Compare commits

..

1 Commits

Author SHA1 Message Date
Loïc Lecrenier
d6868dbd47 Reduce the maximum word proximity from 8 to 4 2023-06-07 11:50:58 +02:00
29 changed files with 306 additions and 922 deletions

View File

@@ -240,8 +240,6 @@ InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;

View File

@@ -56,10 +56,6 @@ pub struct SearchQueryGet {
sort: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowMatchesPosition>)]
show_matches_position: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchFacets>)]
facets: Option<CS<String>>,
#[deserr( default = DEFAULT_HIGHLIGHT_PRE_TAG(), error = DeserrQueryParamError<InvalidSearchHighlightPreTag>)]
@@ -95,8 +91,6 @@ impl From<SearchQueryGet> for SearchQuery {
filter,
sort: other.sort.map(|attr| fix_sort_query_parameters(&attr)),
show_matches_position: other.show_matches_position.0,
show_ranking_score: other.show_ranking_score.0,
show_ranking_score_details: other.show_ranking_score_details.0,
facets: other.facets.map(|o| o.into_iter().collect()),
highlight_pre_tag: other.highlight_pre_tag,
highlight_post_tag: other.highlight_post_tag,

View File

@@ -9,7 +9,6 @@ use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::ScoreDetails;
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
@@ -55,10 +54,6 @@ pub struct SearchQuery {
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchSort>)]
@@ -108,10 +103,6 @@ pub struct SearchQueryWithIndex {
pub crop_length: usize,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToHighlight>)]
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
@@ -143,8 +134,6 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@@ -166,8 +155,6 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@@ -207,7 +194,7 @@ impl From<MatchingStrategy> for TermsMatchingStrategy {
}
}
#[derive(Debug, Clone, Serialize, PartialEq)]
#[derive(Debug, Clone, Serialize, PartialEq, Eq)]
pub struct SearchHit {
#[serde(flatten)]
pub document: Document,
@@ -215,10 +202,6 @@ pub struct SearchHit {
pub formatted: Document,
#[serde(rename = "_matchesPosition", skip_serializing_if = "Option::is_none")]
pub matches_position: Option<MatchesPosition>,
#[serde(rename = "_rankingScore", skip_serializing_if = "Option::is_none")]
pub ranking_score: Option<u64>,
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
@@ -337,8 +320,7 @@ pub fn perform_search(
search.sort_criteria(sort);
}
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
search.execute()?;
let milli::SearchResult { documents_ids, matching_words, candidates, .. } = search.execute()?;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@@ -410,7 +392,7 @@ pub fn perform_search(
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
for (_id, obkv) in documents_iter {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
@@ -434,18 +416,7 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document);
}
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score_linear_scale(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
let hit = SearchHit { document, formatted, matches_position };
documents.push(hit);
}

View File

@@ -1,4 +1,3 @@
use insta::{allow_duplicates, assert_json_snapshot};
use serde_json::json;
use super::*;
@@ -19,43 +18,30 @@ async fn formatted_contain_wildcard() {
|response, code|
{
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###);
}
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
})
);
})
.await;
@@ -64,29 +50,20 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToHighlight": ["id"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
})
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
@@ -94,20 +71,17 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToCrop": ["*"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###);
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
},
)
.await;
@@ -115,20 +89,17 @@ async fn formatted_contain_wildcard() {
index
.search(json!({ "q": "pésti", "attributesToCrop": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
})
.await;
}
@@ -145,24 +116,21 @@ async fn format_nested() {
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby",
"age": 2
},
{
"name": "buddy",
"age": 4
}
]
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": 2,
},
{
"name": "buddy",
"age": 4,
},
],
})
);
})
.await;
@@ -171,22 +139,19 @@ async fn format_nested() {
json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
})
);
},
)
.await;
@@ -196,30 +161,20 @@ async fn format_nested() {
json!({ "q": "bobby", "attributesToRetrieve": ["doggos.name"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_matchesPosition": {
"doggos.name": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_matchesPosition": {"doggos.name": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
@@ -228,24 +183,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -253,24 +205,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -278,61 +227,55 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"], "attributesToHighlight": ["doggos.age"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_formatted": {
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
})
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
})
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.age"], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
}
)
.await;
@@ -354,66 +297,54 @@ async fn displayedattr_2_smol() {
.search(json!({ "attributesToRetrieve": ["father", "id"], "attributesToHighlight": ["mother"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToHighlight": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
@@ -422,18 +353,15 @@ async fn displayedattr_2_smol() {
json!({ "attributesToHighlight": ["id"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -441,41 +369,31 @@ async fn displayedattr_2_smol() {
index
.search(json!({ "attributesToHighlight": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
assert_eq!(response["hits"][0], json!({}));
})
.await;
@@ -484,11 +402,7 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["cattos"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
assert_eq!(response["hits"][0], json!({}));
}
)
@@ -499,17 +413,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -519,17 +430,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;

View File

@@ -65,7 +65,7 @@ async fn simple_search_single_index() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",
@@ -170,7 +170,7 @@ async fn simple_search_two_indexes() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",

View File

@@ -2488,12 +2488,8 @@ pub(crate) mod tests {
let rtxn = index.read_txn().unwrap();
let search = Search::new(&rtxn, &index);
let SearchResult {
matching_words: _,
candidates: _,
document_scores: _,
mut documents_ids,
} = search.execute().unwrap();
let SearchResult { matching_words: _, candidates: _, mut documents_ids } =
search.execute().unwrap();
let primary_key_id = index.fields_ids_map(&rtxn).unwrap().id("primary_key").unwrap();
documents_ids.sort_unstable();
let docs = index.documents(&rtxn, documents_ids).unwrap();

View File

@@ -17,7 +17,6 @@ mod fields_ids_map;
pub mod heed_codec;
pub mod index;
pub mod proximity;
pub mod score_details;
mod search;
pub mod update;

View File

@@ -2,7 +2,7 @@ use std::cmp;
use crate::{relative_from_absolute_position, Position};
pub const MAX_DISTANCE: u32 = 8;
pub const MAX_DISTANCE: u32 = 4;
pub fn index_proximity(lhs: u32, rhs: u32) -> u32 {
if lhs <= rhs {

View File

@@ -1,295 +0,0 @@
use serde::Serialize;
use crate::distance_between_two_points;
#[derive(Debug, Clone, PartialEq)]
pub enum ScoreDetails {
Words(Words),
Typo(Typo),
Proximity(Rank),
Fid(Rank),
Position(Rank),
ExactAttribute(ExactAttribute),
Exactness(Rank),
Sort(Sort),
GeoSort(GeoSort),
}
impl ScoreDetails {
pub fn local_score(&self) -> Option<f64> {
self.rank().map(Rank::local_score)
}
pub fn rank(&self) -> Option<Rank> {
match self {
ScoreDetails::Words(details) => Some(details.rank()),
ScoreDetails::Typo(details) => Some(details.rank()),
ScoreDetails::Proximity(details) => Some(*details),
ScoreDetails::Fid(details) => Some(*details),
ScoreDetails::Position(details) => Some(*details),
ScoreDetails::ExactAttribute(details) => Some(details.rank()),
ScoreDetails::Exactness(details) => Some(*details),
ScoreDetails::Sort(_) => None,
ScoreDetails::GeoSort(_) => None,
}
}
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self>) -> f64 {
Rank::global_score(details.filter_map(Self::rank))
}
pub fn global_score_linear_scale<'a>(details: impl Iterator<Item = &'a Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
/// Panics
///
/// - If Position is not preceded by Fid
/// - If Exactness is not preceded by ExactAttribute
/// - If a sort fid is not contained in the passed `fields_ids_map`.
pub fn to_json_map<'a>(
details: impl Iterator<Item = &'a Self>,
) -> serde_json::Map<String, serde_json::Value> {
let mut order = 0;
let mut details_map = serde_json::Map::default();
for details in details {
match details {
ScoreDetails::Words(words) => {
let words_details = serde_json::json!({
"order": order,
"matchingWords": words.matching_words,
"maxMatchingWords": words.max_matching_words,
"score": words.rank().local_score_linear_scale(),
});
details_map.insert("words".into(), words_details);
order += 1;
}
ScoreDetails::Typo(typo) => {
let typo_details = serde_json::json!({
"order": order,
"typoCount": typo.typo_count,
"maxTypoCount": typo.max_typo_count,
"score": typo.rank().local_score_linear_scale(),
});
details_map.insert("typo".into(), typo_details);
order += 1;
}
ScoreDetails::Proximity(proximity) => {
let proximity_details = serde_json::json!({
"order": order,
"score": proximity.local_score_linear_scale(),
});
details_map.insert("proximity".into(), proximity_details);
order += 1;
}
ScoreDetails::Fid(fid) => {
// For now, fid is a virtual rule always followed by the "position" rule
let fid_details = serde_json::json!({
"order": order,
"attributes_ranking_order": fid.local_score_linear_scale(),
});
details_map.insert("attribute".into(), fid_details);
order += 1;
}
ScoreDetails::Position(position) => {
// For now, position is a virtual rule always preceded by the "fid" rule
let attribute_details = details_map
.get_mut("attribute")
.expect("position not preceded by attribute");
let attribute_details = attribute_details
.as_object_mut()
.expect("attribute details was not an object");
attribute_details.insert(
"attributes_query_word_order".into(),
position.local_score_linear_scale().into(),
);
// do not update the order since this was already done by fid
}
ScoreDetails::ExactAttribute(exact_attribute) => {
let exactness_details = serde_json::json!({
"order": order,
"exactIn": exact_attribute,
"score": exact_attribute.rank().local_score_linear_scale(),
});
details_map.insert("exactness".into(), exactness_details);
order += 1;
}
ScoreDetails::Exactness(details) => {
// For now, exactness is a virtual rule always preceded by the "ExactAttribute" rule
let exactness_details = details_map
.get_mut("exactness")
.expect("Exactness not preceded by exactAttribute");
let exactness_details = exactness_details
.as_object_mut()
.expect("exactness details was not an object");
if exactness_details.get("exactIn").expect("missing 'exactIn'")
== &serde_json::json!(ExactAttribute::NoExactMatch)
{
let score = Rank::global_score_linear_scale(
[ExactAttribute::NoExactMatch.rank(), *details].iter().copied(),
);
*exactness_details.get_mut("score").expect("missing score") = score.into();
}
// do not update the order since this was already done by exactAttribute
}
ScoreDetails::Sort(details) => {
let sort = format!(
"{}:{}",
details.field_name,
if details.ascending { "asc" } else { "desc" }
);
let sort_details = serde_json::json!({
"order": order,
"value": details.value,
});
details_map.insert(sort, sort_details);
order += 1;
}
ScoreDetails::GeoSort(details) => {
let sort = format!(
"_geoPoint({}, {}):{}",
details.target_point[0],
details.target_point[1],
if details.ascending { "asc" } else { "desc" }
);
let point = if let Some(value) = details.value {
serde_json::json!({ "lat": value[0], "lng": value[1]})
} else {
serde_json::Value::Null
};
let sort_details = serde_json::json!({
"order": order,
"value": point,
"distance": details.distance(),
});
details_map.insert(sort, sort_details);
order += 1;
}
}
}
details_map
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Words {
pub matching_words: u32,
pub max_matching_words: u32,
}
impl Words {
pub fn rank(&self) -> Rank {
Rank { rank: self.matching_words, max_rank: self.max_matching_words }
}
pub(crate) fn from_rank(rank: Rank) -> Words {
Words { matching_words: rank.rank, max_matching_words: rank.max_rank }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Typo {
pub typo_count: u32,
pub max_typo_count: u32,
}
impl Typo {
pub fn rank(&self) -> Rank {
Rank {
rank: self.max_typo_count - self.typo_count + 1,
max_rank: (self.max_typo_count + 1),
}
}
// max_rank = max_typo + 1
// max_typo = max_rank - 1
//
// rank = max_typo - typo + 1
// rank = max_rank - 1 - typo + 1
// rank + typo = max_rank
// typo = max_rank - rank
pub fn from_rank(rank: Rank) -> Typo {
Typo { typo_count: rank.max_rank - rank.rank, max_typo_count: rank.max_rank - 1 }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Rank {
/// The ordinal rank, such that `max_rank` is the first rank, and 0 is the last rank.
///
/// The higher the better. Documents with a rank of 0 have a score of 0 and are typically never returned
/// (they don't match the query).
pub rank: u32,
/// The maximum possible rank. Documents with this rank have a score of 1.
///
/// The max rank should not be 0.
pub max_rank: u32,
}
impl Rank {
pub fn local_score(self) -> f64 {
self.rank as f64 / self.max_rank as f64
}
pub fn local_score_linear_scale(self) -> u64 {
(self.local_score() * LINEAR_SCALE_FACTOR).round() as u64
}
pub fn global_score(details: impl Iterator<Item = Self>) -> f64 {
let mut rank = Rank { rank: 1, max_rank: 1 };
for inner_rank in details {
rank.rank -= 1;
rank.rank *= inner_rank.max_rank;
rank.max_rank *= inner_rank.max_rank;
rank.rank += inner_rank.rank;
}
rank.local_score()
}
pub fn global_score_linear_scale(details: impl Iterator<Item = Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum ExactAttribute {
MatchesFull,
MatchesStart,
NoExactMatch,
}
impl ExactAttribute {
pub fn rank(&self) -> Rank {
let rank = match self {
ExactAttribute::MatchesFull => 3,
ExactAttribute::MatchesStart => 2,
ExactAttribute::NoExactMatch => 1,
};
Rank { rank, max_rank: 3 }
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Sort {
pub field_name: String,
pub ascending: bool,
pub value: serde_json::Value,
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct GeoSort {
pub target_point: [f64; 2],
pub ascending: bool,
pub value: Option<[f64; 2]>,
}
impl GeoSort {
pub fn distance(&self) -> Option<f64> {
self.value.map(|value| distance_between_two_points(&self.target_point, &value))
}
}
const LINEAR_SCALE_FACTOR: f64 = 1000.0;

View File

@@ -7,7 +7,6 @@ use roaring::bitmap::RoaringBitmap;
pub use self::facet::{FacetDistribution, Filter, DEFAULT_VALUES_PER_FACET};
pub use self::new::matches::{FormatOptions, MatchBounds, Matcher, MatcherBuilder, MatchingWords};
use self::new::PartialSearchResult;
use crate::score_details::ScoreDetails;
use crate::{
execute_search, AscDesc, DefaultSearchLogger, DocumentId, Index, Result, SearchContext,
};
@@ -94,7 +93,7 @@ impl<'a> Search<'a> {
self
}
/// Forces the search to exhaustively compute the number of candidates,
/// Force the search to exhastivelly compute the number of candidates,
/// this will increase the search time but allows finite pagination.
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
self.exhaustive_number_hits = exhaustive_number_hits;
@@ -103,7 +102,7 @@ impl<'a> Search<'a> {
pub fn execute(&self) -> Result<SearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
let PartialSearchResult { located_query_terms, candidates, documents_ids, document_scores } =
let PartialSearchResult { located_query_terms, candidates, documents_ids } =
execute_search(
&mut ctx,
&self.query,
@@ -125,7 +124,7 @@ impl<'a> Search<'a> {
None => MatchingWords::default(),
};
Ok(SearchResult { matching_words, candidates, document_scores, documents_ids })
Ok(SearchResult { matching_words, candidates, documents_ids })
}
}
@@ -161,8 +160,8 @@ impl fmt::Debug for Search<'_> {
pub struct SearchResult {
pub matching_words: MatchingWords,
pub candidates: RoaringBitmap,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]

View File

@@ -3,13 +3,11 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
use super::SearchContext;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput};
use crate::Result;
pub struct BucketSortOutput {
pub docids: Vec<u32>,
pub scores: Vec<Vec<ScoreDetails>>,
pub all_candidates: RoaringBitmap,
}
@@ -33,11 +31,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
};
if universe.len() < from as u64 {
return Ok(BucketSortOutput {
docids: vec![],
scores: vec![],
all_candidates: universe.clone(),
});
return Ok(BucketSortOutput { docids: vec![], all_candidates: universe.clone() });
}
if ranking_rules.is_empty() {
if let Some(distinct_fid) = distinct_fid {
@@ -55,32 +49,22 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
}
let mut all_candidates = universe - excluded;
all_candidates.extend(results.iter().copied());
return Ok(BucketSortOutput {
scores: vec![Default::default(); results.len()],
docids: results,
all_candidates,
});
return Ok(BucketSortOutput { docids: results, all_candidates });
} else {
let docids: Vec<u32> = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput {
scores: vec![Default::default(); docids.len()],
docids,
all_candidates: universe.clone(),
});
let docids = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput { docids, all_candidates: universe.clone() });
};
}
let ranking_rules_len = ranking_rules.len();
logger.start_iteration_ranking_rule(0, ranking_rules[0].as_ref(), query, universe);
ranking_rules[0].start_iteration(ctx, logger, universe, query)?;
let mut ranking_rule_scores: Vec<ScoreDetails> = vec![];
let mut ranking_rule_universes: Vec<RoaringBitmap> =
vec![RoaringBitmap::default(); ranking_rules_len];
ranking_rule_universes[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
/// Finish iterating over the current ranking rule, yielding
@@ -105,16 +89,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
} else {
cur_ranking_rule_index -= 1;
}
// FIXME: check off by one
if ranking_rule_scores.len() > cur_ranking_rule_index {
ranking_rule_scores.pop();
}
};
}
let mut all_candidates = universe.clone();
let mut valid_docids = vec![];
let mut valid_scores = vec![];
let mut cur_offset = 0usize;
macro_rules! maybe_add_to_results {
@@ -125,23 +104,23 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
length,
logger,
&mut valid_docids,
&mut valid_scores,
&mut all_candidates,
&mut ranking_rule_universes,
&mut ranking_rules,
cur_ranking_rule_index,
&mut cur_offset,
distinct_fid,
&ranking_rule_scores,
$candidates,
)?;
};
}
while valid_docids.len() < length {
// The universe for this bucket is zero, so we don't need to sort
// anything, just go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].is_empty() {
// The universe for this bucket is zero or one element, so we don't need to sort
// anything, just extend the results and go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].len() <= 1 {
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
maybe_add_to_results!(bucket);
back!();
continue;
}
@@ -151,8 +130,6 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
continue;
};
ranking_rule_scores.push(next_bucket.score);
logger.next_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index].as_ref(),
@@ -166,11 +143,10 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1
|| next_bucket.candidates.len() <= 1
|| cur_offset + (next_bucket.candidates.len() as usize) < from
{
maybe_add_to_results!(next_bucket.candidates);
// FIXME: use index based logic like all the other rules so that you don't have to maintain the pop/push?
ranking_rule_scores.pop();
continue;
}
@@ -190,7 +166,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
)?;
}
Ok(BucketSortOutput { docids: valid_docids, scores: valid_scores, all_candidates })
Ok(BucketSortOutput { docids: valid_docids, all_candidates })
}
/// Add the candidates to the results. Take `distinct`, `from`, `length`, and `cur_offset`
@@ -203,18 +179,14 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
logger: &mut dyn SearchLogger<Q>,
valid_docids: &mut Vec<u32>,
valid_scores: &mut Vec<Vec<ScoreDetails>>,
all_candidates: &mut RoaringBitmap,
ranking_rule_universes: &mut [RoaringBitmap],
ranking_rules: &mut [BoxRankingRule<'ctx, Q>],
cur_ranking_rule_index: usize,
cur_offset: &mut usize,
distinct_fid: Option<u16>,
ranking_rule_scores: &[ScoreDetails],
candidates: RoaringBitmap,
) -> Result<()> {
// First apply the distinct rule on the candidates, reducing the universes if necessary
@@ -259,17 +231,13 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
let candidates =
candidates.iter().take(length - valid_docids.len()).copied().collect::<Vec<_>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
} else {
// if we have passed the offset already, add some of the documents (up to the limit)
let candidates = candidates.iter().take(length - valid_docids.len()).collect::<Vec<u32>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
*cur_offset += candidates.len() as usize;

View File

@@ -2,7 +2,6 @@ use roaring::{MultiOps, RoaringBitmap};
use super::query_graph::QueryGraph;
use super::ranking_rules::{RankingRule, RankingRuleOutput};
use crate::score_details::{self, ScoreDetails};
use crate::search::new::query_graph::QueryNodeData;
use crate::search::new::query_term::ExactTerm;
use crate::{Result, SearchContext, SearchLogger};
@@ -245,13 +244,7 @@ impl State {
candidates &= universe;
(
State::AttributeStarts(query_graph.clone(), candidates_per_attribute),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesFull,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::AttributeStarts(query_graph, candidates_per_attribute) => {
@@ -264,24 +257,12 @@ impl State {
candidates &= universe;
(
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesStart,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::Empty(query_graph) => (
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates: universe.clone(),
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::NoExactMatch,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates: universe.clone() }),
),
};
(state, output)

View File

@@ -8,7 +8,6 @@ use rstar::RTree;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::heed_codec::facet::{FieldDocIdFacetCodec, OrderedF64Codec};
use crate::score_details::{self, ScoreDetails};
use crate::{
distance_between_two_points, lat_lng_to_xyz, GeoPoint, Index, Result, SearchContext,
SearchLogger,
@@ -81,7 +80,7 @@ pub struct GeoSort<Q: RankingRuleQueryTrait> {
field_ids: Option<[u16; 2]>,
rtree: Option<RTree<GeoPoint>>,
cached_sorted_docids: VecDeque<(u32, [f64; 2])>,
cached_sorted_docids: VecDeque<u32>,
geo_candidates: RoaringBitmap,
}
@@ -131,7 +130,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&self.point);
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_back(point.data);
self.cached_sorted_docids.push_back(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -143,7 +142,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&opposite_of(self.point));
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_front(point.data);
self.cached_sorted_docids.push_front(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -178,7 +177,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
// computing the distance between two points is expensive thus we cache the result
documents
.sort_by_cached_key(|(_, p)| distance_between_two_points(&self.point, p) as usize);
self.cached_sorted_docids.extend(documents.into_iter());
self.cached_sorted_docids.extend(documents.into_iter().map(|(doc_id, _)| doc_id));
};
Ok(())
@@ -221,19 +220,12 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
logger: &mut dyn SearchLogger<Q>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Q>>> {
assert!(universe.len() > 1);
let query = self.query.as_ref().unwrap().clone();
self.geo_candidates &= universe;
if self.geo_candidates.is_empty() {
return Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: None,
}),
}));
return Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }));
}
let ascending = self.ascending;
@@ -244,16 +236,11 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
cache.pop_back()
}
};
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
while let Some(id) = next(&mut self.cached_sorted_docids) {
if self.geo_candidates.contains(id) {
return Ok(Some(RankingRuleOutput {
query,
candidates: RoaringBitmap::from_iter([id]),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: Some(point),
}),
}));
}
}

View File

@@ -50,7 +50,6 @@ use super::ranking_rule_graph::{
};
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
use crate::score_details::Rank;
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::PathVisitor;
use crate::{Result, TermsMatchingStrategy};
@@ -119,8 +118,6 @@ pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
all_costs: MappedInterner<QueryNode, Vec<u64>>,
/// An index in the first element of `all_distances`, giving the cost of the next bucket
cur_cost: u64,
/// One above the highest possible cost for this rule
next_max_cost: u64,
}
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
@@ -142,12 +139,13 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
let mut forbidden_nodes =
SmallBitmap::for_interned_values_in(&query_graph.nodes);
let mut costs = query_graph.nodes.map(|_| None);
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
let mut cost = 100;
for ns in removal_order {
for n in ns.iter() {
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
*costs.get_mut(n) = Some((cost, forbidden_nodes.clone()));
}
forbidden_nodes.union(&ns);
cost += 100;
}
costs
}
@@ -164,16 +162,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
// Then pre-compute the cost of all paths from each node to the end node
let all_costs = graph.find_all_costs_to_end();
let next_max_cost =
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0) + 1;
let state = GraphBasedRankingRuleState {
graph,
conditions_cache: condition_docids_cache,
dead_ends_cache,
all_costs,
cur_cost: 0,
next_max_cost,
};
self.state = Some(state);
@@ -187,13 +181,17 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
logger: &mut dyn SearchLogger<QueryGraph>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
// If universe.len() <= 1, the bucket sort algorithm
// should not have called this function.
assert!(universe.len() > 1);
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
// should never happen
let mut state = self.state.take().unwrap();
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
// Retrieve the cost of the paths to compute
let Some(&cost) = all_costs
let Some(&cost) = state
.all_costs
.get(state.graph.query_graph.root_node)
.iter()
.find(|c| **c >= state.cur_cost) else {
self.state = None;
@@ -209,12 +207,8 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
dead_ends_cache,
all_costs,
cur_cost: _,
next_max_cost,
} = &mut state;
let rank = *next_max_cost - cost;
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
let mut universe = universe.clone();
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
@@ -331,7 +325,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
self.state = Some(state);
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket }))
}
fn end_iteration(

View File

@@ -44,7 +44,6 @@ use self::geo_sort::GeoSort;
pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::apply_distinct_rule;
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
@@ -427,15 +426,13 @@ pub fn execute_search(
)?
};
let BucketSortOutput { docids, scores, mut all_candidates } = bucket_sort_output;
let fields_ids_map = ctx.index.fields_ids_map(ctx.txn)?;
let BucketSortOutput { docids, mut all_candidates } = bucket_sort_output;
// The candidates is the universe unless the exhaustive number of hits
// is requested and a distinct attribute is set.
if exhaustive_number_hits {
if let Some(f) = ctx.index.distinct_field(ctx.txn)? {
if let Some(distinct_fid) = fields_ids_map.id(f) {
if let Some(distinct_fid) = ctx.index.fields_ids_map(ctx.txn)?.id(f) {
all_candidates = apply_distinct_rule(ctx, distinct_fid, &all_candidates)?.remaining;
}
}
@@ -443,7 +440,6 @@ pub fn execute_search(
Ok(PartialSearchResult {
candidates: all_candidates,
document_scores: scores,
documents_ids: docids,
located_query_terms,
})
@@ -495,5 +491,4 @@ pub struct PartialSearchResult {
pub located_query_terms: Option<Vec<LocatedQueryTerm>>,
pub candidates: RoaringBitmap,
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}

View File

@@ -79,7 +79,7 @@ pub fn located_query_terms_from_tokens(
TokenKind::Separator(separator_kind) => {
// add penalty for hard separators
if let SeparatorKind::Hard = separator_kind {
position = position.wrapping_add(7);
position = position.wrapping_add(1);
}
phrase = 'phrase: {

View File

@@ -49,15 +49,10 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
if let Some((cost_of_ignoring, forbidden_nodes)) =
cost_of_ignoring_node.get(dest_idx)
{
let dest = graph_nodes.get(dest_idx);
let dest_size = match &dest.data {
QueryNodeData::Term(term) => term.term_ids.len(),
_ => panic!(),
};
let new_edge_id = edges_store.insert(Some(Edge {
source_node: source_id,
dest_node: dest_idx,
cost: *cost_of_ignoring * dest_size as u32,
cost: *cost_of_ignoring,
condition: None,
nodes_to_skip: forbidden_nodes.clone(),
}));

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::{ExactTerm, LocatedQueryTermSubset};
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -85,8 +84,4 @@ impl RankingRuleGraphTrait for ExactnessGraph {
Ok(vec![(0, exact_condition), (dest_node.term_ids.len() as u32, skip_condition)])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Exactness(rank)
}
}

View File

@@ -2,7 +2,6 @@ use fxhash::FxHashSet;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_field_id;
@@ -69,7 +68,7 @@ impl RankingRuleGraphTrait for FidGraph {
}
let mut edges = vec![];
for fid in all_fields.iter().copied() {
for fid in all_fields {
// TODO: We can improve performances and relevancy by storing
// the term subsets associated to each field ids fetched.
edges.push((
@@ -81,35 +80,6 @@ impl RankingRuleGraphTrait for FidGraph {
));
}
// always lookup the max_fid if we don't already and add an artificial condition for max scoring
let max_fid: Option<u16> = {
if let Some(max_fid) = ctx
.index
.searchable_fields_ids(ctx.txn)?
.map(|field_ids| field_ids.into_iter().max())
{
max_fid
} else {
ctx.index.fields_ids_map(ctx.txn)?.ids().max()
}
};
if let Some(max_fid) = max_fid {
if !all_fields.contains(&max_fid) {
edges.push((
max_fid as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
conditions_interner.insert(FidCondition {
term: term.clone(), // TODO remove this ugly clone
fid: max_fid,
}),
));
}
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Fid(rank)
}
}

View File

@@ -41,7 +41,6 @@ use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner
use super::query_term::LocatedQueryTermSubset;
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, QueryNode, SearchContext};
use crate::score_details::{Rank, ScoreDetails};
use crate::Result;
pub struct ComputedCondition {
@@ -111,9 +110,6 @@ pub trait RankingRuleGraphTrait: Sized + 'static {
source_node: Option<&LocatedQueryTermSubset>,
dest_node: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>>;
/// Convert the rank of a path to its corresponding score for the ranking rule
fn rank_to_score(rank: Rank) -> ScoreDetails;
}
/// The graph used by graph-based ranking rules.

View File

@@ -2,7 +2,6 @@ use fxhash::{FxHashMap, FxHashSet};
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_position;
@@ -106,20 +105,8 @@ impl RankingRuleGraphTrait for PositionGraph {
));
}
// artificial empty condition for computing max cost
let max_cost = term.term_ids.len() as u32 * 10;
edges.push((
max_cost,
conditions_interner
.insert(PositionCondition { term: term.clone(), positions: Vec::default() }),
));
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Position(rank)
}
}
fn cost_from_position(sum_positions: u32) -> u32 {

View File

@@ -1,6 +1,7 @@
#![allow(clippy::too_many_arguments)]
use super::ProximityCondition;
use crate::proximity::MAX_DISTANCE;
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::SearchContext;
@@ -47,7 +48,7 @@ pub fn build_edges(
}
conditions.push((
(7 + right_ngram_length) as u32,
MAX_DISTANCE - 1 + right_ngram_length as u32,
conditions_interner.insert(ProximityCondition::Term { term: right_term.clone() }),
));

View File

@@ -4,7 +4,6 @@ pub mod compute_docids;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::SearchContext;
@@ -37,8 +36,4 @@ impl RankingRuleGraphTrait for ProximityGraph {
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
build::build_edges(ctx, conditions_interner, source_term, dest_term)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Proximity(rank)
}
}

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -76,8 +75,4 @@ impl RankingRuleGraphTrait for TypoGraph {
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Typo(score_details::Typo::from_rank(rank))
}
}

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -42,10 +41,9 @@ impl RankingRuleGraphTrait for WordsGraph {
_from: Option<&LocatedQueryTermSubset>,
to_term: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
Ok(vec![(0, conditions_interner.insert(WordsCondition { term: to_term.clone() }))])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Words(score_details::Words::from_rank(rank))
Ok(vec![(
to_term.term_ids.len() as u32,
conditions_interner.insert(WordsCondition { term: to_term.clone() }),
)])
}
}

View File

@@ -2,7 +2,6 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{QueryGraph, SearchContext};
use crate::score_details::ScoreDetails;
use crate::Result;
/// An internal trait implemented by only [`PlaceholderQuery`] and [`QueryGraph`]
@@ -67,6 +66,4 @@ pub struct RankingRuleOutput<Q> {
pub query: Q,
/// The allowed candidates for the child ranking rule
pub candidates: RoaringBitmap,
/// The score for the candidates of the current bucket
pub score: ScoreDetails,
}

View File

@@ -1,11 +1,9 @@
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait, SearchContext};
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
use crate::score_details::{self, ScoreDetails};
use crate::heed_codec::facet::FacetGroupKeyCodec;
use crate::heed_codec::ByteSliceRefCodec;
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
use crate::{FieldId, Index, Result};
@@ -69,7 +67,7 @@ impl<'ctx, Query> Sort<'ctx, Query> {
impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx, Query> {
fn id(&self) -> String {
let Self { field_name, is_ascending, .. } = self;
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc" })
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc " })
}
fn start_iteration(
&mut self,
@@ -120,43 +118,12 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
};
let number_iter = number_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::Number(
serde_json::Number::from_f64(
OrderedF64Codec::bytes_decode(bytes).expect("some number"),
)
.expect("too big float"),
),
))
});
let string_iter = string_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::String(
StrRefCodec::bytes_decode(bytes).expect("some string").to_owned(),
),
))
});
let query_graph = parent_query.clone();
let ascending = self.is_ascending;
let field_name = self.field_name.clone();
RankingRuleOutputIterWrapper::new(Box::new(number_iter.chain(string_iter).map(
move |r| {
let (docids, value) = r?;
Ok(RankingRuleOutput {
query: query_graph.clone(),
candidates: docids,
score: ScoreDetails::Sort(score_details::Sort {
field_name: field_name.clone(),
ascending,
value,
}),
})
let (docids, _) = r?;
Ok(RankingRuleOutput { query: query_graph.clone(), candidates: docids })
},
)))
}
@@ -183,15 +150,7 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
Ok(Some(bucket))
} else {
let query = self.original_query.as_ref().unwrap().clone();
Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::Sort(score_details::Sort {
field_name: self.field_name.clone(),
ascending: self.is_ascending,
value: serde_json::Value::Null,
}),
}))
Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }))
}
}

View File

@@ -1,6 +1,6 @@
use std::collections::HashMap;
use std::fs::File;
use std::io;
use std::{cmp, io};
use grenad::Sorter;
@@ -54,10 +54,11 @@ pub fn extract_fid_word_count_docids<R: io::Read + io::Seek>(
}
for position in read_u32_ne_bytes(value) {
let (field_id, _) = relative_from_absolute_position(position);
let (field_id, position) = relative_from_absolute_position(position);
let word_count = position as u32 + 1;
let value = document_fid_wordcount.entry(field_id as FieldId).or_insert(0);
*value += 1;
*value = cmp::max(*value, word_count);
}
}
@@ -82,7 +83,7 @@ fn drain_document_fid_wordcount_into_sorter(
let mut key_buffer = Vec::new();
for (fid, count) in document_fid_wordcount.drain() {
if count <= 30 {
if count <= 10 {
key_buffer.clear();
key_buffer.extend_from_slice(&fid.to_be_bytes());
key_buffer.push(count as u8);

View File

@@ -91,7 +91,7 @@ fn document_word_positions_into_sorter(
while !word_positions_heap.is_empty() {
while let Some(peeked_word_position) = word_positions_heap.pop() {
ordered_peeked_word_positions.push(peeked_word_position);
if ordered_peeked_word_positions.len() == 7 {
if ordered_peeked_word_positions.len() == MAX_DISTANCE as usize - 1 {
break;
}
}