"Document identifier `{}` is invalid. \
A document identifier can be of type integer or string, \
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).", .document_id.to_string()
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), \
and can not be more than 512 bytes.", .document_id.to_string()
)]
InvalidDocumentId { document_id: Value },
#[error("Invalid facet distribution, {}", format_invalid_filter_distribution(.invalid_facets_name, .valid_facets_name))]
@@ -258,6 +259,10 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
},
#[error("`.embedders.{embedder_name}.dimensions`: `dimensions` cannot be zero")]
InvalidSettingsDimensions { embedder_name: String },
#[error(
"`.embedders.{embedder_name}.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors."
)]
InvalidDisableBinaryQuantization { embedder_name: String },
#[error("`.embedders.{embedder_name}.documentTemplateMaxBytes`: `documentTemplateMaxBytes` cannot be zero")]
InvalidSettingsDocumentTemplateMaxBytes { embedder_name: String },
#[error("`.embedders.{embedder_name}.url`: could not parse `{url}`: {inner_error}")]

View File

@@ -21,7 +21,7 @@ use crate::heed_codec::{BEU16StrCodec, FstSetCodec, StrBEU16Codec, StrRefCodec};
use crate::order_by_map::OrderByMap;
use crate::proximity::ProximityPrecision;
use crate::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME;
use crate::vector::{Embedding, EmbeddingConfig};
use crate::vector::{ArroyWrapper, Embedding, EmbeddingConfig};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldIdWordCountCodec,
@@ -162,7 +162,7 @@ pub struct Index {
/// Maps an embedder name to its id in the arroy store.
pub embedder_category_id: Database<Str, U8>,
/// Vector store based on arroy™.
pub vector_arroy: arroy::Database<arroy::distances::Angular>,
pub vector_arroy: arroy::Database<Unspecified>,
/// Maps the document id to the document as an obkv store.
pub(crate) documents: Database<BEU32, ObkvCodec>,
@@ -1614,15 +1614,17 @@ impl Index {
&'a self,
rtxn: &'a RoTxn<'a>,
embedder_id: u8,
) -> impl Iterator<Item = Result<arroy::Reader<'a, arroy::distances::Angular>>> + 'a {
quantized: bool,
) -> impl Iterator<Item = Result<ArroyWrapper>> + 'a {
crate::vector::arroy_db_range_for_embedder(embedder_id).map_while(move |k| {
arroy::Reader::open(rtxn, k, self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e.into()),
})
.transpose()
let reader = ArroyWrapper::new(self.vector_arroy, k, quantized);
// Here we don't care about the dimensions, but we want to know if we can read
// in the database or if its metadata are missing because there is no document with that many vectors.
match reader.dimensions(rtxn) {
Ok(_) => Some(Ok(reader)),
Err(arroy::Error::MissingMetadata(_)) => None,
Err(e) => Some(Err(e.into())),
}
})
}
@@ -1644,32 +1646,18 @@ impl Index {
docid: DocumentId,
) -> Result<BTreeMap<String, Vec<Embedding>>> {
let mut res = BTreeMap::new();
for row in self.embedder_category_id.iter(rtxn)? {
let (embedder_name, embedder_id) = row?;
let embedder_id = (embedder_id as u16) << 8;
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(rtxn, embedder_id | (i as u16), self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader?.item_vector(rtxn, docid)?;
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
res.insert(embedder_name.to_owned(), embeddings);
let embedding_configs = self.embedding_configs(rtxn)?;
for config in embedding_configs {
let embedder_id = self.embedder_category_id.get(rtxn, &config.name)?.unwrap();
let embeddings = self
.arroy_readers(rtxn, embedder_id, config.config.quantized())
.map_while(|reader| {
reader
.and_then(|r| r.item_vector(rtxn, docid).map_err(|e| e.into()))
.transpose()
})
.collect::<Result<Vec<_>>>()?;
res.insert(config.name.to_owned(), embeddings);
}
Ok(res)
}

View File

@@ -1,4 +1,5 @@
use std::collections::{BTreeMap, HashMap, HashSet};
use std::fmt::Display;
use std::ops::ControlFlow;
use std::{fmt, mem};
@@ -37,6 +38,15 @@ pub enum OrderBy {
Count,
}
impl Display for OrderBy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
OrderBy::Lexicographic => f.write_str("alphabetically"),
OrderBy::Count => f.write_str("by count"),
}
}
}
pub struct FacetDistribution<'a> {
facets: Option<HashMap<String, OrderBy>>,
candidates: Option<RoaringBitmap>,
@@ -100,7 +110,6 @@ impl<'a> FacetDistribution<'a> {
let mut lexicographic_distribution = BTreeMap::new();
let mut key_buffer: Vec<_> = field_id.to_be_bytes().to_vec();
let distribution_prelength = distribution.len();
let db = self.index.field_id_docid_facet_f64s;
for docid in candidates {
key_buffer.truncate(mem::size_of::<FieldId>());
@@ -113,23 +122,21 @@ impl<'a> FacetDistribution<'a> {
for result in iter {
let ((_, _, value), ()) = result?;
*lexicographic_distribution.entry(value.to_string()).or_insert(0) += 1;
if lexicographic_distribution.len() - distribution_prelength
== self.max_values_per_facet
{
break;
}
}
}
distribution.extend(lexicographic_distribution);
distribution.extend(
lexicographic_distribution
.into_iter()
.take(self.max_values_per_facet.saturating_sub(distribution.len())),
);
}
FacetType::String => {
let mut normalized_distribution = BTreeMap::new();
let mut key_buffer: Vec<_> = field_id.to_be_bytes().to_vec();
let db = self.index.field_id_docid_facet_strings;
'outer: for docid in candidates {
for docid in candidates {
key_buffer.truncate(mem::size_of::<FieldId>());
key_buffer.extend_from_slice(&docid.to_be_bytes());
let iter = db
@@ -144,14 +151,14 @@ impl<'a> FacetDistribution<'a> {
.or_insert_with(|| (original_value, 0));
*count += 1;
if normalized_distribution.len() == self.max_values_per_facet {
break 'outer;
}
// we'd like to break here if we have enough facet values, but we are collecting them by increasing docid,
// so higher ranked facets could be in later docids
}
}
let iter = normalized_distribution
.into_iter()
.take(self.max_values_per_facet.saturating_sub(distribution.len()))
.map(|(_normalized, (original, count))| (original.to_string(), count));
distribution.extend(iter);
}
@@ -467,7 +474,7 @@ mod tests {
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 1}}"###);
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::Count)))

View File

@@ -12,7 +12,7 @@ use serde_json::Value;
use super::facet_range_search;
use crate::error::{Error, UserError};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupValueCodec, OrderedF64Codec,
FacetGroupKey, FacetGroupKeyCodec, FacetGroupValue, FacetGroupValueCodec, OrderedF64Codec,
};
use crate::index::db_name::FACET_ID_STRING_DOCIDS;
use crate::{
@@ -336,6 +336,24 @@ impl<'a> Filter<'a> {
return Ok(docids);
}
Condition::StartsWith { keyword: _, word } => {
let value = crate::normalize_facet(word.value());
let base = FacetGroupKey { field_id, level: 0, left_bound: value.as_str() };
let docids = strings_db
.prefix_iter(rtxn, &base)?
.map(|result| -> Result<RoaringBitmap> {
match result {
Ok((_facet_group_key, FacetGroupValue { bitmap, .. })) => Ok(bitmap),
Err(_e) => Err(InternalError::from(SerializationError::Decoding {
db_name: Some(FACET_ID_STRING_DOCIDS),
})
.into()),
}
})
.union()?;
return Ok(docids);
}
};
let mut output = RoaringBitmap::new();

View File

@@ -190,7 +190,7 @@ impl<'a> Search<'a> {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
// no embedder, no semantic search
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
let Some(SemanticSearch { vector, embedder_name, embedder, quantized }) = semantic else {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
@@ -212,7 +212,7 @@ impl<'a> Search<'a> {
};
search.semantic =
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder, quantized });
// TODO: would be better to have two distinct functions at this point
let vector_results = search.execute()?;

View File

@@ -32,6 +32,7 @@ pub struct SemanticSearch {
vector: Option<Vec<f32>>,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
}
pub struct Search<'a> {
@@ -89,9 +90,10 @@ impl<'a> Search<'a> {
&mut self,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
vector: Option<Vec<f32>>,
) -> &mut Search<'a> {
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
self.semantic = Some(SemanticSearch { embedder_name, embedder, quantized, vector });
self
}
@@ -206,7 +208,7 @@ impl<'a> Search<'a> {
degraded,
used_negative_operator,
} = match self.semantic.as_ref() {
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder, quantized }) => {
execute_vector_search(
&mut ctx,
vector,
@@ -219,6 +221,7 @@ impl<'a> Search<'a> {
self.limit,
embedder_name,
embedder,
*quantized,
self.time_budget.clone(),
self.ranking_score_threshold,
)?

View File

@@ -312,6 +312,7 @@ fn get_ranking_rules_for_placeholder_search<'ctx>(
Ok(ranking_rules)
}
#[allow(clippy::too_many_arguments)]
fn get_ranking_rules_for_vector<'ctx>(
ctx: &SearchContext<'ctx>,
sort_criteria: &Option<Vec<AscDesc>>,
@@ -320,6 +321,7 @@ fn get_ranking_rules_for_vector<'ctx>(
target: &[f32],
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
// query graph search
@@ -347,6 +349,7 @@ fn get_ranking_rules_for_vector<'ctx>(
limit_plus_offset,
embedder_name,
embedder,
quantized,
)?;
ranking_rules.push(Box::new(vector_sort));
vector = true;
@@ -576,6 +579,7 @@ pub fn execute_vector_search(
length: usize,
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
) -> Result<PartialSearchResult> {
@@ -591,6 +595,7 @@ pub fn execute_vector_search(
vector,
embedder_name,
embedder,
quantized,
)?;
let mut placeholder_search_logger = logger::DefaultSearchLogger;

View File

@@ -16,6 +16,7 @@ pub struct VectorSort<Q: RankingRuleQueryTrait> {
limit: usize,
distribution_shift: Option<DistributionShift>,
embedder_index: u8,
quantized: bool,
}
impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
@@ -26,6 +27,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
limit: usize,
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
) -> Result<Self> {
let embedder_index = ctx
.index
@@ -41,6 +43,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
limit,
distribution_shift: embedder.distribution(),
embedder_index,
quantized,
})
}
@@ -49,16 +52,12 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
ctx: &mut SearchContext<'_>,
vector_candidates: &RoaringBitmap,
) -> Result<()> {
let readers: std::result::Result<Vec<_>, _> =
ctx.index.arroy_readers(ctx.txn, self.embedder_index).collect();
let readers = readers?;
let target = &self.target;
let mut results = Vec::new();
for reader in readers.iter() {
for reader in ctx.index.arroy_readers(ctx.txn, self.embedder_index, self.quantized) {
let nns_by_vector =
reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?;
reader?.nns_by_vector(ctx.txn, target, self.limit, Some(vector_candidates))?;
results.extend(nns_by_vector.into_iter());
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));

View File

@@ -18,9 +18,11 @@ pub struct Similar<'a> {
embedder_name: String,
embedder: Arc<Embedder>,
ranking_score_threshold: Option<f64>,
quantized: bool,
}
impl<'a> Similar<'a> {
#[allow(clippy::too_many_arguments)]
pub fn new(
id: DocumentId,
offset: usize,
@@ -29,6 +31,7 @@ impl<'a> Similar<'a> {
rtxn: &'a heed::RoTxn<'a>,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
) -> Self {
Self {
id,
@@ -40,6 +43,7 @@ impl<'a> Similar<'a> {
embedder_name,
embedder,
ranking_score_threshold: None,
quantized,
}
}
@@ -67,19 +71,13 @@ impl<'a> Similar<'a> {
.get(self.rtxn, &self.embedder_name)?
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
let readers: std::result::Result<Vec<_>, _> =
self.index.arroy_readers(self.rtxn, embedder_index).collect();
let readers = readers?;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_item = reader.nns_by_item(
for reader in self.index.arroy_readers(self.rtxn, embedder_index, self.quantized) {
let nns_by_item = reader?.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
None,
Some(&universe),
)?;
if let Some(mut nns_by_item) = nns_by_item {

View File

@@ -20,7 +20,7 @@ use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::error::{EmbedErrorKind, PossibleEmbeddingMistakes, UnusedVectorsDistribution};
use crate::vector::parsed_vectors::{ParsedVectorsDiff, VectorState, RESERVED_VECTORS_FIELD_NAME};
use crate::vector::settings::{EmbedderAction, ReindexAction};
use crate::vector::settings::ReindexAction;
use crate::vector::{Embedder, Embeddings};
use crate::{try_split_array_at, DocumentId, FieldId, Result, ThreadPoolNoAbort};
@@ -208,65 +208,65 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
if reindex_vectors {
for (name, action) in settings_diff.embedding_config_updates.iter() {
match action {
EmbedderAction::WriteBackToDocuments(_) => continue, // already deleted
EmbedderAction::Reindex(action) => {
let Some((embedder_name, (embedder, prompt))) = configs.remove_entry(name)
else {
tracing::error!(embedder = name, "Requested embedder config not found");
continue;
};
if let Some(action) = action.reindex() {
let Some((embedder_name, (embedder, prompt, _quantized))) =
configs.remove_entry(name)
else {
tracing::error!(embedder = name, "Requested embedder config not found");
continue;
};
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let action = match action {
ReindexAction::FullReindex => ExtractionAction::SettingsFullReindex,
ReindexAction::RegeneratePrompts => {
let Some((_, old_prompt)) = old_configs.get(name) else {
tracing::error!(embedder = name, "Old embedder config not found");
continue;
};
let action = match action {
ReindexAction::FullReindex => ExtractionAction::SettingsFullReindex,
ReindexAction::RegeneratePrompts => {
let Some((_, old_prompt, _quantized)) = old_configs.get(name) else {
tracing::error!(embedder = name, "Old embedder config not found");
continue;
};
ExtractionAction::SettingsRegeneratePrompts { old_prompt }
}
};
ExtractionAction::SettingsRegeneratePrompts { old_prompt }
}
};
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
prompts_writer,
remove_vectors_writer,
manual_vectors_writer,
add_to_user_provided: RoaringBitmap::new(),
action,
});
}
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
prompts_writer,
remove_vectors_writer,
manual_vectors_writer,
add_to_user_provided: RoaringBitmap::new(),
action,
});
} else {
continue;
}
}
} else {
// document operation
for (embedder_name, (embedder, prompt)) in configs.into_iter() {
for (embedder_name, (embedder, prompt, _quantized)) in configs.into_iter() {
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,

View File

@@ -43,7 +43,7 @@ use crate::update::index_documents::parallel::ImmutableObkvs;
use crate::update::{
IndexerConfig, UpdateIndexingStep, WordPrefixDocids, WordPrefixIntegerDocids, WordsPrefixesFst,
};
use crate::vector::EmbeddingConfigs;
use crate::vector::{ArroyWrapper, EmbeddingConfigs};
use crate::{CboRoaringBitmapCodec, Index, Object, Result};
static MERGED_DATABASE_COUNT: usize = 7;
@@ -679,6 +679,24 @@ where
let number_of_documents = self.index.number_of_documents(self.wtxn)?;
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
// If an embedder wasn't used in the typedchunk but must be binary quantized
// we should insert it in `dimension`
for (name, action) in settings_diff.embedding_config_updates.iter() {
if action.is_being_quantized && !dimension.contains_key(name.as_str()) {
let index = self.index.embedder_category_id.get(self.wtxn, name)?.ok_or(
InternalError::DatabaseMissingEntry {
db_name: "embedder_category_id",
key: None,
},
)?;
let first_id = crate::vector::arroy_db_range_for_embedder(index).next().unwrap();
let reader =
ArroyWrapper::new(self.index.vector_arroy, first_id, action.was_quantized);
let dim = reader.dimensions(self.wtxn)?;
dimension.insert(name.to_string(), dim);
}
}
for (embedder_name, dimension) in dimension {
let wtxn = &mut *self.wtxn;
let vector_arroy = self.index.vector_arroy;
@@ -686,13 +704,23 @@ where
let embedder_index = self.index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
)?;
let embedder_config = settings_diff.embedding_config_updates.get(&embedder_name);
let was_quantized = settings_diff
.old
.embedding_configs
.get(&embedder_name)
.map_or(false, |conf| conf.2);
let is_quantizing = embedder_config.map_or(false, |action| action.is_being_quantized);
pool.install(|| {
for k in crate::vector::arroy_db_range_for_embedder(embedder_index) {
let writer = arroy::Writer::new(vector_arroy, k, dimension);
if writer.need_build(wtxn)? {
writer.build(wtxn, &mut rng, None)?;
} else if writer.is_empty(wtxn)? {
let mut writer = ArroyWrapper::new(vector_arroy, k, was_quantized);
if is_quantizing {
writer.quantize(wtxn, k, dimension)?;
}
if writer.need_build(wtxn, dimension)? {
writer.build(wtxn, &mut rng, dimension)?;
} else if writer.is_empty(wtxn, dimension)? {
break;
}
}
@@ -2746,6 +2774,7 @@ mod tests {
response: Setting::NotSet,
distribution: Setting::NotSet,
headers: Setting::NotSet,
binary_quantized: Setting::NotSet,
}),
);
settings.set_embedder_settings(embedders);
@@ -2774,7 +2803,7 @@ mod tests {
std::sync::Arc::new(crate::vector::Embedder::new(embedder.embedder_options).unwrap());
let res = index
.search(&rtxn)
.semantic(embedder_name, embedder, Some([0.0, 1.0, 2.0].to_vec()))
.semantic(embedder_name, embedder, false, Some([0.0, 1.0, 2.0].to_vec()))
.execute()
.unwrap();
assert_eq!(res.documents_ids.len(), 3);

View File

@@ -28,7 +28,8 @@ use crate::update::index_documents::GrenadParameters;
use crate::update::settings::{InnerIndexSettings, InnerIndexSettingsDiff};
use crate::update::{AvailableDocumentsIds, UpdateIndexingStep};
use crate::vector::parsed_vectors::{ExplicitVectors, VectorOrArrayOfVectors};
use crate::vector::settings::{EmbedderAction, WriteBackToDocuments};
use crate::vector::settings::WriteBackToDocuments;
use crate::vector::ArroyWrapper;
use crate::{
is_faceted_by, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldsIdsMap, Index, Result,
};
@@ -989,19 +990,17 @@ impl<'a, 'i> Transform<'a, 'i> {
None
};
let readers: Result<
BTreeMap<&str, (Vec<arroy::Reader<'_, arroy::distances::Angular>>, &RoaringBitmap)>,
> = settings_diff
let readers: Result<BTreeMap<&str, (Vec<ArroyWrapper>, &RoaringBitmap)>> = settings_diff
.embedding_config_updates
.iter()
.filter_map(|(name, action)| {
if let EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}) = action
if let Some(WriteBackToDocuments { embedder_id, user_provided }) =
action.write_back()
{
let readers: Result<Vec<_>> =
self.index.arroy_readers(wtxn, *embedder_id).collect();
let readers: Result<Vec<_>> = self
.index
.arroy_readers(wtxn, *embedder_id, action.was_quantized)
.collect();
match readers {
Ok(readers) => Some(Ok((name.as_str(), (readers, user_provided)))),
Err(error) => Some(Err(error)),
@@ -1104,23 +1103,14 @@ impl<'a, 'i> Transform<'a, 'i> {
}
}
let mut writers = Vec::new();
// delete all vectors from the embedders that need removal
for (_, (readers, _)) in readers {
for reader in readers {
let dimensions = reader.dimensions();
let arroy_index = reader.index();
drop(reader);
let writer = arroy::Writer::new(self.index.vector_arroy, arroy_index, dimensions);
writers.push(writer);
let dimensions = reader.dimensions(wtxn)?;
reader.clear(wtxn, dimensions)?;
}
}
for writer in writers {
writer.clear(wtxn)?;
}
let grenad_params = GrenadParameters {
chunk_compression_type: self.indexer_settings.chunk_compression_type,
chunk_compression_level: self.indexer_settings.chunk_compression_level,

View File

@@ -27,6 +27,7 @@ use crate::update::index_documents::helpers::{
as_cloneable_grenad, keep_latest_obkv, try_split_array_at,
};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::ArroyWrapper;
use crate::{
lat_lng_to_xyz, CboRoaringBitmapCodec, DocumentId, FieldId, GeoPoint, Index, InternalError,
Result, SerializationError, U8StrStrCodec,
@@ -666,9 +667,14 @@ pub(crate) fn write_typed_chunk_into_index(
let embedder_index = index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
)?;
let binary_quantized = settings_diff
.old
.embedding_configs
.get(&embedder_name)
.map_or(false, |conf| conf.2);
// FIXME: allow customizing distance
let writers: Vec<_> = crate::vector::arroy_db_range_for_embedder(embedder_index)
.map(|k| arroy::Writer::new(index.vector_arroy, k, expected_dimension))
.map(|k| ArroyWrapper::new(index.vector_arroy, k, binary_quantized))
.collect();
// remove vectors for docids we want them removed
@@ -679,7 +685,7 @@ pub(crate) fn write_typed_chunk_into_index(
for writer in &writers {
// Uses invariant: vectors are packed in the first writers.
if !writer.del_item(wtxn, docid)? {
if !writer.del_item(wtxn, expected_dimension, docid)? {
break;
}
}
@@ -711,7 +717,7 @@ pub(crate) fn write_typed_chunk_into_index(
)));
}
for (embedding, writer) in embeddings.iter().zip(&writers) {
writer.add_item(wtxn, docid, embedding)?;
writer.add_item(wtxn, expected_dimension, docid, embedding)?;
}
}
@@ -734,7 +740,7 @@ pub(crate) fn write_typed_chunk_into_index(
break;
};
if candidate == vector {
writer.del_item(wtxn, docid)?;
writer.del_item(wtxn, expected_dimension, docid)?;
deleted_index = Some(index);
}
}
@@ -751,8 +757,13 @@ pub(crate) fn write_typed_chunk_into_index(
if let Some((last_index, vector)) = last_index_with_a_vector {
// unwrap: computed the index from the list of writers
let writer = writers.get(last_index).unwrap();
writer.del_item(wtxn, docid)?;
writers.get(deleted_index).unwrap().add_item(wtxn, docid, &vector)?;
writer.del_item(wtxn, expected_dimension, docid)?;
writers.get(deleted_index).unwrap().add_item(
wtxn,
expected_dimension,
docid,
&vector,
)?;
}
}
}
@@ -762,8 +773,8 @@ pub(crate) fn write_typed_chunk_into_index(
// overflow was detected during vector extraction.
for writer in &writers {
if !writer.contains_item(wtxn, docid)? {
writer.add_item(wtxn, docid, &vector)?;
if !writer.contains_item(wtxn, expected_dimension, docid)? {
writer.add_item(wtxn, expected_dimension, docid, &vector)?;
break;
}
}

View File

@@ -954,7 +954,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
let old_configs = self.index.embedding_configs(self.wtxn)?;
let remove_all: Result<BTreeMap<String, EmbedderAction>> = old_configs
.into_iter()
.map(|IndexEmbeddingConfig { name, config: _, user_provided }| -> Result<_> {
.map(|IndexEmbeddingConfig { name, config, user_provided }| -> Result<_> {
let embedder_id =
self.index.embedder_category_id.get(self.wtxn, &name)?.ok_or(
crate::InternalError::DatabaseMissingEntry {
@@ -964,10 +964,10 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
)?;
Ok((
name,
EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}),
EmbedderAction::with_write_back(
WriteBackToDocuments { embedder_id, user_provided },
config.quantized(),
),
))
})
.collect();
@@ -1004,7 +1004,8 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
match joined {
// updated config
EitherOrBoth::Both((name, (old, user_provided)), (_, new)) => {
let settings_diff = SettingsDiff::from_settings(old, new);
let was_quantized = old.binary_quantized.set().unwrap_or_default();
let settings_diff = SettingsDiff::from_settings(&name, old, new)?;
match settings_diff {
SettingsDiff::Remove => {
tracing::debug!(
@@ -1023,25 +1024,29 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
self.index.embedder_category_id.delete(self.wtxn, &name)?;
embedder_actions.insert(
name,
EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}),
EmbedderAction::with_write_back(
WriteBackToDocuments { embedder_id, user_provided },
was_quantized,
),
);
}
SettingsDiff::Reindex { action, updated_settings } => {
SettingsDiff::Reindex { action, updated_settings, quantize } => {
tracing::debug!(
embedder = name,
user_provided = user_provided.len(),
?action,
"reindex embedder"
);
embedder_actions.insert(name.clone(), EmbedderAction::Reindex(action));
embedder_actions.insert(
name.clone(),
EmbedderAction::with_reindex(action, was_quantized)
.with_is_being_quantized(quantize),
);
let new =
validate_embedding_settings(Setting::Set(updated_settings), &name)?;
updated_configs.insert(name, (new, user_provided));
}
SettingsDiff::UpdateWithoutReindex { updated_settings } => {
SettingsDiff::UpdateWithoutReindex { updated_settings, quantize } => {
tracing::debug!(
embedder = name,
user_provided = user_provided.len(),
@@ -1049,6 +1054,12 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
);
let new =
validate_embedding_settings(Setting::Set(updated_settings), &name)?;
if quantize {
embedder_actions.insert(
name.clone(),
EmbedderAction::default().with_is_being_quantized(true),
);
}
updated_configs.insert(name, (new, user_provided));
}
}
@@ -1067,8 +1078,10 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
&mut setting,
);
let setting = validate_embedding_settings(setting, &name)?;
embedder_actions
.insert(name.clone(), EmbedderAction::Reindex(ReindexAction::FullReindex));
embedder_actions.insert(
name.clone(),
EmbedderAction::with_reindex(ReindexAction::FullReindex, false),
);
updated_configs.insert(name, (setting, RoaringBitmap::new()));
}
}
@@ -1082,19 +1095,14 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
let mut find_free_index =
move || free_indices.find(|(_, free)| **free).map(|(index, _)| index as u8);
for (name, action) in embedder_actions.iter() {
match action {
EmbedderAction::Reindex(ReindexAction::RegeneratePrompts) => {
/* cannot be a new embedder, so has to have an id already */
}
EmbedderAction::Reindex(ReindexAction::FullReindex) => {
if self.index.embedder_category_id.get(self.wtxn, name)?.is_none() {
let id = find_free_index()
.ok_or(UserError::TooManyEmbedders(updated_configs.len()))?;
tracing::debug!(embedder = name, id, "assigning free id to new embedder");
self.index.embedder_category_id.put(self.wtxn, name, &id)?;
}
}
EmbedderAction::WriteBackToDocuments(_) => { /* already removed */ }
// ignore actions that are not possible for a new embedder
if matches!(action.reindex(), Some(ReindexAction::FullReindex))
&& self.index.embedder_category_id.get(self.wtxn, name)?.is_none()
{
let id =
find_free_index().ok_or(UserError::TooManyEmbedders(updated_configs.len()))?;
tracing::debug!(embedder = name, id, "assigning free id to new embedder");
self.index.embedder_category_id.put(self.wtxn, name, &id)?;
}
}
let updated_configs: Vec<IndexEmbeddingConfig> = updated_configs
@@ -1277,7 +1285,11 @@ impl InnerIndexSettingsDiff {
// if the user-defined searchables changed, then we need to reindex prompts.
if cache_user_defined_searchables {
for (embedder_name, (config, _)) in new_settings.embedding_configs.inner_as_ref() {
for (embedder_name, (config, _, _quantized)) in
new_settings.embedding_configs.inner_as_ref()
{
let was_quantized =
old_settings.embedding_configs.get(embedder_name).map_or(false, |conf| conf.2);
// skip embedders that don't use document templates
if !config.uses_document_template() {
continue;
@@ -1287,16 +1299,19 @@ impl InnerIndexSettingsDiff {
// this always makes the code clearer by explicitly handling the cases
match embedding_config_updates.entry(embedder_name.clone()) {
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(EmbedderAction::Reindex(ReindexAction::RegeneratePrompts));
entry.insert(EmbedderAction::with_reindex(
ReindexAction::RegeneratePrompts,
was_quantized,
));
}
std::collections::btree_map::Entry::Occupied(entry) => {
let EmbedderAction {
was_quantized: _,
is_being_quantized: _,
write_back: _, // We are deleting this embedder, so no point in regeneration
reindex: _, // We are already fully reindexing
} = entry.get();
}
std::collections::btree_map::Entry::Occupied(entry) => match entry.get() {
EmbedderAction::WriteBackToDocuments(_) => { /* we are deleting this embedder, so no point in regeneration */
}
EmbedderAction::Reindex(ReindexAction::FullReindex) => { /* we are already fully reindexing */
}
EmbedderAction::Reindex(ReindexAction::RegeneratePrompts) => { /* we are already regenerating prompts */
}
},
};
}
}
@@ -1546,7 +1561,7 @@ fn embedders(embedding_configs: Vec<IndexEmbeddingConfig>) -> Result<EmbeddingCo
.map(
|IndexEmbeddingConfig {
name,
config: EmbeddingConfig { embedder_options, prompt },
config: EmbeddingConfig { embedder_options, prompt, quantized },
..
}| {
let prompt = Arc::new(prompt.try_into().map_err(crate::Error::from)?);
@@ -1556,7 +1571,7 @@ fn embedders(embedding_configs: Vec<IndexEmbeddingConfig>) -> Result<EmbeddingCo
.map_err(crate::vector::Error::from)
.map_err(crate::Error::from)?,
);
Ok((name, (embedder, prompt)))
Ok((name, (embedder, prompt, quantized.unwrap_or_default())))
},
)
.collect();
@@ -1581,6 +1596,7 @@ fn validate_prompt(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}) => {
let max_bytes = match document_template_max_bytes.set() {
Some(max_bytes) => NonZeroUsize::new(max_bytes).ok_or_else(|| {
@@ -1613,6 +1629,7 @@ fn validate_prompt(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}))
}
new => Ok(new),
@@ -1638,6 +1655,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
} = settings;
if let Some(0) = dimensions.set() {
@@ -1678,6 +1696,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}));
};
match inferred_source {
@@ -1779,6 +1798,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}))
}

View File

@@ -1,8 +1,12 @@
use std::collections::HashMap;
use std::sync::Arc;
use arroy::distances::{Angular, BinaryQuantizedAngular};
use arroy::ItemId;
use deserr::{DeserializeError, Deserr};
use heed::{RoTxn, RwTxn, Unspecified};
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use serde::{Deserialize, Serialize};
use self::error::{EmbedError, NewEmbedderError};
@@ -26,6 +30,171 @@ pub type Embedding = Vec<f32>;
pub const REQUEST_PARALLELISM: usize = 40;
pub struct ArroyWrapper {
quantized: bool,
index: u16,
database: arroy::Database<Unspecified>,
}
impl ArroyWrapper {
pub fn new(database: arroy::Database<Unspecified>, index: u16, quantized: bool) -> Self {
Self { database, index, quantized }
}
pub fn index(&self) -> u16 {
self.index
}
pub fn dimensions(&self, rtxn: &RoTxn) -> Result<usize, arroy::Error> {
if self.quantized {
Ok(arroy::Reader::open(rtxn, self.index, self.quantized_db())?.dimensions())
} else {
Ok(arroy::Reader::open(rtxn, self.index, self.angular_db())?.dimensions())
}
}
pub fn quantize(
&mut self,
wtxn: &mut RwTxn,
index: u16,
dimension: usize,
) -> Result<(), arroy::Error> {
if !self.quantized {
let writer = arroy::Writer::new(self.angular_db(), index, dimension);
writer.prepare_changing_distance::<BinaryQuantizedAngular>(wtxn)?;
self.quantized = true;
}
Ok(())
}
pub fn need_build(&self, rtxn: &RoTxn, dimension: usize) -> Result<bool, arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).need_build(rtxn)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).need_build(rtxn)
}
}
pub fn build<R: rand::Rng + rand::SeedableRng>(
&self,
wtxn: &mut RwTxn,
rng: &mut R,
dimension: usize,
) -> Result<(), arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).build(wtxn, rng, None)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).build(wtxn, rng, None)
}
}
pub fn add_item(
&self,
wtxn: &mut RwTxn,
dimension: usize,
item_id: arroy::ItemId,
vector: &[f32],
) -> Result<(), arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension)
.add_item(wtxn, item_id, vector)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension)
.add_item(wtxn, item_id, vector)
}
}
pub fn del_item(
&self,
wtxn: &mut RwTxn,
dimension: usize,
item_id: arroy::ItemId,
) -> Result<bool, arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).del_item(wtxn, item_id)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).del_item(wtxn, item_id)
}
}
pub fn clear(&self, wtxn: &mut RwTxn, dimension: usize) -> Result<(), arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).clear(wtxn)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).clear(wtxn)
}
}
pub fn is_empty(&self, rtxn: &RoTxn, dimension: usize) -> Result<bool, arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).is_empty(rtxn)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).is_empty(rtxn)
}
}
pub fn contains_item(
&self,
rtxn: &RoTxn,
dimension: usize,
item: arroy::ItemId,
) -> Result<bool, arroy::Error> {
if self.quantized {
arroy::Writer::new(self.quantized_db(), self.index, dimension).contains_item(rtxn, item)
} else {
arroy::Writer::new(self.angular_db(), self.index, dimension).contains_item(rtxn, item)
}
}
pub fn nns_by_item(
&self,
rtxn: &RoTxn,
item: ItemId,
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Option<Vec<(ItemId, f32)>>, arroy::Error> {
if self.quantized {
arroy::Reader::open(rtxn, self.index, self.quantized_db())?
.nns_by_item(rtxn, item, limit, None, None, filter)
} else {
arroy::Reader::open(rtxn, self.index, self.angular_db())?
.nns_by_item(rtxn, item, limit, None, None, filter)
}
}
pub fn nns_by_vector(
&self,
txn: &RoTxn,
item: &[f32],
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
if self.quantized {
arroy::Reader::open(txn, self.index, self.quantized_db())?
.nns_by_vector(txn, item, limit, None, None, filter)
} else {
arroy::Reader::open(txn, self.index, self.angular_db())?
.nns_by_vector(txn, item, limit, None, None, filter)
}
}
pub fn item_vector(&self, rtxn: &RoTxn, docid: u32) -> Result<Option<Vec<f32>>, arroy::Error> {
if self.quantized {
arroy::Reader::open(rtxn, self.index, self.quantized_db())?.item_vector(rtxn, docid)
} else {
arroy::Reader::open(rtxn, self.index, self.angular_db())?.item_vector(rtxn, docid)
}
}
fn angular_db(&self) -> arroy::Database<Angular> {
self.database.remap_data_type()
}
fn quantized_db(&self) -> arroy::Database<BinaryQuantizedAngular> {
self.database.remap_data_type()
}
}
/// One or multiple embeddings stored consecutively in a flat vector.
pub struct Embeddings<F> {
data: Vec<F>,
@@ -124,62 +293,48 @@ pub struct EmbeddingConfig {
pub embedder_options: EmbedderOptions,
/// Document template
pub prompt: PromptData,
/// If this embedder is binary quantized
pub quantized: Option<bool>,
// TODO: add metrics and anything needed
}
impl EmbeddingConfig {
pub fn quantized(&self) -> bool {
self.quantized.unwrap_or_default()
}
}
/// Map of embedder configurations.
///
/// Each configuration is mapped to a name.
#[derive(Clone, Default)]
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)>);
impl EmbeddingConfigs {
/// Create the map from its internal component.s
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)>) -> Self {
Self(data)
}
/// Get an embedder configuration and template from its name.
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>, bool)> {
self.0.get(name).cloned()
}
/// Get the default embedder configuration, if any.
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
self.get(self.get_default_embedder_name())
}
pub fn inner_as_ref(&self) -> &HashMap<String, (Arc<Embedder>, Arc<Prompt>)> {
pub fn inner_as_ref(&self) -> &HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)> {
&self.0
}
pub fn into_inner(self) -> HashMap<String, (Arc<Embedder>, Arc<Prompt>)> {
pub fn into_inner(self) -> HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)> {
self.0
}
/// Get the name of the default embedder configuration.
///
/// The default embedder is determined as follows:
///
/// - If there is only one embedder, it is always the default.
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
/// - In all other cases, there is no default embedder.
pub fn get_default_embedder_name(&self) -> &str {
let mut it = self.0.keys();
let first_name = it.next();
let second_name = it.next();
match (first_name, second_name) {
(None, _) => "default",
(Some(first), None) => first,
(Some(_), Some(_)) => "default",
}
}
}
impl IntoIterator for EmbeddingConfigs {
type Item = (String, (Arc<Embedder>, Arc<Prompt>));
type Item = (String, (Arc<Embedder>, Arc<Prompt>, bool));
type IntoIter = std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>)>;
type IntoIter =
std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>, bool)>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()

View File

@@ -66,11 +66,11 @@ pub enum EmbeddingModel {
// # WARNING
//
// If ever adding a model, make sure to add it to the list of supported models below.
#[default]
#[serde(rename = "text-embedding-ada-002")]
#[deserr(rename = "text-embedding-ada-002")]
TextEmbeddingAda002,
#[default]
#[serde(rename = "text-embedding-3-small")]
#[deserr(rename = "text-embedding-3-small")]
TextEmbedding3Small,

View File

@@ -32,6 +32,9 @@ pub struct EmbeddingSettings {
pub dimensions: Setting<usize>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub binary_quantized: Setting<bool>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub document_template: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
@@ -85,23 +88,63 @@ pub enum ReindexAction {
pub enum SettingsDiff {
Remove,
Reindex { action: ReindexAction, updated_settings: EmbeddingSettings },
UpdateWithoutReindex { updated_settings: EmbeddingSettings },
Reindex { action: ReindexAction, updated_settings: EmbeddingSettings, quantize: bool },
UpdateWithoutReindex { updated_settings: EmbeddingSettings, quantize: bool },
}
pub enum EmbedderAction {
WriteBackToDocuments(WriteBackToDocuments),
Reindex(ReindexAction),
#[derive(Default, Debug)]
pub struct EmbedderAction {
pub was_quantized: bool,
pub is_being_quantized: bool,
pub write_back: Option<WriteBackToDocuments>,
pub reindex: Option<ReindexAction>,
}
impl EmbedderAction {
pub fn is_being_quantized(&self) -> bool {
self.is_being_quantized
}
pub fn write_back(&self) -> Option<&WriteBackToDocuments> {
self.write_back.as_ref()
}
pub fn reindex(&self) -> Option<&ReindexAction> {
self.reindex.as_ref()
}
pub fn with_is_being_quantized(mut self, quantize: bool) -> Self {
self.is_being_quantized = quantize;
self
}
pub fn with_write_back(write_back: WriteBackToDocuments, was_quantized: bool) -> Self {
Self {
was_quantized,
is_being_quantized: false,
write_back: Some(write_back),
reindex: None,
}
}
pub fn with_reindex(reindex: ReindexAction, was_quantized: bool) -> Self {
Self { was_quantized, is_being_quantized: false, write_back: None, reindex: Some(reindex) }
}
}
#[derive(Debug)]
pub struct WriteBackToDocuments {
pub embedder_id: u8,
pub user_provided: RoaringBitmap,
}
impl SettingsDiff {
pub fn from_settings(old: EmbeddingSettings, new: Setting<EmbeddingSettings>) -> Self {
match new {
pub fn from_settings(
embedder_name: &str,
old: EmbeddingSettings,
new: Setting<EmbeddingSettings>,
) -> Result<Self, UserError> {
let ret = match new {
Setting::Set(new) => {
let EmbeddingSettings {
mut source,
@@ -116,6 +159,7 @@ impl SettingsDiff {
mut distribution,
mut headers,
mut document_template_max_bytes,
binary_quantized: mut binary_quantize,
} = old;
let EmbeddingSettings {
@@ -131,8 +175,17 @@ impl SettingsDiff {
distribution: new_distribution,
headers: new_headers,
document_template_max_bytes: new_document_template_max_bytes,
binary_quantized: new_binary_quantize,
} = new;
if matches!(binary_quantize, Setting::Set(true))
&& matches!(new_binary_quantize, Setting::Set(false))
{
return Err(UserError::InvalidDisableBinaryQuantization {
embedder_name: embedder_name.to_string(),
});
}
let mut reindex_action = None;
// **Warning**: do not use short-circuiting || here, we want all these operations applied
@@ -172,6 +225,7 @@ impl SettingsDiff {
_ => {}
}
}
let binary_quantize_changed = binary_quantize.apply(new_binary_quantize);
if url.apply(new_url) {
match source {
// do not regenerate on an url change in OpenAI
@@ -231,16 +285,27 @@ impl SettingsDiff {
distribution,
headers,
document_template_max_bytes,
binary_quantized: binary_quantize,
};
match reindex_action {
Some(action) => Self::Reindex { action, updated_settings },
None => Self::UpdateWithoutReindex { updated_settings },
Some(action) => Self::Reindex {
action,
updated_settings,
quantize: binary_quantize_changed,
},
None => Self::UpdateWithoutReindex {
updated_settings,
quantize: binary_quantize_changed,
},
}
}
Setting::Reset => Self::Remove,
Setting::NotSet => Self::UpdateWithoutReindex { updated_settings: old },
}
Setting::NotSet => {
Self::UpdateWithoutReindex { updated_settings: old, quantize: false }
}
};
Ok(ret)
}
}
@@ -486,7 +551,7 @@ impl std::fmt::Display for EmbedderSource {
impl From<EmbeddingConfig> for EmbeddingSettings {
fn from(value: EmbeddingConfig) -> Self {
let EmbeddingConfig { embedder_options, prompt } = value;
let EmbeddingConfig { embedder_options, prompt, quantized } = value;
let document_template_max_bytes =
Setting::Set(prompt.max_bytes.unwrap_or(default_max_bytes()).get());
match embedder_options {
@@ -507,6 +572,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::OpenAi(super::openai::EmbedderOptions {
url,
@@ -527,6 +593,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::Ollama(super::ollama::EmbedderOptions {
embedding_model,
@@ -547,6 +614,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::UserProvided(super::manual::EmbedderOptions {
dimensions,
@@ -564,6 +632,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::Rest(super::rest::EmbedderOptions {
api_key,
@@ -586,6 +655,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::Set(response),
distribution: Setting::some_or_not_set(distribution),
headers: Setting::Set(headers),
binary_quantized: Setting::some_or_not_set(quantized),
},
}
}
@@ -607,8 +677,11 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
response,
distribution,
headers,
binary_quantized,
} = value;
this.quantized = binary_quantized.set();
if let Some(source) = source.set() {
match source {
EmbedderSource::OpenAi => {