mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-07-17 20:00:58 +00:00
Compare commits
5 Commits
option-dis
...
recapi
Author | SHA1 | Date | |
---|---|---|---|
5ce4d5f552 | |||
9cef8ec087 | |||
f505fa4ae8 | |||
b4deb9b8db | |||
7476ad6599 |
@ -245,6 +245,9 @@ InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchSemanticRatio , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidRecommendContext , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidRecommendId , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidRecommendPrompt , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchHighlightPreTag , InvalidRequest , BAD_REQUEST ;
|
||||
@ -308,6 +311,8 @@ MissingFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
|
||||
MissingIndexUid , InvalidRequest , BAD_REQUEST ;
|
||||
MissingMasterKey , Auth , UNAUTHORIZED ;
|
||||
MissingPayload , InvalidRequest , BAD_REQUEST ;
|
||||
MissingPrompt , InvalidRequest , BAD_REQUEST ;
|
||||
MissingPromptOrId , InvalidRequest , BAD_REQUEST ;
|
||||
MissingSearchHybrid , InvalidRequest , BAD_REQUEST ;
|
||||
MissingSwapIndexes , InvalidRequest , BAD_REQUEST ;
|
||||
MissingTaskFilters , InvalidRequest , BAD_REQUEST ;
|
||||
|
@ -23,6 +23,8 @@ pub enum MeilisearchHttpError {
|
||||
InvalidContentType(String, Vec<String>),
|
||||
#[error("Document `{0}` not found.")]
|
||||
DocumentNotFound(String),
|
||||
#[error("Document `{0}` not found.")]
|
||||
InvalidDocumentId(String),
|
||||
#[error("Sending an empty filter is forbidden.")]
|
||||
EmptyFilter,
|
||||
#[error("Invalid syntax for the filter parameter: `expected {}, found: {1}`.", .0.join(", "))]
|
||||
@ -59,6 +61,10 @@ pub enum MeilisearchHttpError {
|
||||
Join(#[from] JoinError),
|
||||
#[error("Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.")]
|
||||
MissingSearchHybrid,
|
||||
#[error("Invalid request: `prompt` parameter is required when `context` is present.")]
|
||||
RecommendMissingPrompt,
|
||||
#[error("Invalid request: one of the `prompt` or `id` parameters is required.")]
|
||||
RecommendMissingPromptOrId,
|
||||
}
|
||||
|
||||
impl ErrorCode for MeilisearchHttpError {
|
||||
@ -70,6 +76,7 @@ impl ErrorCode for MeilisearchHttpError {
|
||||
MeilisearchHttpError::MissingPayload(_) => Code::MissingPayload,
|
||||
MeilisearchHttpError::InvalidContentType(_, _) => Code::InvalidContentType,
|
||||
MeilisearchHttpError::DocumentNotFound(_) => Code::DocumentNotFound,
|
||||
MeilisearchHttpError::InvalidDocumentId(_) => Code::InvalidDocumentId,
|
||||
MeilisearchHttpError::EmptyFilter => Code::InvalidDocumentFilter,
|
||||
MeilisearchHttpError::InvalidExpression(_, _) => Code::InvalidSearchFilter,
|
||||
MeilisearchHttpError::PayloadTooLarge(_) => Code::PayloadTooLarge,
|
||||
@ -86,6 +93,8 @@ impl ErrorCode for MeilisearchHttpError {
|
||||
MeilisearchHttpError::DocumentFormat(e) => e.error_code(),
|
||||
MeilisearchHttpError::Join(_) => Code::Internal,
|
||||
MeilisearchHttpError::MissingSearchHybrid => Code::MissingSearchHybrid,
|
||||
MeilisearchHttpError::RecommendMissingPrompt => Code::MissingPrompt,
|
||||
MeilisearchHttpError::RecommendMissingPromptOrId => Code::MissingPromptOrId,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -27,6 +27,7 @@ use crate::Opt;
|
||||
|
||||
pub mod documents;
|
||||
pub mod facet_search;
|
||||
pub mod recommend;
|
||||
pub mod search;
|
||||
pub mod settings;
|
||||
|
||||
@ -48,6 +49,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
.service(web::scope("/documents").configure(documents::configure))
|
||||
.service(web::scope("/search").configure(search::configure))
|
||||
.service(web::scope("/facet-search").configure(facet_search::configure))
|
||||
.service(web::scope("/recommend").configure(recommend::configure))
|
||||
.service(web::scope("/settings").configure(settings::configure)),
|
||||
);
|
||||
}
|
||||
|
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
@ -0,0 +1,53 @@
|
||||
use actix_web::web::{self, Data};
|
||||
use actix_web::{HttpRequest, HttpResponse};
|
||||
use deserr::actix_web::AwebJson;
|
||||
use index_scheduler::IndexScheduler;
|
||||
use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::keys::actions;
|
||||
use tracing::debug;
|
||||
|
||||
use super::ActionPolicy;
|
||||
use crate::analytics::Analytics;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::search::{perform_recommend, RecommendQuery, SearchKind};
|
||||
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
cfg.service(web::resource("").route(web::post().to(SeqHandler(recommend))));
|
||||
}
|
||||
|
||||
pub async fn recommend(
|
||||
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
|
||||
index_uid: web::Path<String>,
|
||||
params: AwebJson<RecommendQuery, DeserrJsonError>,
|
||||
_req: HttpRequest,
|
||||
_analytics: web::Data<dyn Analytics>,
|
||||
) -> Result<HttpResponse, ResponseError> {
|
||||
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
|
||||
|
||||
// TODO analytics
|
||||
|
||||
let query = params.into_inner();
|
||||
debug!(parameters = ?query, "Recommend post");
|
||||
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
features.check_vector("Using the recommend API.")?;
|
||||
|
||||
let (embedder_name, embedder) =
|
||||
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
|
||||
|
||||
let recommendations = tokio::task::spawn_blocking(move || {
|
||||
perform_recommend(&index, query, embedder_name, embedder)
|
||||
})
|
||||
.await?;
|
||||
|
||||
let recommendations = recommendations?;
|
||||
|
||||
debug!(returns = ?recommendations, "Recommend post");
|
||||
Ok(HttpResponse::Ok().json(recommendations))
|
||||
}
|
@ -126,7 +126,7 @@ impl SearchKind {
|
||||
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
|
||||
}
|
||||
|
||||
fn embedder(
|
||||
pub(crate) fn embedder(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
@ -312,6 +312,32 @@ impl SearchQueryWithIndex {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct RecommendQuery {
|
||||
#[deserr(default, error = DeserrJsonError<InvalidRecommendId>)]
|
||||
pub id: Option<String>,
|
||||
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
|
||||
pub offset: usize,
|
||||
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
|
||||
pub limit: usize,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
|
||||
pub filter: Option<Value>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||
pub embedder: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
|
||||
pub attributes_to_retrieve: Option<BTreeSet<String>>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
|
||||
pub show_ranking_score: bool,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
|
||||
pub show_ranking_score_details: bool,
|
||||
|
||||
#[deserr(default, error = DeserrJsonError<InvalidRecommendPrompt>)]
|
||||
pub prompt: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidRecommendContext>)]
|
||||
pub context: Option<Value>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
|
||||
#[deserr(rename_all = camelCase)]
|
||||
pub enum MatchingStrategy {
|
||||
@ -393,6 +419,17 @@ pub struct SearchResult {
|
||||
pub used_negative_operator: bool,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
pub struct RecommendResult {
|
||||
pub hits: Vec<SearchHit>,
|
||||
pub id: Option<String>,
|
||||
pub prompt: Option<String>,
|
||||
pub processing_time_ms: u128,
|
||||
#[serde(flatten)]
|
||||
pub hits_info: HitsInfo,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
pub struct SearchResultWithIndex {
|
||||
@ -796,6 +833,153 @@ pub fn perform_facet_search(
|
||||
})
|
||||
}
|
||||
|
||||
pub fn perform_recommend(
|
||||
index: &Index,
|
||||
query: RecommendQuery,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Result<RecommendResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
|
||||
let internal_id = query
|
||||
.id
|
||||
.as_deref()
|
||||
.map(|id| -> Result<_, MeilisearchHttpError> {
|
||||
Ok(index
|
||||
.external_documents_ids()
|
||||
.get(&rtxn, id)?
|
||||
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(id.to_owned()))?)
|
||||
})
|
||||
.transpose()?;
|
||||
|
||||
let mut recommend = match (query.prompt.as_deref(), internal_id, query.context) {
|
||||
(None, Some(internal_id), None) => milli::Recommend::with_docid(
|
||||
internal_id,
|
||||
query.offset,
|
||||
query.limit,
|
||||
index,
|
||||
&rtxn,
|
||||
embedder_name,
|
||||
embedder,
|
||||
),
|
||||
(Some(prompt), internal_id, context) => milli::Recommend::with_prompt(
|
||||
prompt,
|
||||
internal_id,
|
||||
context,
|
||||
query.offset,
|
||||
query.limit,
|
||||
index,
|
||||
&rtxn,
|
||||
embedder_name,
|
||||
embedder,
|
||||
),
|
||||
(None, _, Some(_)) => return Err(MeilisearchHttpError::RecommendMissingPrompt.into()),
|
||||
(None, None, None) => return Err(MeilisearchHttpError::RecommendMissingPromptOrId.into()),
|
||||
};
|
||||
|
||||
if let Some(ref filter) = query.filter {
|
||||
if let Some(facets) = parse_filter(filter)? {
|
||||
recommend.filter(facets);
|
||||
}
|
||||
}
|
||||
|
||||
let milli::SearchResult {
|
||||
documents_ids,
|
||||
matching_words: _,
|
||||
candidates,
|
||||
document_scores,
|
||||
degraded: _,
|
||||
used_negative_operator: _,
|
||||
} = recommend.execute()?;
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||
|
||||
let displayed_ids = index
|
||||
.displayed_fields_ids(&rtxn)?
|
||||
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
|
||||
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
|
||||
|
||||
let fids = |attrs: &BTreeSet<String>| {
|
||||
let mut ids = BTreeSet::new();
|
||||
for attr in attrs {
|
||||
if attr == "*" {
|
||||
ids = displayed_ids.clone();
|
||||
break;
|
||||
}
|
||||
|
||||
if let Some(id) = fields_ids_map.id(attr) {
|
||||
ids.insert(id);
|
||||
}
|
||||
}
|
||||
ids
|
||||
};
|
||||
|
||||
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
|
||||
// but these attributes must be also be present
|
||||
// - in the fields_ids_map
|
||||
// - in the displayed attributes
|
||||
let to_retrieve_ids: BTreeSet<_> = query
|
||||
.attributes_to_retrieve
|
||||
.as_ref()
|
||||
.map(fids)
|
||||
.unwrap_or_else(|| displayed_ids.clone())
|
||||
.intersection(&displayed_ids)
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
let mut documents = Vec::new();
|
||||
let documents_iter = index.documents(&rtxn, documents_ids)?;
|
||||
|
||||
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
|
||||
// First generate a document with all the displayed fields
|
||||
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
|
||||
|
||||
// select the attributes to retrieve
|
||||
let attributes_to_retrieve = to_retrieve_ids
|
||||
.iter()
|
||||
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
|
||||
let document =
|
||||
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
|
||||
|
||||
let ranking_score =
|
||||
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
|
||||
let ranking_score_details =
|
||||
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
|
||||
|
||||
let hit = SearchHit {
|
||||
document,
|
||||
formatted: Default::default(),
|
||||
matches_position: None,
|
||||
ranking_score_details,
|
||||
ranking_score,
|
||||
};
|
||||
documents.push(hit);
|
||||
}
|
||||
|
||||
let max_total_hits = index
|
||||
.pagination_max_total_hits(&rtxn)
|
||||
.map_err(milli::Error::from)?
|
||||
.map(|x| x as usize)
|
||||
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
|
||||
|
||||
let number_of_hits = min(candidates.len() as usize, max_total_hits);
|
||||
let hits_info = HitsInfo::OffsetLimit {
|
||||
limit: query.limit,
|
||||
offset: query.offset,
|
||||
estimated_total_hits: number_of_hits,
|
||||
};
|
||||
|
||||
let result = RecommendResult {
|
||||
hits: documents,
|
||||
hits_info,
|
||||
id: query.id,
|
||||
prompt: query.prompt,
|
||||
processing_time_ms: before_search.elapsed().as_millis(),
|
||||
};
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
|
||||
lazy_static::lazy_static! {
|
||||
static ref GEO_REGEX: Regex =
|
||||
|
@ -49,7 +49,7 @@ fn main() -> Result<(), Box<dyn Error>> {
|
||||
let start = Instant::now();
|
||||
|
||||
let mut ctx = SearchContext::new(&index, &txn);
|
||||
let universe = filtered_universe(&ctx, &None)?;
|
||||
let universe = filtered_universe(ctx.index, ctx.txn, &None)?;
|
||||
|
||||
let docs = execute_search(
|
||||
&mut ctx,
|
||||
|
@ -59,6 +59,7 @@ pub use self::heed_codec::{
|
||||
};
|
||||
pub use self::index::Index;
|
||||
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
||||
pub use self::search::recommend::Recommend;
|
||||
pub use self::search::{
|
||||
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
||||
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
|
@ -29,7 +29,7 @@ impl ParsedValue {
|
||||
}
|
||||
|
||||
impl<'a> Document<'a> {
|
||||
pub fn new(
|
||||
pub fn from_deladd_obkv(
|
||||
data: obkv::KvReaderU16<'a>,
|
||||
side: DelAdd,
|
||||
inverted_field_map: &'a FieldsIdsMap,
|
||||
@ -48,6 +48,20 @@ impl<'a> Document<'a> {
|
||||
Self(out_data)
|
||||
}
|
||||
|
||||
pub fn from_doc_obkv(
|
||||
data: obkv::KvReaderU16<'a>,
|
||||
inverted_field_map: &'a FieldsIdsMap,
|
||||
) -> Self {
|
||||
let mut out_data = BTreeMap::new();
|
||||
for (fid, raw) in data {
|
||||
let Some(name) = inverted_field_map.name(fid) else {
|
||||
continue;
|
||||
};
|
||||
out_data.insert(name, (raw, ParsedValue::empty()));
|
||||
}
|
||||
Self(out_data)
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
@ -2,6 +2,7 @@ mod context;
|
||||
mod document;
|
||||
pub(crate) mod error;
|
||||
mod fields;
|
||||
pub mod recommend;
|
||||
mod template_checker;
|
||||
|
||||
use std::convert::TryFrom;
|
||||
@ -9,7 +10,7 @@ use std::convert::TryFrom;
|
||||
use error::{NewPromptError, RenderPromptError};
|
||||
|
||||
use self::context::Context;
|
||||
use self::document::Document;
|
||||
pub use self::document::Document;
|
||||
use crate::update::del_add::DelAdd;
|
||||
use crate::FieldsIdsMap;
|
||||
|
||||
@ -95,7 +96,7 @@ impl Prompt {
|
||||
side: DelAdd,
|
||||
field_id_map: &FieldsIdsMap,
|
||||
) -> Result<String, RenderPromptError> {
|
||||
let document = Document::new(document, side, field_id_map);
|
||||
let document = Document::from_deladd_obkv(document, side, field_id_map);
|
||||
let context = Context::new(&document, field_id_map);
|
||||
|
||||
self.template.render(&context).map_err(RenderPromptError::missing_context)
|
||||
|
112
milli/src/prompt/recommend.rs
Normal file
112
milli/src/prompt/recommend.rs
Normal file
@ -0,0 +1,112 @@
|
||||
use liquid::model::{
|
||||
DisplayCow, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
|
||||
};
|
||||
use liquid::{ObjectView, ValueView};
|
||||
|
||||
use super::document::Document;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Context<'a> {
|
||||
document: Option<&'a Document<'a>>,
|
||||
context: Option<liquid::Object>,
|
||||
}
|
||||
|
||||
impl<'a> Context<'a> {
|
||||
pub fn new(document: Option<&'a Document<'a>>, context: Option<serde_json::Value>) -> Self {
|
||||
/// FIXME: unwrap
|
||||
let context = context.map(|context| liquid::to_object(&context).unwrap());
|
||||
Self { document, context }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ObjectView for Context<'a> {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
match (self.context.as_ref(), self.document.as_ref()) {
|
||||
(None, None) => 0,
|
||||
(None, Some(_)) => 1,
|
||||
(Some(_), None) => 1,
|
||||
(Some(_), Some(_)) => 2,
|
||||
}
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
let keys = match (self.context.as_ref(), self.document.as_ref()) {
|
||||
(None, None) => [].as_slice(),
|
||||
(None, Some(_)) => ["doc"].as_slice(),
|
||||
(Some(_), None) => ["context"].as_slice(),
|
||||
(Some(_), Some(_)) => ["context", "doc"].as_slice(),
|
||||
};
|
||||
|
||||
Box::new(keys.iter().map(|s| KStringCow::from_static(s)))
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(
|
||||
self.context
|
||||
.as_ref()
|
||||
.map(|context| context.as_value())
|
||||
.into_iter()
|
||||
.chain(self.document.map(|document| document.as_value()).into_iter()),
|
||||
)
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.keys().zip(self.values()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
index == "context" || index == "doc"
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
match index {
|
||||
"context" => self.context.as_ref().map(|context| context.as_value()),
|
||||
"doc" => self.document.as_ref().map(|doc| doc.as_value()),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueView for Context<'a> {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectRender::new(self)))
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectSource::new(self)))
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue | State::Empty | State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
let s = ObjectRender::new(self).to_string();
|
||||
KStringCow::from_string(s)
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Object(
|
||||
self.iter().map(|(k, x)| (k.to_string().into(), x.to_value())).collect(),
|
||||
)
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
@ -24,6 +24,7 @@ pub mod facet;
|
||||
mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
pub mod recommend;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SemanticSearch {
|
||||
@ -148,7 +149,7 @@ impl<'a> Search<'a> {
|
||||
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
|
||||
if has_vector_search {
|
||||
let ctx = SearchContext::new(self.index, self.rtxn);
|
||||
filtered_universe(&ctx, &self.filter)
|
||||
filtered_universe(ctx.index, ctx.txn, &self.filter)
|
||||
} else {
|
||||
Ok(self.execute()?.candidates)
|
||||
}
|
||||
@ -161,7 +162,7 @@ impl<'a> Search<'a> {
|
||||
ctx.searchable_attributes(searchable_attributes)?;
|
||||
}
|
||||
|
||||
let universe = filtered_universe(&ctx, &self.filter)?;
|
||||
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
|
||||
let PartialSearchResult {
|
||||
located_query_terms,
|
||||
candidates,
|
||||
|
@ -507,7 +507,7 @@ mod tests {
|
||||
impl<'a> MatcherBuilder<'a> {
|
||||
fn new_test(rtxn: &'a heed::RoTxn, index: &'a TempIndex, query: &str) -> Self {
|
||||
let mut ctx = SearchContext::new(index, rtxn);
|
||||
let universe = filtered_universe(&ctx, &None).unwrap();
|
||||
let universe = filtered_universe(ctx.index, ctx.txn, &None).unwrap();
|
||||
let crate::search::PartialSearchResult { located_query_terms, .. } = execute_search(
|
||||
&mut ctx,
|
||||
Some(query),
|
||||
|
@ -530,11 +530,15 @@ fn resolve_sort_criteria<'ctx, Query: RankingRuleQueryTrait>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn filtered_universe(ctx: &SearchContext, filters: &Option<Filter>) -> Result<RoaringBitmap> {
|
||||
pub fn filtered_universe(
|
||||
index: &Index,
|
||||
txn: &RoTxn<'_>,
|
||||
filters: &Option<Filter>,
|
||||
) -> Result<RoaringBitmap> {
|
||||
Ok(if let Some(filters) = filters {
|
||||
filters.evaluate(ctx.txn, ctx.index)?
|
||||
filters.evaluate(txn, index)?
|
||||
} else {
|
||||
ctx.index.documents_ids(ctx.txn)?
|
||||
index.documents_ids(txn)?
|
||||
})
|
||||
}
|
||||
|
||||
|
205
milli/src/search/recommend.rs
Normal file
205
milli/src/search/recommend.rs
Normal file
@ -0,0 +1,205 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use ordered_float::OrderedFloat;
|
||||
use roaring::RoaringBitmap;
|
||||
use serde_json::Value;
|
||||
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::vector::Embedder;
|
||||
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
|
||||
|
||||
enum RecommendKind<'a> {
|
||||
Id(DocumentId),
|
||||
Prompt { prompt: &'a str, context: Option<Value>, id: Option<DocumentId> },
|
||||
}
|
||||
|
||||
pub struct Recommend<'a> {
|
||||
kind: RecommendKind<'a>,
|
||||
// this should be linked to the String in the query
|
||||
filter: Option<Filter<'a>>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
}
|
||||
|
||||
impl<'a> Recommend<'a> {
|
||||
pub fn with_docid(
|
||||
id: DocumentId,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
index: &'a Index,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Self {
|
||||
Self {
|
||||
kind: RecommendKind::Id(id),
|
||||
filter: None,
|
||||
offset,
|
||||
limit,
|
||||
rtxn,
|
||||
index,
|
||||
embedder_name,
|
||||
embedder,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn with_prompt(
|
||||
prompt: &'a str,
|
||||
id: Option<DocumentId>,
|
||||
context: Option<Value>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
index: &'a Index,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Self {
|
||||
Self {
|
||||
kind: RecommendKind::Prompt { prompt, context, id },
|
||||
filter: None,
|
||||
offset,
|
||||
limit,
|
||||
rtxn,
|
||||
index,
|
||||
embedder_name,
|
||||
embedder,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
|
||||
self.filter = Some(filter);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
|
||||
|
||||
let embedder_index =
|
||||
self.index
|
||||
.embedder_category_id
|
||||
.get(self.rtxn, &self.embedder_name)?
|
||||
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
|
||||
|
||||
let writer_index = (embedder_index as u16) << 8;
|
||||
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
|
||||
.map_while(|k| {
|
||||
arroy::Reader::open(self.rtxn, writer_index | (k as u16), self.index.vector_arroy)
|
||||
.map(Some)
|
||||
.or_else(|e| match e {
|
||||
arroy::Error::MissingMetadata => Ok(None),
|
||||
e => Err(e),
|
||||
})
|
||||
.transpose()
|
||||
})
|
||||
.collect();
|
||||
|
||||
let readers = readers?;
|
||||
|
||||
let mut results = Vec::new();
|
||||
|
||||
/// FIXME: make id optional...
|
||||
let id = match &self.kind {
|
||||
RecommendKind::Id(id) => *id,
|
||||
RecommendKind::Prompt { prompt, context, id } => id.unwrap(),
|
||||
};
|
||||
|
||||
let personalization_vector = if let RecommendKind::Prompt { prompt, context, id } =
|
||||
&self.kind
|
||||
{
|
||||
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
|
||||
let document = if let Some(id) = id {
|
||||
Some(self.index.iter_documents(self.rtxn, std::iter::once(*id))?.next().unwrap()?.1)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let document = document
|
||||
.map(|document| crate::prompt::Document::from_doc_obkv(document, &fields_ids_map));
|
||||
|
||||
let context =
|
||||
crate::prompt::recommend::Context::new(document.as_ref(), context.clone());
|
||||
|
||||
/// FIXME: handle error bad template
|
||||
let template =
|
||||
liquid::ParserBuilder::new().stdlib().build().unwrap().parse(prompt).unwrap();
|
||||
|
||||
/// FIXME: handle error bad context
|
||||
let rendered = template.render(&context).unwrap();
|
||||
|
||||
/// FIXME: handle embedding error
|
||||
Some(self.embedder.embed_one(rendered).unwrap())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
for reader in readers.iter() {
|
||||
let nns_by_item = reader.nns_by_item(
|
||||
self.rtxn,
|
||||
id,
|
||||
self.limit + self.offset + 1,
|
||||
None,
|
||||
Some(&universe),
|
||||
)?;
|
||||
|
||||
if let Some(nns_by_item) = nns_by_item {
|
||||
let mut nns = match &personalization_vector {
|
||||
Some(vector) => {
|
||||
let candidates: RoaringBitmap =
|
||||
nns_by_item.iter().map(|(docid, _)| docid).collect();
|
||||
reader.nns_by_vector(
|
||||
self.rtxn,
|
||||
vector,
|
||||
self.limit + self.offset + 1,
|
||||
None,
|
||||
Some(&candidates),
|
||||
)?
|
||||
}
|
||||
None => nns_by_item,
|
||||
};
|
||||
|
||||
results.append(&mut nns);
|
||||
}
|
||||
}
|
||||
|
||||
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
|
||||
|
||||
let mut documents_ids = Vec::with_capacity(self.limit);
|
||||
let mut document_scores = Vec::with_capacity(self.limit);
|
||||
|
||||
// skip offset +1 to skip the target document that is normally returned
|
||||
for (docid, distance) in results.into_iter().skip(self.offset) {
|
||||
if documents_ids.len() == self.limit {
|
||||
break;
|
||||
}
|
||||
if id == docid {
|
||||
continue;
|
||||
}
|
||||
|
||||
documents_ids.push(docid);
|
||||
|
||||
let score = 1.0 - distance;
|
||||
let score = self
|
||||
.embedder
|
||||
.distribution()
|
||||
.map(|distribution| distribution.shift(score))
|
||||
.unwrap_or(score);
|
||||
|
||||
let score = ScoreDetails::Vector(score_details::Vector { similarity: Some(score) });
|
||||
|
||||
document_scores.push(vec![score]);
|
||||
}
|
||||
|
||||
Ok(SearchResult {
|
||||
matching_words: Default::default(),
|
||||
candidates: universe,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
degraded: false,
|
||||
used_negative_operator: false,
|
||||
})
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user