Compare commits

...

114 Commits

Author SHA1 Message Date
Louis Dureuil
f4f3bf1cfd almost always force incremental facet indexing 2025-01-06 13:36:40 +01:00
meili-bors[bot]
cfaac6f7ca Merge #5058
Some checks failed
Test suite / Tests almost all features (push) Has been skipped
Test suite / Test disabled tokenization (push) Has been skipped
Test suite / Tests on ubuntu-20.04 (push) Failing after 12s
Test suite / Run tests in debug (push) Failing after 11s
Test suite / Tests on ${{ matrix.os }} (windows-2022) (push) Failing after 23s
Test suite / Run Rustfmt (push) Successful in 1m31s
Test suite / Run Clippy (push) Successful in 7m56s
Test suite / Tests on ${{ matrix.os }} (macos-12) (push) Has been cancelled
5058: Retry if deserialization of remote response failed r=irevoire a=dureuill

v1.11.2 introduces a new error condition (instead of a possibly infinite wait): deserializing the body of a remote response can cause a timeout and fail immediately.

This PR makes it so that deserialization failures are inside the retry loop, meaning they obey the exponential backoff retry strategy.

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-11-14 15:55:14 +00:00
meili-bors[bot]
333ef0851c Merge #5059
5059: Update version for the next release (v1.11.3) in Cargo.toml r=dureuill a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: dureuill <dureuill@users.noreply.github.com>
2024-11-14 15:16:56 +00:00
Louis Dureuil
03e7cc3753 Retry in case where the JSON deserialization fails 2024-11-14 16:01:44 +01:00
dureuill
bc91413d6c Update version for the next release (v1.11.3) in Cargo.toml 2024-11-14 14:45:13 +00:00
meili-bors[bot]
4e1ac9b0b4 Merge #5051
Some checks failed
Test suite / Tests on ${{ matrix.os }} (macos-12) (push) Waiting to run
Test suite / Tests almost all features (push) Has been skipped
Test suite / Test disabled tokenization (push) Has been skipped
Test suite / Tests on ubuntu-20.04 (push) Failing after 28s
Test suite / Run tests in debug (push) Failing after 31s
Test suite / Run Rustfmt (push) Successful in 2m6s
Test suite / Tests on ${{ matrix.os }} (windows-2022) (push) Failing after 8m36s
Test suite / Run Clippy (push) Failing after 21m21s
5051: Add timeout on read and write operations. r=irevoire a=dureuill

# Pull Request

## Related issue
Addresses #5054 

## What does this PR do?
- Add a timeout for read and write operations in the REST embedder. This might address some issues about tasks that get "stuck" while embedding documents.


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-11-14 08:34:43 +00:00
meili-bors[bot]
8a18e37a3d Merge #5055
5055: Update version for the next release (v1.11.2) in Cargo.toml r=dureuill a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: dureuill <dureuill@users.noreply.github.com>
2024-11-14 07:53:51 +00:00
dureuill
36375ea326 Update version for the next release (v1.11.2) in Cargo.toml 2024-11-13 16:24:23 +00:00
Louis Dureuil
bca2974266 Add timeout on read and write operations. 2024-11-13 17:01:23 +01:00
meili-bors[bot]
13025594a8 Merge #5041
5041: Update version for the next release (v1.11.1) in Cargo.toml r=dureuill a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: dureuill <dureuill@users.noreply.github.com>
2024-11-06 11:35:26 +00:00
meili-bors[bot]
2c1c33166d Merge #5039
5039: Add 3s timeout to embedding requests made during search r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes #5032 

## What does this PR do?
- Add a 3-second timeout to embedding requests against a remote embedder made in the context of search. The timeout triggers when there are failing requests due to rate-limiting.
- Add a test of that timeout.

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-11-06 10:56:50 +00:00
dureuill
cdb6e3f45a Update version for the next release (v1.11.1) in Cargo.toml 2024-11-06 08:35:51 +00:00
Louis Dureuil
1d574bd443 Add test 2024-11-06 09:25:41 +01:00
Louis Dureuil
37a4fd7f99 Add deadline of 3 seconds to embedding requests made in the context of hybrid search 2024-11-06 09:25:24 +01:00
meili-bors[bot]
3753f87fd8 Merge #5011
5011: Revamp analytics r=ManyTheFish a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/5009

## What does this PR do?
- Force every analytics to go through a trait that forces you to handle aggregation correcty
- Put the code to retrieve the `user-agent`, `timestamp` and `requests.total_received` in common between all aggregates, so there is no mistake
- Get rids of all the different channel for each kind of event in favor of an any map
- Ensure that we never [send empty event ever again](https://github.com/meilisearch/meilisearch/pull/5001)
- Merge all the sub-settings route into a global « Settings Updated » event.
- Fix: When using one of the three following feature, we were not sending any analytics IF they were set from the global route
  - /non-separator-tokens
  - /separator-tokens
  - /dictionary

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-10-21 15:08:49 +00:00
Tamo
5675585fe8 move all the searches structures to new modules 2024-10-20 17:54:43 +02:00
Tamo
af589c85ec reverse all the settings to keep the last one received instead of the first one received in case we receive the same setting multiple times 2024-10-20 17:40:31 +02:00
Tamo
ac919df37d simplify the trait a bit more by getting rids of the downcast_aggregate method 2024-10-20 17:36:29 +02:00
Tamo
73b5722896 rename the other parameter of the aggregate method to new to avoid confusion 2024-10-20 17:31:35 +02:00
Tamo
c94679bde6 apply review comments 2024-10-20 17:24:12 +02:00
Tamo
89e2d2b2b9 fix the doctest 2024-10-17 13:55:49 +02:00
Tamo
3a7a20c716 remove the segment feature and always import segment 2024-10-17 11:21:14 +02:00
Tamo
fa1db6b721 fix the tests 2024-10-17 09:55:30 +02:00
Tamo
1ab6fec903 send all experimental features in the info event including the runtime one 2024-10-17 09:49:21 +02:00
Tamo
18ac4032aa Remove the experimental feature seen 2024-10-17 09:35:11 +02:00
Tamo
d9115b74f0 move the analytics settings code to a dedicated file 2024-10-17 09:32:54 +02:00
Tamo
0fde49640a make clippy happy 2024-10-17 09:18:25 +02:00
Tamo
4ee65d870e remove a lot of ununsed code 2024-10-17 09:14:34 +02:00
Tamo
ef77c7699b add the required shared values between all the events and fix the timestamp 2024-10-17 09:06:23 +02:00
Tamo
7382fb21e4 fix the main 2024-10-17 08:38:11 +02:00
Tamo
e4ace98004 fix all the routes + move to a better version of mopa 2024-10-17 01:04:25 +02:00
Tamo
aa7a34ffe8 make the aggregate method send 2024-10-17 00:43:34 +02:00
Tamo
6728cfbfac fix the analytics 2024-10-17 00:38:18 +02:00
Tamo
ea6883189e finish the analytics in all the routes 2024-10-16 21:17:06 +02:00
Tamo
fdeb47fb54 implements all routes 2024-10-16 17:16:33 +02:00
Tamo
e66fccc3f2 get rids of the analytics closure 2024-10-16 15:51:48 +02:00
Tamo
73e87c152a rewrite most of the analytics especially the settings 2024-10-16 15:43:27 +02:00
meili-bors[bot]
75b2f22add Merge #5008
5008: Display vectors when no custom vectors where ever provided r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes the issue reported on [Discord](https://discord.com/channels/1006923006964154428/1294653031958446080/1295336784896589967).

## What does this PR do?
- Normal behavior of Meilisearch is to hide `_vectors` even when `retrieveVectors: true` when there is an explicit list of displayed attributes that does not contain vectors
- However, this relied on the field id for the `_vectors` field to exist, which wasn't the case when no `_vectors` was manually provided to documents. This would often be the case for people using autoembedders such as the OpenAI integration.
- This PR fixes the behavior by looking for the `_vectors` string in the `displayedAttributes` when there is no `_vectors` fid.
- This PR also adds a test for this specific situation, that would fail before the PR, and pass after the PR


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-10-15 13:08:47 +00:00
Louis Dureuil
5a74d4729c Add test failing before this PR, OK now 2024-10-14 16:23:28 +02:00
Louis Dureuil
e44e7b5e81 Fix retrieveVectors when explicitly passed in displayed attributes without any document containing _vectors 2024-10-14 16:17:19 +02:00
meili-bors[bot]
a0b3887709 Merge #5006
5006: Bring back changes from v1.10.3 r=Kerollmops a=irevoire

# Pull Request

## Related issue
Port the following PR to the latest version: https://github.com/meilisearch/meilisearch/pull/5000
See its description for more information

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-10-14 14:06:35 +00:00
Tamo
4b4a6c7863 Update meilisearch/src/option.rs
Co-authored-by: Clément Renault <clement@meilisearch.com>
2024-10-14 14:39:34 +02:00
Tamo
3085092e04 Update meilisearch/src/option.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-10-14 14:39:34 +02:00
Tamo
c4efd1df4e Update meilisearch/src/option.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-10-14 14:39:34 +02:00
Tamo
c32282acb1 improve doc 2024-10-14 14:39:34 +02:00
Tamo
92070a3578 Implement the experimental drop search after and nb search per core 2024-10-14 14:39:33 +02:00
meili-bors[bot]
a90563df3f Merge #5001
5001: Do not send empty edit document by function r=Kerollmops a=irevoire

# Pull Request

We realized that we had a huge usage of the feature from user who didn’t enable the feature at all. That shouldn’t be possible.
After a big investigation with `@gmourier` 
![image](https://github.com/user-attachments/assets/eae3e851-dc5b-4616-80ee-7237a4871522)
We found the issue, it was in the engine

## What does this PR do?
- Do not send the edit by function event to segment if no event was received during this batch

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-10-11 08:27:16 +00:00
Tamo
466604725e Do not send empty edit document by function 2024-10-10 23:47:15 +02:00
meili-bors[bot]
995394a516 Merge #4993
4993: Update mini-dashboard r=ManyTheFish a=curquiza

Remove the forced capitalized attribute name

Co-authored-by: curquiza <clementine@meilisearch.com>
2024-10-10 05:57:45 +00:00
curquiza
6e37ae8619 Update mini-dashboard 2024-10-09 19:13:14 +02:00
meili-bors[bot]
657c645603 Merge #4992
4992: fix the bad experimental search queue size r=dureuill a=irevoire

# Pull Request

## Related issue
Fixes #4991 

## What does this PR do?
- Set the right default value for the experimental search queue size in the config file


Co-authored-by: Tamo <tamo@meilisearch.com>
2024-10-09 10:45:48 +00:00
Tamo
7f5d0837c3 fix the bad experimental search queue size 2024-10-09 11:46:57 +02:00
meili-bors[bot]
0566f2549d Merge #4972
4972: Add binary quantized to error messages r=irevoire a=dureuill

was missing in error messages

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-10-02 09:23:55 +00:00
Louis Dureuil
0c2661ea90 Fix tests 2024-10-02 11:20:29 +02:00
Louis Dureuil
62dfbd6255 Add binary quantized to allowed fields for source adds its sources 2024-10-02 11:20:02 +02:00
meili-bors[bot]
cc669f90d5 Merge #4971
4971: update arroy r=dureuill a=irevoire

# Pull Request

Fix part of https://github.com/meilisearch/meilisearch/issues/3715


## What does this PR do?
- Update arroy to the latest version, most change are maintenance changes
- The performances of adding vectors to arroy should slightly improve
- Forward the build cancellation function to arroy so it can stop building trees when we have to stop an indexing process


Co-authored-by: Tamo <tamo@meilisearch.com>
2024-10-02 05:53:51 +00:00
Tamo
b1dc10e771 uses the new cancellation method in arroy 2024-10-01 17:45:49 +02:00
Tamo
4b598fa648 update arroy 2024-10-01 17:31:12 +02:00
meili-bors[bot]
71b364286b Merge #4957
4957: Update charabia feature flags r=dureuill a=ManyTheFish

# Pull Request

Add charabia's `turkish` feature flag into Meilisearch default tokenization flag



[All tests pipeline](https://github.com/meilisearch/meilisearch/actions/runs/11030036031)

Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-09-26 20:19:21 +00:00
meili-bors[bot]
86183e0807 Merge #4960
4960: Update rhai r=dureuill a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4956

A fix has been implemented in https://github.com/rhaiscript/rhai/issues/916

## What does this PR do?
- Use the latest version of rhai containing the fix

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-09-26 15:03:01 +00:00
Tamo
78a4b7949d update rhai to a version that shouldn’t panic 2024-09-26 15:04:03 +02:00
ManyTheFish
dc2cb58cf1 use charabia default for all-tokenization 2024-09-25 11:12:30 +02:00
ManyTheFish
e9580fe619 Add turkish normalization 2024-09-25 11:03:17 +02:00
meili-bors[bot]
8205254f4c Merge #4955
4955: Upgrade "batch failed" log to error level r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes #4916 


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-25 08:18:44 +00:00
meili-bors[bot]
efdc5739d7 Merge #4953
4953: Move the multi arroy index logic to the arroy wrapper r=irevoire a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4948

## What does this PR do?
- Make the `ArroyWrapper` we introduced in the last PR handle all the embedded for a specific docid itself.


Co-authored-by: Tamo <tamo@meilisearch.com>
2024-09-24 15:02:24 +00:00
Tamo
b31e9bea26 while retrieving the readers on an arroywrapper, stops at the first empty reader 2024-09-24 16:33:17 +02:00
Tamo
7f048b9732 early exit in the clear and contains 2024-09-24 15:02:38 +02:00
Tamo
8b4e2c7b17 Remove now unused method 2024-09-24 15:00:25 +02:00
Tamo
645a55317a merge the build and quantize method 2024-09-24 14:54:24 +02:00
meili-bors[bot]
8caf97db86 Merge #4954
4954: Fix bench by adding embedder r=ManyTheFish a=dureuill

Fix benchmark workloads following breaking change on embedders

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-24 12:53:34 +00:00
Tamo
b8a74e0464 fix comments 2024-09-24 10:59:15 +02:00
Tamo
fd8447c521 fix the del items thing 2024-09-24 10:52:05 +02:00
Tamo
f2d187ba3e rename the index method to embedder_index 2024-09-24 10:39:40 +02:00
Tamo
79d8a7a51a rename the embedder index for clarity 2024-09-24 10:36:28 +02:00
Louis Dureuil
86da0e83fe Upgrade "batch failed" log to ERROR level 2024-09-24 10:02:53 +02:00
Louis Dureuil
0704fb71e9 Fix bench by adding embedder 2024-09-24 09:56:47 +02:00
Tamo
1e4d4e69c4 finish the arroywrapper 2024-09-23 18:56:15 +02:00
Tamo
6ba4baecbf first ugly step 2024-09-23 15:15:26 +02:00
meili-bors[bot]
7f20c13f3f Merge #4943
4943: Correct broken links in README r=curquiza a=iornstein

# Pull Request

## Related issue
Fixes #4942

## What does this PR do?
- Corrects some broken links in the README. My suspicion is that some of these documentation articles were moved around without someone updating links in the README.

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)? _(well the contributing guidelines led me to create an issue first)_
- [x] Have you read the contributing guidelines? _yes_
- [x] Have you made sure that the title is accurate and descriptive of the changes? _yes_

Thank you so much for contributing to Meilisearch!


Co-authored-by: Ian Ornstein <ian.ornstein@gmail.com>
2024-09-19 19:22:04 +00:00
meili-bors[bot]
462a2329f1 Merge #4941
4941: Implement the binary quantization in meilisearch r=irevoire a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4873

## What does this PR do?
- Add a settings for the binary quantization
- Once enabled, the bq cannot be disabled

TODO:
- [ ] Missing a bunch of tests

Co-authored-by: Tamo <tamo@meilisearch.com>
2024-09-19 15:50:24 +00:00
Tamo
afa3ae0cbd WIP 2024-09-19 17:42:52 +02:00
Tamo
f6483cf15d apply review comment 2024-09-19 16:47:06 +02:00
meili-bors[bot]
bd34ed01d9 Merge #4945
4945: Add swedish in default pipelines r=dureuill a=ManyTheFish

# Summary
## Fix Swedish support

In Swedish the characters `å`/`ä`/`ö` are completely different than `a` or `o`  and should not be normalized as the same character.
because the Swedish specialized pipeline was not activated by default, these characters were normalized even with the settings:
```json
{
  "localizedAttributes": [ { "locales": ["swe"], "attributePatterns": ["*"] } ]
}
```

## Update Charabia adding German support

German segmentation will now be activated using the setting:
```json
{
  "localizedAttributes": [ { "locales": ["deu"], "attributePatterns": ["*"] } ]
}
```

# TODO

- [x] Activate Swedish Pipeline
- [x] Add a test to avoid future regressions
- [x] Update Charabia


Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-09-19 14:42:03 +00:00
Tamo
74199f328d Make clippy happy 2024-09-19 16:27:34 +02:00
Tamo
1113c42de0 fix broken comments 2024-09-19 16:18:36 +02:00
ManyTheFish
465afe01b2 Add test for German 2024-09-19 16:09:01 +02:00
ManyTheFish
7d6768e4c4 Add german tokenization pipeline 2024-09-19 16:09:01 +02:00
ManyTheFish
f77661ec44 Update Charabia v0.9.1 2024-09-19 16:08:59 +02:00
Tamo
b8fd85a46d Get rids of useless collect before an iteration on the readers 2024-09-19 15:57:38 +02:00
Tamo
fd43c6c404 Improve the error message explaining you can't un-bq an embedder 2024-09-19 15:51:29 +02:00
Tamo
2564ec1496 Update milli/src/index.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 15:41:44 +02:00
Tamo
b6b73fe41c Update milli/src/update/settings.rs
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 15:41:14 +02:00
Tamo
6dde41cc46 stop using a local version of arroy and instead point to the git repo with the rev 2024-09-19 15:25:38 +02:00
Tamo
163f8023a1 remove debug println 2024-09-19 12:13:25 +02:00
Tamo
2b120b89e4 update the test now that the embedder must be specified 2024-09-19 12:08:59 +02:00
Tamo
84f842233d snapshots the embedder settings in the dump import with vector test 2024-09-19 12:00:58 +02:00
Tamo
633537ccd7 fix updating documents without updating the settings 2024-09-19 12:00:58 +02:00
Tamo
e8d7c00d30 add a test on the settings value 2024-09-19 12:00:58 +02:00
Tamo
3f6301dbc9 fix the missing embedder name in the error message when trying to disable the binary quantization 2024-09-19 12:00:58 +02:00
Tamo
ca71b63ed1 adds integration tests 2024-09-19 12:00:58 +02:00
Tamo
2b6952eda1 rename the ArroyReader to an ArroyWrapper since it can read and write 2024-09-19 12:00:58 +02:00
Tamo
79f29eed3c fix the tests and the arroy_readers method 2024-09-19 12:00:58 +02:00
Tamo
cc45e264ca implement the binary quantization in meilisearch 2024-09-19 12:00:56 +02:00
meili-bors[bot]
5f474a640d Merge #4938
4938: Remove default embedder r=ManyTheFish a=dureuill

# Pull Request

## Related issue
Fixes #4738 

## What does this PR do?

[See public usage](https://meilisearch.notion.site/v1-11-AI-search-changes-0e37727193884a70999f254fa953ce6e#1044b06b651f80edb9d4ef6dc367bad0)

- Remove `hybrid.embedder` boolean from analytics because embedder is now mandatory and so the boolean would always be `true`
- Rework search kind so that a search without query but with vector is a vector search regardless of (non-zero) semantic ratio


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-09-19 09:17:14 +00:00
ManyTheFish
bbaee3dbc6 Add Swedish pipeline in all-tokenization feature 2024-09-19 08:34:51 +02:00
ManyTheFish
877717cb26 Add a test using Swedish documents 2024-09-19 08:34:04 +02:00
Ian Ornstein
716817122a Correct broken links in README 2024-09-18 16:30:29 -05:00
Louis Dureuil
1120a5296c Update tests 2024-09-17 16:30:43 +02:00
Louis Dureuil
a35a339c3d Touchup error message 2024-09-17 16:30:43 +02:00
Louis Dureuil
cac5836f6f Remove hybrid.embedder boolean from analytics because embedder is now mandatory 2024-09-17 16:30:43 +02:00
Louis Dureuil
5239ae0297 Rework search kind so that a search without query but with vector is a vector search regardless of semantic ratio 2024-09-17 16:30:43 +02:00
Louis Dureuil
2fdb1d8018 SearchQueryGet can fail 2024-09-17 16:30:43 +02:00
Louis Dureuil
3c5e363554 Remove default embedders 2024-09-17 16:30:43 +02:00
Louis Dureuil
da0dd6febf Make embedder mandatory 2024-09-17 16:30:43 +02:00
81 changed files with 7711 additions and 6251 deletions

66
Cargo.lock generated
View File

@@ -386,15 +386,16 @@ checksum = "96d30a06541fbafbc7f82ed10c06164cfbd2c401138f6addd8404629c4b16711"
[[package]]
name = "arroy"
version = "0.4.0"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2ece9e5347e7fdaaea3181dec7f916677ad5f3fcbac183648ce1924eb4aeef9a"
checksum = "dfc5f272f38fa063bbff0a7ab5219404e221493de005e2b4078c62d626ef567e"
dependencies = [
"bytemuck",
"byteorder",
"heed",
"log",
"memmap2",
"nohash",
"ordered-float",
"rand",
"rayon",
@@ -471,7 +472,7 @@ checksum = "72b3254f16251a8381aa12e40e3c4d2f0199f8c6508fbecb9d91f575e0fbb8c6"
[[package]]
name = "benchmarks"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"bytes",
@@ -652,7 +653,7 @@ dependencies = [
[[package]]
name = "build-info"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"time",
@@ -933,9 +934,9 @@ dependencies = [
[[package]]
name = "charabia"
version = "0.9.0"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03cd8f290cae94934cdd0103c14c2de9faf2d7d85be0d24d511af2bf1b14119d"
checksum = "55ff52497324e7d168505a16949ae836c14595606fab94687238d2f6c8d4c798"
dependencies = [
"aho-corasick",
"csv",
@@ -1622,7 +1623,7 @@ dependencies = [
[[package]]
name = "dump"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"big_s",
@@ -1834,7 +1835,7 @@ checksum = "9fc0510504f03c51ada170672ac806f1f105a88aa97a5281117e1ddc3368e51a"
[[package]]
name = "file-store"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"tempfile",
"thiserror",
@@ -1856,7 +1857,7 @@ dependencies = [
[[package]]
name = "filter-parser"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"insta",
"nom",
@@ -1876,7 +1877,7 @@ dependencies = [
[[package]]
name = "flatten-serde-json"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"criterion",
"serde_json",
@@ -2000,7 +2001,7 @@ dependencies = [
[[package]]
name = "fuzzers"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"arbitrary",
"clap",
@@ -2552,7 +2553,7 @@ checksum = "206ca75c9c03ba3d4ace2460e57b189f39f43de612c2f85836e65c929701bb2d"
[[package]]
name = "index-scheduler"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"arroy",
@@ -2746,7 +2747,7 @@ dependencies = [
[[package]]
name = "json-depth-checker"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"criterion",
"serde_json",
@@ -2838,7 +2839,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e310b3a6b5907f99202fcdb4960ff45b93735d7c7d96b760fcff8db2dc0e103d"
dependencies = [
"cfg-if",
"windows-targets 0.48.1",
"windows-targets 0.52.4",
]
[[package]]
@@ -3365,7 +3366,7 @@ checksum = "490cc448043f947bae3cbee9c203358d62dbee0db12107a74be5c30ccfd09771"
[[package]]
name = "meili-snap"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"insta",
"md5",
@@ -3374,7 +3375,7 @@ dependencies = [
[[package]]
name = "meilisearch"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"actix-cors",
"actix-http",
@@ -3414,6 +3415,7 @@ dependencies = [
"meilisearch-types",
"mimalloc",
"mime",
"mopa-maintained",
"num_cpus",
"obkv",
"once_cell",
@@ -3463,7 +3465,7 @@ dependencies = [
[[package]]
name = "meilisearch-auth"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"base64 0.22.1",
"enum-iterator",
@@ -3482,7 +3484,7 @@ dependencies = [
[[package]]
name = "meilisearch-types"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"actix-web",
"anyhow",
@@ -3512,7 +3514,7 @@ dependencies = [
[[package]]
name = "meilitool"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"clap",
@@ -3543,7 +3545,7 @@ dependencies = [
[[package]]
name = "milli"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"arroy",
"big_s",
@@ -3680,12 +3682,24 @@ dependencies = [
"syn 2.0.60",
]
[[package]]
name = "mopa-maintained"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79b7f3e22167862cc7c95b21a6f326c22e4bf40da59cbf000b368a310173ba11"
[[package]]
name = "mutually_exclusive_features"
version = "0.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d02c0b00610773bb7fc61d85e13d86c7858cbdf00e1a120bfc41bc055dbaa0e"
[[package]]
name = "nohash"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0f889fb66f7acdf83442c35775764b51fed3c606ab9cee51500dbde2cf528ca"
[[package]]
name = "nom"
version = "7.1.3"
@@ -3977,7 +3991,7 @@ checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"
[[package]]
name = "permissive-json-pointer"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"big_s",
"serde_json",
@@ -4575,9 +4589,8 @@ dependencies = [
[[package]]
name = "rhai"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61797318be89b1a268a018a92a7657096d83f3ecb31418b9e9c16dcbb043b702"
version = "1.20.0"
source = "git+https://github.com/rhaiscript/rhai?rev=ef3df63121d27aacd838f366f2b83fd65f20a1e4#ef3df63121d27aacd838f366f2b83fd65f20a1e4"
dependencies = [
"ahash 0.8.11",
"bitflags 2.6.0",
@@ -4594,8 +4607,7 @@ dependencies = [
[[package]]
name = "rhai_codegen"
version = "2.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a5a11a05ee1ce44058fa3d5961d05194fdbe3ad6b40f904af764d81b86450e6b"
source = "git+https://github.com/rhaiscript/rhai?rev=ef3df63121d27aacd838f366f2b83fd65f20a1e4#ef3df63121d27aacd838f366f2b83fd65f20a1e4"
dependencies = [
"proc-macro2",
"quote",
@@ -6368,7 +6380,7 @@ dependencies = [
[[package]]
name = "xtask"
version = "1.11.0"
version = "1.11.3"
dependencies = [
"anyhow",
"build-info",

View File

@@ -22,7 +22,7 @@ members = [
]
[workspace.package]
version = "1.11.0"
version = "1.11.3"
authors = [
"Quentin de Quelen <quentin@dequelen.me>",
"Clément Renault <clement@meilisearch.com>",

View File

@@ -45,14 +45,14 @@ See the list of all our example apps in our [demos repository](https://github.co
## ✨ Features
- **Hybrid search:** Combine the best of both [semantic](https://www.meilisearch.com/docs/learn/experimental/vector_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) & full-text search to get the most relevant results
- **Search-as-you-type:** Find & display results in less than 50 milliseconds to provide an intuitive experience
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/configuration/typo_tolerance?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/relevancy/typo_tolerance_settings?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
- **[Filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) and [faceted search](https://www.meilisearch.com/docs/learn/fine_tuning_results/faceted_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** enhance your users' search experience with custom filters and build a faceted search interface in a few lines of code
- **[Sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** sort results based on price, date, or pretty much anything else your users need
- **[Synonym support](https://www.meilisearch.com/docs/learn/configuration/synonyms?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** configure synonyms to include more relevant content in your search results
- **[Synonym support](https://www.meilisearch.com/docs/learn/relevancy/synonyms?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** configure synonyms to include more relevant content in your search results
- **[Geosearch](https://www.meilisearch.com/docs/learn/fine_tuning_results/geosearch?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** filter and sort documents based on geographic data
- **[Extensive language support](https://www.meilisearch.com/docs/learn/what_is_meilisearch/language?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** search datasets in any language, with optimized support for Chinese, Japanese, Hebrew, and languages using the Latin alphabet
- **[Security management](https://www.meilisearch.com/docs/learn/security/master_api_keys?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** control which users can access what data with API keys that allow fine-grained permissions handling
- **[Multi-Tenancy](https://www.meilisearch.com/docs/learn/security/tenant_tokens?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** personalize search results for any number of application tenants
- **[Multi-Tenancy](https://www.meilisearch.com/docs/learn/security/multitenancy_tenant_tokens?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** personalize search results for any number of application tenants
- **Highly Customizable:** customize Meilisearch to your specific needs or use our out-of-the-box and hassle-free presets
- **[RESTful API](https://www.meilisearch.com/docs/reference/api/overview?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** integrate Meilisearch in your technical stack with our plugins and SDKs
- **Easy to install, deploy, and maintain**

View File

@@ -255,6 +255,8 @@ pub(crate) mod test {
}
"###);
insta::assert_json_snapshot!(vector_index.settings().unwrap());
{
let documents: Result<Vec<_>> = vector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();

View File

@@ -1,783 +1,56 @@
---
source: dump/src/reader/mod.rs
expression: document
expression: vector_index.settings().unwrap()
---
{
"id": "e3",
"desc": "overriden vector + map",
"_vectors": {
"default": [
0.2,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
],
"toto": [
0.1
]
}
"displayedAttributes": [
"*"
],
"searchableAttributes": [
"*"
],
"filterableAttributes": [],
"sortableAttributes": [],
"rankingRules": [
"words",
"typo",
"proximity",
"attribute",
"sort",
"exactness"
],
"stopWords": [],
"nonSeparatorTokens": [],
"separatorTokens": [],
"dictionary": [],
"synonyms": {},
"distinctAttribute": null,
"proximityPrecision": "byWord",
"typoTolerance": {
"enabled": true,
"minWordSizeForTypos": {
"oneTypo": 5,
"twoTypos": 9
},
"disableOnWords": [],
"disableOnAttributes": []
},
"faceting": {
"maxValuesPerFacet": 100,
"sortFacetValuesBy": {
"*": "alpha"
}
},
"pagination": {
"maxTotalHits": 1000
},
"embedders": {
"default": {
"source": "huggingFace",
"model": "BAAI/bge-base-en-v1.5",
"revision": "617ca489d9e86b49b8167676d8220688b99db36e",
"documentTemplate": "{% for field in fields %} {{ field.name }}: {{ field.value }}\n{% endfor %}"
}
},
"searchCutoffMs": null
}

View File

@@ -0,0 +1,780 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e0",
"desc": "overriden vector",
"_vectors": {
"default": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
]
}
}

View File

@@ -40,7 +40,7 @@ ureq = "2.10.0"
uuid = { version = "1.10.0", features = ["serde", "v4"] }
[dev-dependencies]
arroy = "0.4.0"
arroy = "0.5.0"
big_s = "1.0.2"
crossbeam = "0.8.4"
insta = { version = "1.39.0", features = ["json", "redactions"] }

View File

@@ -1263,7 +1263,7 @@ impl IndexScheduler {
#[cfg(test)]
self.maybe_fail(tests::FailureLocation::UpdatingTaskAfterProcessBatchFailure)?;
tracing::info!("Batch failed {}", error);
tracing::error!("Batch failed {}", error);
self.update_task(&mut wtxn, &task)
.map_err(|e| Error::TaskDatabaseUpdate(Box::new(e)))?;
@@ -1477,7 +1477,7 @@ impl IndexScheduler {
.map(
|IndexEmbeddingConfig {
name,
config: milli::vector::EmbeddingConfig { embedder_options, prompt },
config: milli::vector::EmbeddingConfig { embedder_options, prompt, quantized },
..
}| {
let prompt =
@@ -1486,7 +1486,10 @@ impl IndexScheduler {
{
let embedders = self.embedders.read().unwrap();
if let Some(embedder) = embedders.get(&embedder_options) {
return Ok((name, (embedder.clone(), prompt)));
return Ok((
name,
(embedder.clone(), prompt, quantized.unwrap_or_default()),
));
}
}
@@ -1500,7 +1503,7 @@ impl IndexScheduler {
let mut embedders = self.embedders.write().unwrap();
embedders.insert(embedder_options, embedder.clone());
}
Ok((name, (embedder, prompt)))
Ok((name, (embedder, prompt, quantized.unwrap_or_default())))
},
)
.collect();
@@ -5197,10 +5200,11 @@ mod tests {
let simple_hf_name = name.clone();
let configs = index_scheduler.embedders(configs).unwrap();
let (hf_embedder, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
let (hf_embedder, _, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed =
hf_embedder.embed_one(S("Intel the beagle best doggo"), None).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo"), None).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo"), None).unwrap();
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
};
@@ -5519,6 +5523,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[1, 2]>,
},
@@ -5531,28 +5536,8 @@ mod tests {
// the document with the id 3 should keep its original embedding
let docid = index.external_documents_ids.get(&rtxn, "3").unwrap().unwrap();
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(&rtxn, i as u16, index.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader.unwrap().item_vector(&rtxn, docid).unwrap();
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
let embeddings = index.embeddings(&rtxn, docid).unwrap();
let embeddings = &embeddings["my_doggo_embedder"];
snapshot!(embeddings.len(), @"1");
assert!(embeddings[0].iter().all(|i| *i == 3.0), "{:?}", embeddings[0]);
@@ -5737,6 +5722,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[0]>,
},
@@ -5780,6 +5766,7 @@ mod tests {
400,
),
},
quantized: None,
},
user_provided: RoaringBitmap<[]>,
},

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, binary_quantized: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), document_template_max_bytes: NotSet, url: NotSet, request: NotSet, response: NotSet, headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), binary_quantized: NotSet, document_template: NotSet, document_template_max_bytes: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), headers: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@@ -66,3 +66,8 @@ khmer = ["milli/khmer"]
vietnamese = ["milli/vietnamese"]
# force swedish character recomposition
swedish-recomposition = ["milli/swedish-recomposition"]
# allow german tokenization
german = ["milli/german"]
# allow turkish normalization
turkish = ["milli/turkish"]

View File

@@ -395,7 +395,10 @@ impl ErrorCode for milli::Error {
| UserError::InvalidSettingsDimensions { .. }
| UserError::InvalidUrl { .. }
| UserError::InvalidSettingsDocumentTemplateMaxBytes { .. }
| UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
| UserError::InvalidPrompt(_)
| UserError::InvalidDisableBinaryQuantization { .. } => {
Code::InvalidSettingsEmbedders
}
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
UserError::NoPrimaryKeyCandidateFound => Code::IndexPrimaryKeyNoCandidateFound,

View File

@@ -39,12 +39,14 @@ macro_rules! make_locale {
pub enum Locale {
$($iso_639_1,)+
$($iso_639_3,)+
Cmn,
}
impl From<milli::tokenizer::Language> for Locale {
fn from(other: milli::tokenizer::Language) -> Locale {
match other {
$(milli::tokenizer::Language::$iso_639_3 => Locale::$iso_639_3,)+
milli::tokenizer::Language::Cmn => Locale::Cmn,
}
}
}
@@ -54,6 +56,7 @@ macro_rules! make_locale {
match other {
$(Locale::$iso_639_1 => milli::tokenizer::Language::$iso_639_3,)+
$(Locale::$iso_639_3 => milli::tokenizer::Language::$iso_639_3,)+
Locale::Cmn => milli::tokenizer::Language::Cmn,
}
}
}
@@ -65,6 +68,7 @@ macro_rules! make_locale {
let locale = match s {
$($iso_639_1_str => Locale::$iso_639_1,)+
$($iso_639_3_str => Locale::$iso_639_3,)+
"cmn" => Locale::Cmn,
_ => return Err(LocaleFormatError { invalid_locale: s.to_string() }),
};
@@ -79,8 +83,9 @@ macro_rules! make_locale {
impl std::fmt::Display for LocaleFormatError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let valid_locales = [$($iso_639_1_str),+,$($iso_639_3_str),+].join(", ");
write!(f, "Unsupported locale `{}`, expected one of {}", self.invalid_locale, valid_locales)
let mut valid_locales = [$($iso_639_1_str),+,$($iso_639_3_str),+,"cmn"];
valid_locales.sort_by(|left, right| left.len().cmp(&right.len()).then(left.cmp(right)));
write!(f, "Unsupported locale `{}`, expected one of {}", self.invalid_locale, valid_locales.join(", "))
}
}
@@ -99,7 +104,6 @@ make_locale!(
(Bg, "bg") => (Bul, "bul"),
(Ca, "ca") => (Cat, "cat"),
(Cs, "cs") => (Ces, "ces"),
(Zh, "zh") => (Cmn, "cmn"),
(Da, "da") => (Dan, "dan"),
(De, "de") => (Deu, "deu"),
(El, "el") => (Ell, "ell"),
@@ -157,5 +161,6 @@ make_locale!(
(Uz, "uz") => (Uzb, "uzb"),
(Vi, "vi") => (Vie, "vie"),
(Yi, "yi") => (Yid, "yid"),
(Zh, "zh") => (Zho, "zho"),
(Zu, "zu") => (Zul, "zul"),
);

View File

@@ -75,7 +75,7 @@ reqwest = { version = "0.12.5", features = [
rustls = { version = "0.23.11", features = ["ring"], default-features = false }
rustls-pki-types = { version = "1.7.0", features = ["alloc"] }
rustls-pemfile = "2.1.2"
segment = { version = "0.2.4", optional = true }
segment = { version = "0.2.4" }
serde = { version = "1.0.204", features = ["derive"] }
serde_json = { version = "1.0.120", features = ["preserve_order"] }
sha2 = "0.10.8"
@@ -104,6 +104,7 @@ tracing-trace = { version = "0.1.0", path = "../tracing-trace" }
tracing-actix-web = "0.7.11"
build-info = { version = "1.7.0", path = "../build-info" }
roaring = "0.10.2"
mopa-maintained = "0.2.3"
[dev-dependencies]
actix-rt = "2.10.0"
@@ -131,8 +132,7 @@ tempfile = { version = "3.10.1", optional = true }
zip = { version = "2.1.3", optional = true }
[features]
default = ["analytics", "meilisearch-types/all-tokenizations", "mini-dashboard"]
analytics = ["segment"]
default = ["meilisearch-types/all-tokenizations", "mini-dashboard"]
mini-dashboard = [
"static-files",
"anyhow",
@@ -153,7 +153,9 @@ greek = ["meilisearch-types/greek"]
khmer = ["meilisearch-types/khmer"]
vietnamese = ["meilisearch-types/vietnamese"]
swedish-recomposition = ["meilisearch-types/swedish-recomposition"]
german = ["meilisearch-types/german"]
turkish = ["meilisearch-types/turkish"]
[package.metadata.mini-dashboard]
assets-url = "https://github.com/meilisearch/mini-dashboard/releases/download/v0.2.14/build.zip"
sha1 = "592d1b5a3459d621d0aae1dded8fe3154f5c38fe"
assets-url = "https://github.com/meilisearch/mini-dashboard/releases/download/v0.2.15/build.zip"
sha1 = "d057600b4a839a2e0c0be7a372cd1b2683f3ca7e"

View File

@@ -1,109 +0,0 @@
use std::any::Any;
use std::sync::Arc;
use actix_web::HttpRequest;
use meilisearch_types::InstanceUid;
use serde_json::Value;
use super::{find_user_id, Analytics, DocumentDeletionKind, DocumentFetchKind};
use crate::routes::indexes::documents::{DocumentEditionByFunction, UpdateDocumentsQuery};
use crate::Opt;
pub struct MockAnalytics {
instance_uid: Option<InstanceUid>,
}
#[derive(Default)]
pub struct SearchAggregator;
#[allow(dead_code)]
impl SearchAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct SimilarAggregator;
#[allow(dead_code)]
impl SimilarAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct MultiSearchAggregator;
#[allow(dead_code)]
impl MultiSearchAggregator {
pub fn from_federated_search(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self) {}
}
#[derive(Default)]
pub struct FacetSearchAggregator;
#[allow(dead_code)]
impl FacetSearchAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
impl MockAnalytics {
#[allow(clippy::new_ret_no_self)]
pub fn new(opt: &Opt) -> Arc<dyn Analytics> {
let instance_uid = find_user_id(&opt.db_path);
Arc::new(Self { instance_uid })
}
}
impl Analytics for MockAnalytics {
fn instance_uid(&self) -> Option<&meilisearch_types::InstanceUid> {
self.instance_uid.as_ref()
}
// These methods are noop and should be optimized out
fn publish(&self, _event_name: String, _send: Value, _request: Option<&HttpRequest>) {}
fn get_search(&self, _aggregate: super::SearchAggregator) {}
fn post_search(&self, _aggregate: super::SearchAggregator) {}
fn get_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_multi_search(&self, _aggregate: super::MultiSearchAggregator) {}
fn post_facet_search(&self, _aggregate: super::FacetSearchAggregator) {}
fn add_documents(
&self,
_documents_query: &UpdateDocumentsQuery,
_index_creation: bool,
_request: &HttpRequest,
) {
}
fn delete_documents(&self, _kind: DocumentDeletionKind, _request: &HttpRequest) {}
fn update_documents(
&self,
_documents_query: &UpdateDocumentsQuery,
_index_creation: bool,
_request: &HttpRequest,
) {
}
fn update_documents_by_function(
&self,
_documents_query: &DocumentEditionByFunction,
_index_creation: bool,
_request: &HttpRequest,
) {
}
fn get_fetch_documents(&self, _documents_query: &DocumentFetchKind, _request: &HttpRequest) {}
fn post_fetch_documents(&self, _documents_query: &DocumentFetchKind, _request: &HttpRequest) {}
}

View File

@@ -1,44 +1,45 @@
mod mock_analytics;
#[cfg(feature = "analytics")]
mod segment_analytics;
pub mod segment_analytics;
use std::fs;
use std::path::{Path, PathBuf};
use std::str::FromStr;
use std::sync::Arc;
use actix_web::HttpRequest;
use index_scheduler::IndexScheduler;
use meilisearch_auth::AuthController;
use meilisearch_types::InstanceUid;
pub use mock_analytics::MockAnalytics;
use mopa::mopafy;
use once_cell::sync::Lazy;
use platform_dirs::AppDirs;
use serde_json::Value;
use crate::routes::indexes::documents::{DocumentEditionByFunction, UpdateDocumentsQuery};
// if the analytics feature is disabled
// the `SegmentAnalytics` point to the mock instead of the real analytics
#[cfg(not(feature = "analytics"))]
pub type SegmentAnalytics = mock_analytics::MockAnalytics;
#[cfg(not(feature = "analytics"))]
pub type SearchAggregator = mock_analytics::SearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type SimilarAggregator = mock_analytics::SimilarAggregator;
#[cfg(not(feature = "analytics"))]
pub type MultiSearchAggregator = mock_analytics::MultiSearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type FacetSearchAggregator = mock_analytics::FacetSearchAggregator;
// if the feature analytics is enabled we use the real analytics
#[cfg(feature = "analytics")]
pub type SegmentAnalytics = segment_analytics::SegmentAnalytics;
#[cfg(feature = "analytics")]
pub type SearchAggregator = segment_analytics::SearchAggregator;
#[cfg(feature = "analytics")]
pub type SimilarAggregator = segment_analytics::SimilarAggregator;
#[cfg(feature = "analytics")]
pub type MultiSearchAggregator = segment_analytics::MultiSearchAggregator;
#[cfg(feature = "analytics")]
pub type FacetSearchAggregator = segment_analytics::FacetSearchAggregator;
use crate::Opt;
/// A macro used to quickly define events that don't aggregate or send anything besides an empty event with its name.
#[macro_export]
macro_rules! empty_analytics {
($struct_name:ident, $event_name:literal) => {
#[derive(Default)]
struct $struct_name {}
impl $crate::analytics::Aggregate for $struct_name {
fn event_name(&self) -> &'static str {
$event_name
}
fn aggregate(self: Box<Self>, _other: Box<Self>) -> Box<Self> {
self
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::json!({})
}
}
};
}
/// The Meilisearch config dir:
/// `~/.config/Meilisearch` on *NIX or *BSD.
@@ -78,60 +79,88 @@ pub enum DocumentFetchKind {
Normal { with_filter: bool, limit: usize, offset: usize, retrieve_vectors: bool },
}
pub trait Analytics: Sync + Send {
fn instance_uid(&self) -> Option<&InstanceUid>;
/// To send an event to segment, your event must be able to aggregate itself with another event of the same type.
pub trait Aggregate: 'static + mopa::Any + Send {
/// The name of the event that will be sent to segment.
fn event_name(&self) -> &'static str;
/// Will be called every time an event has been used twice before segment flushed its buffer.
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self>
where
Self: Sized;
/// Converts your structure to the final event that'll be sent to segment.
fn into_event(self: Box<Self>) -> serde_json::Value;
}
mopafy!(Aggregate);
/// Helper trait to define multiple aggregates with the same content but a different name.
/// Commonly used when you must aggregate a search with POST or with GET, for example.
pub trait AggregateMethod: 'static + Default + Send {
fn event_name() -> &'static str;
}
/// A macro used to quickly define multiple aggregate method with their name
/// Usage:
/// ```rust
/// use meilisearch::aggregate_methods;
///
/// aggregate_methods!(
/// SearchGET => "Documents Searched GET",
/// SearchPOST => "Documents Searched POST",
/// );
/// ```
#[macro_export]
macro_rules! aggregate_methods {
($method:ident => $event_name:literal) => {
#[derive(Default)]
pub struct $method {}
impl $crate::analytics::AggregateMethod for $method {
fn event_name() -> &'static str {
$event_name
}
}
};
($($method:ident => $event_name:literal,)+) => {
$(
aggregate_methods!($method => $event_name);
)+
};
}
#[derive(Clone)]
pub struct Analytics {
segment: Option<Arc<SegmentAnalytics>>,
}
impl Analytics {
pub async fn new(
opt: &Opt,
index_scheduler: Arc<IndexScheduler>,
auth_controller: Arc<AuthController>,
) -> Self {
if opt.no_analytics {
Self { segment: None }
} else {
Self { segment: SegmentAnalytics::new(opt, index_scheduler, auth_controller).await }
}
}
pub fn no_analytics() -> Self {
Self { segment: None }
}
pub fn instance_uid(&self) -> Option<&InstanceUid> {
self.segment.as_ref().map(|segment| segment.instance_uid.as_ref())
}
/// The method used to publish most analytics that do not need to be batched every hours
fn publish(&self, event_name: String, send: Value, request: Option<&HttpRequest>);
/// This method should be called to aggregate a get search
fn get_search(&self, aggregate: SearchAggregator);
/// This method should be called to aggregate a post search
fn post_search(&self, aggregate: SearchAggregator);
/// This method should be called to aggregate a get similar request
fn get_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post similar request
fn post_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post array of searches
fn post_multi_search(&self, aggregate: MultiSearchAggregator);
/// This method should be called to aggregate post facet values searches
fn post_facet_search(&self, aggregate: FacetSearchAggregator);
// this method should be called to aggregate an add documents request
fn add_documents(
&self,
documents_query: &UpdateDocumentsQuery,
index_creation: bool,
request: &HttpRequest,
);
// this method should be called to aggregate a fetch documents request
fn get_fetch_documents(&self, documents_query: &DocumentFetchKind, request: &HttpRequest);
// this method should be called to aggregate a fetch documents request
fn post_fetch_documents(&self, documents_query: &DocumentFetchKind, request: &HttpRequest);
// this method should be called to aggregate a add documents request
fn delete_documents(&self, kind: DocumentDeletionKind, request: &HttpRequest);
// this method should be called to batch an update documents request
fn update_documents(
&self,
documents_query: &UpdateDocumentsQuery,
index_creation: bool,
request: &HttpRequest,
);
// this method should be called to batch an update documents by function request
fn update_documents_by_function(
&self,
documents_query: &DocumentEditionByFunction,
index_creation: bool,
request: &HttpRequest,
);
pub fn publish<T: Aggregate>(&self, event: T, request: &HttpRequest) {
if let Some(ref segment) = self.segment {
let _ = segment.sender.try_send(segment_analytics::Message::new(event, request));
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -72,7 +72,7 @@ pub enum MeilisearchHttpError {
DocumentFormat(#[from] DocumentFormatError),
#[error(transparent)]
Join(#[from] JoinError),
#[error("Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.")]
#[error("Invalid request: missing `hybrid` parameter when `vector` is present.")]
MissingSearchHybrid,
}

View File

@@ -120,7 +120,7 @@ pub fn create_app(
search_queue: Data<SearchQueue>,
opt: Opt,
logs: (LogRouteHandle, LogStderrHandle),
analytics: Arc<dyn Analytics>,
analytics: Data<Analytics>,
enable_dashboard: bool,
) -> actix_web::App<
impl ServiceFactory<
@@ -473,14 +473,14 @@ pub fn configure_data(
search_queue: Data<SearchQueue>,
opt: &Opt,
(logs_route, logs_stderr): (LogRouteHandle, LogStderrHandle),
analytics: Arc<dyn Analytics>,
analytics: Data<Analytics>,
) {
let http_payload_size_limit = opt.http_payload_size_limit.as_u64() as usize;
config
.app_data(index_scheduler)
.app_data(auth)
.app_data(search_queue)
.app_data(web::Data::from(analytics))
.app_data(analytics)
.app_data(web::Data::new(logs_route))
.app_data(web::Data::new(logs_stderr))
.app_data(web::Data::new(opt.clone()))

View File

@@ -5,6 +5,7 @@ use std::path::PathBuf;
use std::str::FromStr;
use std::sync::Arc;
use std::thread::available_parallelism;
use std::time::Duration;
use actix_web::http::KeepAlive;
use actix_web::web::Data;
@@ -123,19 +124,12 @@ async fn try_main() -> anyhow::Result<()> {
let (index_scheduler, auth_controller) = setup_meilisearch(&opt)?;
#[cfg(all(not(debug_assertions), feature = "analytics"))]
let analytics = if !opt.no_analytics {
analytics::SegmentAnalytics::new(&opt, index_scheduler.clone(), auth_controller.clone())
.await
} else {
analytics::MockAnalytics::new(&opt)
};
#[cfg(any(debug_assertions, not(feature = "analytics")))]
let analytics = analytics::MockAnalytics::new(&opt);
let analytics =
analytics::Analytics::new(&opt, index_scheduler.clone(), auth_controller.clone()).await;
print_launch_resume(&opt, analytics.clone(), config_read_from);
run_http(index_scheduler, auth_controller, opt, log_handle, analytics).await?;
run_http(index_scheduler, auth_controller, opt, log_handle, Arc::new(analytics)).await?;
Ok(())
}
@@ -145,16 +139,23 @@ async fn run_http(
auth_controller: Arc<AuthController>,
opt: Opt,
logs: (LogRouteHandle, LogStderrHandle),
analytics: Arc<dyn Analytics>,
analytics: Arc<Analytics>,
) -> anyhow::Result<()> {
let enable_dashboard = &opt.env == "development";
let opt_clone = opt.clone();
let index_scheduler = Data::from(index_scheduler);
let auth_controller = Data::from(auth_controller);
let analytics = Data::from(analytics);
let search_queue = SearchQueue::new(
opt.experimental_search_queue_size,
available_parallelism().unwrap_or(NonZeroUsize::new(2).unwrap()),
);
available_parallelism()
.unwrap_or(NonZeroUsize::new(2).unwrap())
.checked_mul(opt.experimental_nb_searches_per_core)
.unwrap_or(NonZeroUsize::MAX),
)
.with_time_to_abort(Duration::from_secs(
usize::from(opt.experimental_drop_search_after) as u64
));
let search_queue = Data::new(search_queue);
let http_server = HttpServer::new(move || {
@@ -180,11 +181,7 @@ async fn run_http(
Ok(())
}
pub fn print_launch_resume(
opt: &Opt,
analytics: Arc<dyn Analytics>,
config_read_from: Option<PathBuf>,
) {
pub fn print_launch_resume(opt: &Opt, analytics: Analytics, config_read_from: Option<PathBuf>) {
let build_info = build_info::BuildInfo::from_build();
let protocol =
@@ -226,7 +223,6 @@ pub fn print_launch_resume(
eprintln!("Prototype:\t\t{:?}", prototype);
}
#[cfg(all(not(debug_assertions), feature = "analytics"))]
{
if !opt.no_analytics {
eprintln!(

View File

@@ -2,7 +2,7 @@ use std::env::VarError;
use std::ffi::OsStr;
use std::fmt::Display;
use std::io::{BufReader, Read};
use std::num::ParseIntError;
use std::num::{NonZeroUsize, ParseIntError};
use std::ops::Deref;
use std::path::PathBuf;
use std::str::FromStr;
@@ -29,7 +29,6 @@ const MEILI_MASTER_KEY: &str = "MEILI_MASTER_KEY";
const MEILI_ENV: &str = "MEILI_ENV";
const MEILI_TASK_WEBHOOK_URL: &str = "MEILI_TASK_WEBHOOK_URL";
const MEILI_TASK_WEBHOOK_AUTHORIZATION_HEADER: &str = "MEILI_TASK_WEBHOOK_AUTHORIZATION_HEADER";
#[cfg(feature = "analytics")]
const MEILI_NO_ANALYTICS: &str = "MEILI_NO_ANALYTICS";
const MEILI_HTTP_PAYLOAD_SIZE_LIMIT: &str = "MEILI_HTTP_PAYLOAD_SIZE_LIMIT";
const MEILI_SSL_CERT_PATH: &str = "MEILI_SSL_CERT_PATH";
@@ -55,6 +54,8 @@ const MEILI_EXPERIMENTAL_ENABLE_LOGS_ROUTE: &str = "MEILI_EXPERIMENTAL_ENABLE_LO
const MEILI_EXPERIMENTAL_CONTAINS_FILTER: &str = "MEILI_EXPERIMENTAL_CONTAINS_FILTER";
const MEILI_EXPERIMENTAL_ENABLE_METRICS: &str = "MEILI_EXPERIMENTAL_ENABLE_METRICS";
const MEILI_EXPERIMENTAL_SEARCH_QUEUE_SIZE: &str = "MEILI_EXPERIMENTAL_SEARCH_QUEUE_SIZE";
const MEILI_EXPERIMENTAL_DROP_SEARCH_AFTER: &str = "MEILI_EXPERIMENTAL_DROP_SEARCH_AFTER";
const MEILI_EXPERIMENTAL_NB_SEARCHES_PER_CORE: &str = "MEILI_EXPERIMENTAL_NB_SEARCHES_PER_CORE";
const MEILI_EXPERIMENTAL_REDUCE_INDEXING_MEMORY_USAGE: &str =
"MEILI_EXPERIMENTAL_REDUCE_INDEXING_MEMORY_USAGE";
const MEILI_EXPERIMENTAL_MAX_NUMBER_OF_BATCHED_TASKS: &str =
@@ -208,7 +209,6 @@ pub struct Opt {
/// Meilisearch automatically collects data from all instances that do not opt out using this flag.
/// All gathered data is used solely for the purpose of improving Meilisearch, and can be deleted
/// at any time.
#[cfg(feature = "analytics")]
#[serde(default)] // we can't send true
#[clap(long, env = MEILI_NO_ANALYTICS)]
pub no_analytics: bool,
@@ -357,10 +357,26 @@ pub struct Opt {
/// Lets you customize the size of the search queue. Meilisearch processes your search requests as fast as possible but once the
/// queue is full it starts returning HTTP 503, Service Unavailable.
/// The default value is 1000.
#[clap(long, env = MEILI_EXPERIMENTAL_SEARCH_QUEUE_SIZE, default_value_t = 1000)]
#[serde(default)]
#[clap(long, env = MEILI_EXPERIMENTAL_SEARCH_QUEUE_SIZE, default_value_t = default_experimental_search_queue_size())]
#[serde(default = "default_experimental_search_queue_size")]
pub experimental_search_queue_size: usize,
/// Experimental drop search after. For more information, see: <https://github.com/orgs/meilisearch/discussions/783>
///
/// Let you customize after how many seconds Meilisearch should consider a search request irrelevant and drop it.
/// The default value is 60.
#[clap(long, env = MEILI_EXPERIMENTAL_DROP_SEARCH_AFTER, default_value_t = default_drop_search_after())]
#[serde(default = "default_drop_search_after")]
pub experimental_drop_search_after: NonZeroUsize,
/// Experimental number of searches per core. For more information, see: <https://github.com/orgs/meilisearch/discussions/784>
///
/// Lets you customize how many search requests can run on each core concurrently.
/// The default value is 4.
#[clap(long, env = MEILI_EXPERIMENTAL_NB_SEARCHES_PER_CORE, default_value_t = default_nb_searches_per_core())]
#[serde(default = "default_nb_searches_per_core")]
pub experimental_nb_searches_per_core: NonZeroUsize,
/// Experimental logs mode feature. For more information, see: <https://github.com/orgs/meilisearch/discussions/723>
///
/// Change the mode of the logs on the console.
@@ -407,7 +423,6 @@ pub struct Opt {
impl Opt {
/// Whether analytics should be enabled or not.
#[cfg(all(not(debug_assertions), feature = "analytics"))]
pub fn analytics(&self) -> bool {
!self.no_analytics
}
@@ -487,11 +502,12 @@ impl Opt {
ignore_missing_dump: _,
ignore_dump_if_db_exists: _,
config_file_path: _,
#[cfg(feature = "analytics")]
no_analytics,
experimental_contains_filter,
experimental_enable_metrics,
experimental_search_queue_size,
experimental_drop_search_after,
experimental_nb_searches_per_core,
experimental_logs_mode,
experimental_enable_logs_route,
experimental_replication_parameters,
@@ -513,10 +529,7 @@ impl Opt {
);
}
#[cfg(feature = "analytics")]
{
export_to_env_if_not_present(MEILI_NO_ANALYTICS, no_analytics.to_string());
}
export_to_env_if_not_present(MEILI_NO_ANALYTICS, no_analytics.to_string());
export_to_env_if_not_present(
MEILI_HTTP_PAYLOAD_SIZE_LIMIT,
http_payload_size_limit.to_string(),
@@ -559,6 +572,14 @@ impl Opt {
MEILI_EXPERIMENTAL_SEARCH_QUEUE_SIZE,
experimental_search_queue_size.to_string(),
);
export_to_env_if_not_present(
MEILI_EXPERIMENTAL_DROP_SEARCH_AFTER,
experimental_drop_search_after.to_string(),
);
export_to_env_if_not_present(
MEILI_EXPERIMENTAL_NB_SEARCHES_PER_CORE,
experimental_nb_searches_per_core.to_string(),
);
export_to_env_if_not_present(
MEILI_EXPERIMENTAL_LOGS_MODE,
experimental_logs_mode.to_string(),
@@ -890,6 +911,18 @@ fn default_dump_dir() -> PathBuf {
PathBuf::from(DEFAULT_DUMP_DIR)
}
fn default_experimental_search_queue_size() -> usize {
1000
}
fn default_drop_search_after() -> NonZeroUsize {
NonZeroUsize::new(60).unwrap()
}
fn default_nb_searches_per_core() -> NonZeroUsize {
NonZeroUsize::new(4).unwrap()
}
/// Indicates if a snapshot was scheduled, and if yes with which interval.
#[derive(Debug, Default, Copy, Clone, Deserialize, Serialize)]
pub enum ScheduleSnapshot {

View File

@@ -4,7 +4,6 @@ use index_scheduler::IndexScheduler;
use meilisearch_auth::AuthController;
use meilisearch_types::error::ResponseError;
use meilisearch_types::tasks::KindWithContent;
use serde_json::json;
use tracing::debug;
use crate::analytics::Analytics;
@@ -18,14 +17,16 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("").route(web::post().to(SeqHandler(create_dump))));
}
crate::empty_analytics!(DumpAnalytics, "Dump Created");
pub async fn create_dump(
index_scheduler: GuardedData<ActionPolicy<{ actions::DUMPS_CREATE }>, Data<IndexScheduler>>,
auth_controller: GuardedData<ActionPolicy<{ actions::DUMPS_CREATE }>, Data<AuthController>>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
analytics.publish("Dump Created".to_string(), json!({}), Some(&req));
analytics.publish(DumpAnalytics::default(), &req);
let task = KindWithContent::DumpCreation {
keys: auth_controller.list_keys()?,

View File

@@ -6,10 +6,10 @@ use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::ResponseError;
use meilisearch_types::keys::actions;
use serde_json::json;
use serde::Serialize;
use tracing::debug;
use crate::analytics::Analytics;
use crate::analytics::{Aggregate, Analytics};
use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
@@ -17,7 +17,7 @@ use crate::extractors::sequential_extractor::SeqHandler;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
web::resource("")
.route(web::get().to(SeqHandler(get_features)))
.route(web::get().to(get_features))
.route(web::patch().to(SeqHandler(patch_features))),
);
}
@@ -27,12 +27,9 @@ async fn get_features(
ActionPolicy<{ actions::EXPERIMENTAL_FEATURES_GET }>,
Data<IndexScheduler>,
>,
req: HttpRequest,
analytics: Data<dyn Analytics>,
) -> HttpResponse {
let features = index_scheduler.features();
analytics.publish("Experimental features Seen".to_string(), json!(null), Some(&req));
let features = features.runtime_features();
debug!(returns = ?features, "Get features");
HttpResponse::Ok().json(features)
@@ -53,6 +50,35 @@ pub struct RuntimeTogglableFeatures {
pub contains_filter: Option<bool>,
}
#[derive(Serialize)]
pub struct PatchExperimentalFeatureAnalytics {
vector_store: bool,
metrics: bool,
logs_route: bool,
edit_documents_by_function: bool,
contains_filter: bool,
}
impl Aggregate for PatchExperimentalFeatureAnalytics {
fn event_name(&self) -> &'static str {
"Experimental features Updated"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
vector_store: new.vector_store,
metrics: new.metrics,
logs_route: new.logs_route,
edit_documents_by_function: new.edit_documents_by_function,
contains_filter: new.contains_filter,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
async fn patch_features(
index_scheduler: GuardedData<
ActionPolicy<{ actions::EXPERIMENTAL_FEATURES_UPDATE }>,
@@ -60,7 +86,7 @@ async fn patch_features(
>,
new_features: AwebJson<RuntimeTogglableFeatures, DeserrJsonError>,
req: HttpRequest,
analytics: Data<dyn Analytics>,
analytics: Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let features = index_scheduler.features();
debug!(parameters = ?new_features, "Patch features");
@@ -89,15 +115,14 @@ async fn patch_features(
} = new_features;
analytics.publish(
"Experimental features Updated".to_string(),
json!({
"vector_store": vector_store,
"metrics": metrics,
"logs_route": logs_route,
"edit_documents_by_function": edit_documents_by_function,
"contains_filter": contains_filter,
}),
Some(&req),
PatchExperimentalFeatureAnalytics {
vector_store,
metrics,
logs_route,
edit_documents_by_function,
contains_filter,
},
&req,
);
index_scheduler.put_runtime_features(new_features)?;
debug!(returns = ?new_features, "Patch features");

View File

@@ -1,4 +1,6 @@
use std::collections::HashSet;
use std::io::ErrorKind;
use std::marker::PhantomData;
use actix_web::http::header::CONTENT_TYPE;
use actix_web::web::Data;
@@ -23,14 +25,14 @@ use meilisearch_types::tasks::KindWithContent;
use meilisearch_types::{milli, Document, Index};
use mime::Mime;
use once_cell::sync::Lazy;
use serde::Deserialize;
use serde::{Deserialize, Serialize};
use serde_json::Value;
use tempfile::tempfile;
use tokio::fs::File;
use tokio::io::{AsyncSeekExt, AsyncWriteExt, BufWriter};
use tracing::debug;
use crate::analytics::{Analytics, DocumentDeletionKind, DocumentFetchKind};
use crate::analytics::{Aggregate, AggregateMethod, Analytics};
use crate::error::MeilisearchHttpError;
use crate::error::PayloadError::ReceivePayload;
use crate::extractors::authentication::policies::*;
@@ -41,7 +43,7 @@ use crate::routes::{
get_task_id, is_dry_run, PaginationView, SummarizedTaskView, PAGINATION_DEFAULT_LIMIT,
};
use crate::search::{parse_filter, RetrieveVectors};
use crate::Opt;
use crate::{aggregate_methods, Opt};
static ACCEPTED_CONTENT_TYPE: Lazy<Vec<String>> = Lazy::new(|| {
vec!["application/json".to_string(), "application/x-ndjson".to_string(), "text/csv".to_string()]
@@ -100,12 +102,84 @@ pub struct GetDocument {
retrieve_vectors: Param<bool>,
}
aggregate_methods!(
DocumentsGET => "Documents Fetched GET",
DocumentsPOST => "Documents Fetched POST",
);
#[derive(Serialize)]
pub struct DocumentsFetchAggregator<Method: AggregateMethod> {
// a call on ../documents/:doc_id
per_document_id: bool,
// if a filter was used
per_filter: bool,
#[serde(rename = "vector.retrieve_vectors")]
retrieve_vectors: bool,
// pagination
#[serde(rename = "pagination.max_limit")]
max_limit: usize,
#[serde(rename = "pagination.max_offset")]
max_offset: usize,
marker: std::marker::PhantomData<Method>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DocumentFetchKind {
PerDocumentId { retrieve_vectors: bool },
Normal { with_filter: bool, limit: usize, offset: usize, retrieve_vectors: bool },
}
impl<Method: AggregateMethod> DocumentsFetchAggregator<Method> {
pub fn from_query(query: &DocumentFetchKind) -> Self {
let (limit, offset, retrieve_vectors) = match query {
DocumentFetchKind::PerDocumentId { retrieve_vectors } => (1, 0, *retrieve_vectors),
DocumentFetchKind::Normal { limit, offset, retrieve_vectors, .. } => {
(*limit, *offset, *retrieve_vectors)
}
};
Self {
per_document_id: matches!(query, DocumentFetchKind::PerDocumentId { .. }),
per_filter: matches!(query, DocumentFetchKind::Normal { with_filter, .. } if *with_filter),
max_limit: limit,
max_offset: offset,
retrieve_vectors,
marker: PhantomData,
}
}
}
impl<Method: AggregateMethod> Aggregate for DocumentsFetchAggregator<Method> {
fn event_name(&self) -> &'static str {
Method::event_name()
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
per_document_id: self.per_document_id | new.per_document_id,
per_filter: self.per_filter | new.per_filter,
retrieve_vectors: self.retrieve_vectors | new.retrieve_vectors,
max_limit: self.max_limit.max(new.max_limit),
max_offset: self.max_offset.max(new.max_offset),
marker: PhantomData,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn get_document(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_GET }>, Data<IndexScheduler>>,
document_param: web::Path<DocumentParam>,
params: AwebQueryParameter<GetDocument, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let DocumentParam { index_uid, document_id } = document_param.into_inner();
debug!(parameters = ?params, "Get document");
@@ -117,8 +191,15 @@ pub async fn get_document(
let features = index_scheduler.features();
let retrieve_vectors = RetrieveVectors::new(param_retrieve_vectors.0, features)?;
analytics.get_fetch_documents(
&DocumentFetchKind::PerDocumentId { retrieve_vectors: param_retrieve_vectors.0 },
analytics.publish(
DocumentsFetchAggregator::<DocumentsGET> {
retrieve_vectors: param_retrieve_vectors.0,
per_document_id: true,
per_filter: false,
max_limit: 0,
max_offset: 0,
marker: PhantomData,
},
&req,
);
@@ -129,17 +210,52 @@ pub async fn get_document(
Ok(HttpResponse::Ok().json(document))
}
#[derive(Serialize)]
pub struct DocumentsDeletionAggregator {
per_document_id: bool,
clear_all: bool,
per_batch: bool,
per_filter: bool,
}
impl Aggregate for DocumentsDeletionAggregator {
fn event_name(&self) -> &'static str {
"Documents Deleted"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
per_document_id: self.per_document_id | new.per_document_id,
clear_all: self.clear_all | new.clear_all,
per_batch: self.per_batch | new.per_batch,
per_filter: self.per_filter | new.per_filter,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn delete_document(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_DELETE }>, Data<IndexScheduler>>,
path: web::Path<DocumentParam>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let DocumentParam { index_uid, document_id } = path.into_inner();
let index_uid = IndexUid::try_from(index_uid)?;
analytics.delete_documents(DocumentDeletionKind::PerDocumentId, &req);
analytics.publish(
DocumentsDeletionAggregator {
per_document_id: true,
clear_all: false,
per_batch: false,
per_filter: false,
},
&req,
);
let task = KindWithContent::DocumentDeletion {
index_uid: index_uid.to_string(),
@@ -190,17 +306,19 @@ pub async fn documents_by_query_post(
index_uid: web::Path<String>,
body: AwebJson<BrowseQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let body = body.into_inner();
debug!(parameters = ?body, "Get documents POST");
analytics.post_fetch_documents(
&DocumentFetchKind::Normal {
with_filter: body.filter.is_some(),
limit: body.limit,
offset: body.offset,
analytics.publish(
DocumentsFetchAggregator::<DocumentsPOST> {
per_filter: body.filter.is_some(),
retrieve_vectors: body.retrieve_vectors,
max_limit: body.limit,
max_offset: body.offset,
per_document_id: false,
marker: PhantomData,
},
&req,
);
@@ -213,7 +331,7 @@ pub async fn get_documents(
index_uid: web::Path<String>,
params: AwebQueryParameter<BrowseQueryGet, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?params, "Get documents GET");
@@ -235,12 +353,14 @@ pub async fn get_documents(
filter,
};
analytics.get_fetch_documents(
&DocumentFetchKind::Normal {
with_filter: query.filter.is_some(),
limit: query.limit,
offset: query.offset,
analytics.publish(
DocumentsFetchAggregator::<DocumentsGET> {
per_filter: query.filter.is_some(),
retrieve_vectors: query.retrieve_vectors,
max_limit: query.limit,
max_offset: query.offset,
per_document_id: false,
marker: PhantomData,
},
&req,
);
@@ -298,6 +418,39 @@ fn from_char_csv_delimiter(
}
}
aggregate_methods!(
Replaced => "Documents Added",
Updated => "Documents Updated",
);
#[derive(Serialize)]
pub struct DocumentsAggregator<T: AggregateMethod> {
payload_types: HashSet<String>,
primary_key: HashSet<String>,
index_creation: bool,
#[serde(skip)]
method: PhantomData<T>,
}
impl<Method: AggregateMethod> Aggregate for DocumentsAggregator<Method> {
fn event_name(&self) -> &'static str {
Method::event_name()
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
payload_types: self.payload_types.union(&new.payload_types).cloned().collect(),
primary_key: self.primary_key.union(&new.primary_key).cloned().collect(),
index_creation: self.index_creation | new.index_creation,
method: PhantomData,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(self).unwrap_or_default()
}
}
pub async fn replace_documents(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_ADD }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
@@ -305,16 +458,32 @@ pub async fn replace_documents(
body: Payload,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
debug!(parameters = ?params, "Replace documents");
let params = params.into_inner();
analytics.add_documents(
&params,
index_scheduler.index_exists(&index_uid).map_or(true, |x| !x),
let mut content_types = HashSet::new();
let content_type = req
.headers()
.get(CONTENT_TYPE)
.and_then(|s| s.to_str().ok())
.unwrap_or("unknown")
.to_string();
content_types.insert(content_type);
let mut primary_keys = HashSet::new();
if let Some(primary_key) = params.primary_key.clone() {
primary_keys.insert(primary_key);
}
analytics.publish(
DocumentsAggregator::<Replaced> {
payload_types: content_types,
primary_key: primary_keys,
index_creation: index_scheduler.index_exists(&index_uid).map_or(true, |x| !x),
method: PhantomData,
},
&req,
);
@@ -346,16 +515,32 @@ pub async fn update_documents(
body: Payload,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let params = params.into_inner();
debug!(parameters = ?params, "Update documents");
analytics.add_documents(
&params,
index_scheduler.index_exists(&index_uid).map_or(true, |x| !x),
let mut content_types = HashSet::new();
let content_type = req
.headers()
.get(CONTENT_TYPE)
.and_then(|s| s.to_str().ok())
.unwrap_or("unknown")
.to_string();
content_types.insert(content_type);
let mut primary_keys = HashSet::new();
if let Some(primary_key) = params.primary_key.clone() {
primary_keys.insert(primary_key);
}
analytics.publish(
DocumentsAggregator::<Updated> {
payload_types: content_types,
primary_key: primary_keys,
index_creation: index_scheduler.index_exists(&index_uid).map_or(true, |x| !x),
method: PhantomData,
},
&req,
);
@@ -524,12 +709,20 @@ pub async fn delete_documents_batch(
body: web::Json<Vec<Value>>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?body, "Delete documents by batch");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
analytics.delete_documents(DocumentDeletionKind::PerBatch, &req);
analytics.publish(
DocumentsDeletionAggregator {
per_batch: true,
per_document_id: false,
clear_all: false,
per_filter: false,
},
&req,
);
let ids = body
.iter()
@@ -562,14 +755,22 @@ pub async fn delete_documents_by_filter(
body: AwebJson<DocumentDeletionByFilter, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?body, "Delete documents by filter");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let index_uid = index_uid.into_inner();
let filter = body.into_inner().filter;
analytics.delete_documents(DocumentDeletionKind::PerFilter, &req);
analytics.publish(
DocumentsDeletionAggregator {
per_filter: true,
per_document_id: false,
clear_all: false,
per_batch: false,
},
&req,
);
// we ensure the filter is well formed before enqueuing it
crate::search::parse_filter(&filter, Code::InvalidDocumentFilter, index_scheduler.features())?
@@ -599,13 +800,41 @@ pub struct DocumentEditionByFunction {
pub function: String,
}
#[derive(Serialize)]
struct EditDocumentsByFunctionAggregator {
// Set to true if at least one request was filtered
filtered: bool,
// Set to true if at least one request contained a context
with_context: bool,
index_creation: bool,
}
impl Aggregate for EditDocumentsByFunctionAggregator {
fn event_name(&self) -> &'static str {
"Documents Edited By Function"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
filtered: self.filtered | new.filtered,
with_context: self.with_context | new.with_context,
index_creation: self.index_creation | new.index_creation,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn edit_documents_by_function(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_ALL }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebJson<DocumentEditionByFunction, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?params, "Edit documents by function");
@@ -617,9 +846,12 @@ pub async fn edit_documents_by_function(
let index_uid = index_uid.into_inner();
let params = params.into_inner();
analytics.update_documents_by_function(
&params,
index_scheduler.index(&index_uid).is_err(),
analytics.publish(
EditDocumentsByFunctionAggregator {
filtered: params.filter.is_some(),
with_context: params.context.is_some(),
index_creation: index_scheduler.index(&index_uid).is_err(),
},
&req,
);
@@ -670,10 +902,18 @@ pub async fn clear_all_documents(
index_uid: web::Path<String>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
analytics.delete_documents(DocumentDeletionKind::ClearAll, &req);
analytics.publish(
DocumentsDeletionAggregator {
clear_all: true,
per_document_id: false,
per_batch: false,
per_filter: false,
},
&req,
);
let task = KindWithContent::DocumentClear { index_uid: index_uid.to_string() };
let uid = get_task_id(&req, &opt)?;

View File

@@ -1,3 +1,5 @@
use std::collections::{BinaryHeap, HashSet};
use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
@@ -10,14 +12,15 @@ use meilisearch_types::locales::Locale;
use serde_json::Value;
use tracing::debug;
use crate::analytics::{Analytics, FacetSearchAggregator};
use crate::analytics::{Aggregate, Analytics};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::routes::indexes::search::search_kind;
use crate::search::{
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, RankingScoreThreshold,
SearchQuery, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_facet_search, FacetSearchResult, HybridQuery, MatchingStrategy,
RankingScoreThreshold, SearchQuery, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEARCH_OFFSET,
};
use crate::search_queue::SearchQueue;
@@ -53,20 +56,122 @@ pub struct FacetSearchQuery {
pub locales: Option<Vec<Locale>>,
}
#[derive(Default)]
pub struct FacetSearchAggregator {
// requests
total_received: usize,
total_succeeded: usize,
time_spent: BinaryHeap<usize>,
// The set of all facetNames that were used
facet_names: HashSet<String>,
// As there been any other parameter than the facetName or facetQuery ones?
additional_search_parameters_provided: bool,
}
impl FacetSearchAggregator {
#[allow(clippy::field_reassign_with_default)]
pub fn from_query(query: &FacetSearchQuery) -> Self {
let FacetSearchQuery {
facet_query: _,
facet_name,
vector,
q,
filter,
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = query;
Self {
total_received: 1,
facet_names: Some(facet_name.clone()).into_iter().collect(),
additional_search_parameters_provided: q.is_some()
|| vector.is_some()
|| filter.is_some()
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some()
|| hybrid.is_some()
|| ranking_score_threshold.is_some()
|| locales.is_some(),
..Default::default()
}
}
pub fn succeed(&mut self, result: &FacetSearchResult) {
let FacetSearchResult { facet_hits: _, facet_query: _, processing_time_ms } = result;
self.total_succeeded = 1;
self.time_spent.push(*processing_time_ms as usize);
}
}
impl Aggregate for FacetSearchAggregator {
fn event_name(&self) -> &'static str {
"Facet Searched POST"
}
fn aggregate(mut self: Box<Self>, new: Box<Self>) -> Box<Self> {
for time in new.time_spent {
self.time_spent.push(time);
}
Box::new(Self {
total_received: self.total_received.saturating_add(new.total_received),
total_succeeded: self.total_succeeded.saturating_add(new.total_succeeded),
time_spent: self.time_spent,
facet_names: self.facet_names.union(&new.facet_names).cloned().collect(),
additional_search_parameters_provided: self.additional_search_parameters_provided
| new.additional_search_parameters_provided,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
let Self {
total_received,
total_succeeded,
time_spent,
facet_names,
additional_search_parameters_provided,
} = *self;
// the index of the 99th percentage of value
let percentile_99th = 0.99 * (total_succeeded as f64 - 1.) + 1.;
// we get all the values in a sorted manner
let time_spent = time_spent.into_sorted_vec();
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th as usize);
serde_json::json!({
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
},
"facets": {
"total_distinct_facet_count": facet_names.len(),
"additional_search_parameters_provided": additional_search_parameters_provided,
},
})
}
}
pub async fn search(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
search_queue: Data<SearchQueue>,
index_uid: web::Path<String>,
params: AwebJson<FacetSearchQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.into_inner();
debug!(parameters = ?query, "Facet search");
let mut aggregate = FacetSearchAggregator::from_query(&query, &req);
let mut aggregate = FacetSearchAggregator::from_query(&query);
let facet_query = query.facet_query.clone();
let facet_name = query.facet_name.clone();
@@ -100,7 +205,7 @@ pub async fn search(
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
analytics.post_facet_search(aggregate);
analytics.publish(aggregate, &req);
let search_result = search_result?;

View File

@@ -1,3 +1,4 @@
use std::collections::BTreeSet;
use std::convert::Infallible;
use actix_web::web::Data;
@@ -13,12 +14,11 @@ use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::{self, FieldDistribution, Index};
use meilisearch_types::tasks::KindWithContent;
use serde::Serialize;
use serde_json::json;
use time::OffsetDateTime;
use tracing::debug;
use super::{get_task_id, Pagination, SummarizedTaskView, PAGINATION_DEFAULT_LIMIT};
use crate::analytics::Analytics;
use crate::analytics::{Aggregate, Analytics};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler;
@@ -28,8 +28,11 @@ use crate::Opt;
pub mod documents;
pub mod facet_search;
pub mod search;
mod search_analytics;
pub mod settings;
mod settings_analytics;
pub mod similar;
mod similar_analytics;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
@@ -123,12 +126,31 @@ pub struct IndexCreateRequest {
primary_key: Option<String>,
}
#[derive(Serialize)]
struct IndexCreatedAggregate {
primary_key: BTreeSet<String>,
}
impl Aggregate for IndexCreatedAggregate {
fn event_name(&self) -> &'static str {
"Index Created"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self { primary_key: self.primary_key.union(&new.primary_key).cloned().collect() })
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn create_index(
index_scheduler: GuardedData<ActionPolicy<{ actions::INDEXES_CREATE }>, Data<IndexScheduler>>,
body: AwebJson<IndexCreateRequest, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?body, "Create index");
let IndexCreateRequest { primary_key, uid } = body.into_inner();
@@ -136,9 +158,8 @@ pub async fn create_index(
let allow_index_creation = index_scheduler.filters().allow_index_creation(&uid);
if allow_index_creation {
analytics.publish(
"Index Created".to_string(),
json!({ "primary_key": primary_key }),
Some(&req),
IndexCreatedAggregate { primary_key: primary_key.iter().cloned().collect() },
&req,
);
let task = KindWithContent::IndexCreation { index_uid: uid.to_string(), primary_key };
@@ -194,21 +215,38 @@ pub async fn get_index(
Ok(HttpResponse::Ok().json(index_view))
}
#[derive(Serialize)]
struct IndexUpdatedAggregate {
primary_key: BTreeSet<String>,
}
impl Aggregate for IndexUpdatedAggregate {
fn event_name(&self) -> &'static str {
"Index Updated"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self { primary_key: self.primary_key.union(&new.primary_key).cloned().collect() })
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn update_index(
index_scheduler: GuardedData<ActionPolicy<{ actions::INDEXES_UPDATE }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
body: AwebJson<UpdateIndexRequest, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?body, "Update index");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let body = body.into_inner();
analytics.publish(
"Index Updated".to_string(),
json!({ "primary_key": body.primary_key }),
Some(&req),
IndexUpdatedAggregate { primary_key: body.primary_key.iter().cloned().collect() },
&req,
);
let task = KindWithContent::IndexUpdate {

View File

@@ -13,12 +13,13 @@ use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
use tracing::debug;
use crate::analytics::{Analytics, SearchAggregator};
use crate::analytics::Analytics;
use crate::error::MeilisearchHttpError;
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
use crate::routes::indexes::search_analytics::{SearchAggregator, SearchGET, SearchPOST};
use crate::search::{
add_search_rules, perform_search, HybridQuery, MatchingStrategy, RankingScoreThreshold,
RetrieveVectors, SearchKind, SearchQuery, SemanticRatio, DEFAULT_CROP_LENGTH,
@@ -128,8 +129,10 @@ impl std::ops::Deref for SemanticRatioGet {
}
}
impl From<SearchQueryGet> for SearchQuery {
fn from(other: SearchQueryGet) -> Self {
impl TryFrom<SearchQueryGet> for SearchQuery {
type Error = ResponseError;
fn try_from(other: SearchQueryGet) -> Result<Self, Self::Error> {
let filter = match other.filter {
Some(f) => match serde_json::from_str(&f) {
Ok(v) => Some(v),
@@ -140,19 +143,28 @@ impl From<SearchQueryGet> for SearchQuery {
let hybrid = match (other.hybrid_embedder, other.hybrid_semantic_ratio) {
(None, None) => None,
(None, Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: None })
(None, Some(_)) => {
return Err(ResponseError::from_msg(
"`hybridEmbedder` is mandatory when `hybridSemanticRatio` is present".into(),
meilisearch_types::error::Code::InvalidHybridQuery,
));
}
(Some(embedder), None) => {
Some(HybridQuery { semantic_ratio: DEFAULT_SEMANTIC_RATIO(), embedder })
}
(Some(embedder), None) => Some(HybridQuery {
semantic_ratio: DEFAULT_SEMANTIC_RATIO(),
embedder: Some(embedder),
}),
(Some(embedder), Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: Some(embedder) })
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder })
}
};
Self {
if other.vector.is_some() && hybrid.is_none() {
return Err(ResponseError::from_msg(
"`hybridEmbedder` is mandatory when `vector` is present".into(),
meilisearch_types::error::Code::MissingSearchHybrid,
));
}
Ok(Self {
q: other.q,
vector: other.vector.map(CS::into_inner),
offset: other.offset.0,
@@ -179,7 +191,7 @@ impl From<SearchQueryGet> for SearchQuery {
hybrid,
ranking_score_threshold: other.ranking_score_threshold.map(|o| o.0),
locales: other.locales.map(|o| o.into_iter().collect()),
}
})
}
}
@@ -214,19 +226,19 @@ pub async fn search_with_url_query(
index_uid: web::Path<String>,
params: AwebQueryParameter<SearchQueryGet, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?params, "Search get");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let mut query: SearchQuery = params.into_inner().into();
let mut query: SearchQuery = params.into_inner().try_into()?;
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);
let mut aggregate = SearchAggregator::<SearchGET>::from_query(&query);
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features();
@@ -243,7 +255,7 @@ pub async fn search_with_url_query(
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
analytics.get_search(aggregate);
analytics.publish(aggregate, &req);
let search_result = search_result?;
@@ -257,7 +269,7 @@ pub async fn search_with_post(
index_uid: web::Path<String>,
params: AwebJson<SearchQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
@@ -269,7 +281,7 @@ pub async fn search_with_post(
add_search_rules(&mut query.filter, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);
let mut aggregate = SearchAggregator::<SearchPOST>::from_query(&query);
let index = index_scheduler.index(&index_uid)?;
@@ -291,7 +303,7 @@ pub async fn search_with_post(
MEILISEARCH_DEGRADED_SEARCH_REQUESTS.inc();
}
}
analytics.post_search(aggregate);
analytics.publish(aggregate, &req);
let search_result = search_result?;
@@ -312,44 +324,36 @@ pub fn search_kind(
features.check_vector("Passing `hybrid` as a parameter")?;
}
// regardless of anything, always do a keyword search when we don't have a vector and the query is whitespace or missing
if query.vector.is_none() {
match &query.q {
Some(q) if q.trim().is_empty() => return Ok(SearchKind::KeywordOnly),
None => return Ok(SearchKind::KeywordOnly),
_ => {}
// handle with care, the order of cases matters, the semantics is subtle
match (query.q.as_deref(), &query.hybrid, query.vector.as_deref()) {
// empty query, no vector => placeholder search
(Some(q), _, None) if q.trim().is_empty() => Ok(SearchKind::KeywordOnly),
// no query, no vector => placeholder search
(None, _, None) => Ok(SearchKind::KeywordOnly),
// hybrid.semantic_ratio == 1.0 => vector
(_, Some(HybridQuery { semantic_ratio, embedder }), v) if **semantic_ratio == 1.0 => {
SearchKind::semantic(index_scheduler, index, embedder, v.map(|v| v.len()))
}
}
match &query.hybrid {
Some(HybridQuery { semantic_ratio, embedder }) if **semantic_ratio == 1.0 => {
Ok(SearchKind::semantic(
index_scheduler,
index,
embedder.as_deref(),
query.vector.as_ref().map(Vec::len),
)?)
}
Some(HybridQuery { semantic_ratio, embedder: _ }) if **semantic_ratio == 0.0 => {
// hybrid.semantic_ratio == 0.0 => keyword
(_, Some(HybridQuery { semantic_ratio, embedder: _ }), _) if **semantic_ratio == 0.0 => {
Ok(SearchKind::KeywordOnly)
}
Some(HybridQuery { semantic_ratio, embedder }) => Ok(SearchKind::hybrid(
// no query, hybrid, vector => semantic
(None, Some(HybridQuery { semantic_ratio: _, embedder }), Some(v)) => {
SearchKind::semantic(index_scheduler, index, embedder, Some(v.len()))
}
// query, no hybrid, no vector => keyword
(Some(_), None, None) => Ok(SearchKind::KeywordOnly),
// query, hybrid, maybe vector => hybrid
(Some(_), Some(HybridQuery { semantic_ratio, embedder }), v) => SearchKind::hybrid(
index_scheduler,
index,
embedder.as_deref(),
embedder,
**semantic_ratio,
query.vector.as_ref().map(Vec::len),
)?),
None => match (query.q.as_deref(), query.vector.as_deref()) {
(_query, None) => Ok(SearchKind::KeywordOnly),
(None, Some(_vector)) => Ok(SearchKind::semantic(
index_scheduler,
index,
None,
query.vector.as_ref().map(Vec::len),
)?),
(Some(_), Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
},
v.map(|v| v.len()),
),
(_, None, Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
}
}

View File

@@ -0,0 +1,485 @@
use once_cell::sync::Lazy;
use regex::Regex;
use serde_json::{json, Value};
use std::collections::{BTreeSet, BinaryHeap, HashMap};
use meilisearch_types::locales::Locale;
use crate::{
aggregate_methods,
analytics::{Aggregate, AggregateMethod},
search::{
SearchQuery, SearchResult, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEMANTIC_RATIO,
},
};
aggregate_methods!(
SearchGET => "Documents Searched GET",
SearchPOST => "Documents Searched POST",
);
#[derive(Default)]
pub struct SearchAggregator<Method: AggregateMethod> {
// requests
total_received: usize,
total_succeeded: usize,
total_degraded: usize,
total_used_negative_operator: usize,
time_spent: BinaryHeap<usize>,
// sort
sort_with_geo_point: bool,
// every time a request has a filter, this field must be incremented by the number of terms it contains
sort_sum_of_criteria_terms: usize,
// every time a request has a filter, this field must be incremented by one
sort_total_number_of_criteria: usize,
// distinct
distinct: bool,
// filter
filter_with_geo_radius: bool,
filter_with_geo_bounding_box: bool,
// every time a request has a filter, this field must be incremented by the number of terms it contains
filter_sum_of_criteria_terms: usize,
// every time a request has a filter, this field must be incremented by one
filter_total_number_of_criteria: usize,
used_syntax: HashMap<String, usize>,
// attributes_to_search_on
// every time a search is done using attributes_to_search_on
attributes_to_search_on_total_number_of_uses: usize,
// q
// The maximum number of terms in a q request
max_terms_number: usize,
// vector
// The maximum number of floats in a vector request
max_vector_size: usize,
// Whether the semantic ratio passed to a hybrid search equals the default ratio.
semantic_ratio: bool,
hybrid: bool,
retrieve_vectors: bool,
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
// List of the unique Locales passed as parameter
locales: BTreeSet<Locale>,
// pagination
max_limit: usize,
max_offset: usize,
finite_pagination: usize,
// formatting
max_attributes_to_retrieve: usize,
max_attributes_to_highlight: usize,
highlight_pre_tag: bool,
highlight_post_tag: bool,
max_attributes_to_crop: usize,
crop_marker: bool,
show_matches_position: bool,
crop_length: bool,
// facets
facets_sum_of_terms: usize,
facets_total_number_of_facets: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
ranking_score_threshold: bool,
marker: std::marker::PhantomData<Method>,
}
impl<Method: AggregateMethod> SearchAggregator<Method> {
#[allow(clippy::field_reassign_with_default)]
pub fn from_query(query: &SearchQuery) -> Self {
let SearchQuery {
q,
vector,
offset,
limit,
page,
hits_per_page,
attributes_to_retrieve: _,
retrieve_vectors,
attributes_to_crop: _,
crop_length,
attributes_to_highlight: _,
show_matches_position,
show_ranking_score,
show_ranking_score_details,
filter,
sort,
distinct,
facets: _,
highlight_pre_tag,
highlight_post_tag,
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = query;
let mut ret = Self::default();
ret.total_received = 1;
if let Some(ref sort) = sort {
ret.sort_total_number_of_criteria = 1;
ret.sort_with_geo_point = sort.iter().any(|s| s.contains("_geoPoint("));
ret.sort_sum_of_criteria_terms = sort.len();
}
ret.distinct = distinct.is_some();
if let Some(ref filter) = filter {
static RE: Lazy<Regex> = Lazy::new(|| Regex::new("AND | OR").unwrap());
ret.filter_total_number_of_criteria = 1;
let syntax = match filter {
Value::String(_) => "string".to_string(),
Value::Array(values) => {
if values.iter().map(|v| v.to_string()).any(|s| RE.is_match(&s)) {
"mixed".to_string()
} else {
"array".to_string()
}
}
_ => "none".to_string(),
};
// convert the string to a HashMap
ret.used_syntax.insert(syntax, 1);
let stringified_filters = filter.to_string();
ret.filter_with_geo_radius = stringified_filters.contains("_geoRadius(");
ret.filter_with_geo_bounding_box = stringified_filters.contains("_geoBoundingBox(");
ret.filter_sum_of_criteria_terms = RE.split(&stringified_filters).count();
}
// attributes_to_search_on
if attributes_to_search_on.is_some() {
ret.attributes_to_search_on_total_number_of_uses = 1;
}
if let Some(ref q) = q {
ret.max_terms_number = q.split_whitespace().count();
}
if let Some(ref vector) = vector {
ret.max_vector_size = vector.len();
}
ret.retrieve_vectors |= retrieve_vectors;
if query.is_finite_pagination() {
let limit = hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
ret.max_limit = limit;
ret.max_offset = page.unwrap_or(1).saturating_sub(1) * limit;
ret.finite_pagination = 1;
} else {
ret.max_limit = *limit;
ret.max_offset = *offset;
ret.finite_pagination = 0;
}
ret.matching_strategy.insert(format!("{:?}", matching_strategy), 1);
if let Some(locales) = locales {
ret.locales = locales.iter().copied().collect();
}
ret.highlight_pre_tag = *highlight_pre_tag != DEFAULT_HIGHLIGHT_PRE_TAG();
ret.highlight_post_tag = *highlight_post_tag != DEFAULT_HIGHLIGHT_POST_TAG();
ret.crop_marker = *crop_marker != DEFAULT_CROP_MARKER();
ret.crop_length = *crop_length != DEFAULT_CROP_LENGTH();
ret.show_matches_position = *show_matches_position;
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
ret.ranking_score_threshold = ranking_score_threshold.is_some();
if let Some(hybrid) = hybrid {
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
ret.hybrid = true;
}
ret
}
pub fn succeed(&mut self, result: &SearchResult) {
let SearchResult {
hits: _,
query: _,
processing_time_ms,
hits_info: _,
semantic_hit_count: _,
facet_distribution: _,
facet_stats: _,
degraded,
used_negative_operator,
} = result;
self.total_succeeded = self.total_succeeded.saturating_add(1);
if *degraded {
self.total_degraded = self.total_degraded.saturating_add(1);
}
if *used_negative_operator {
self.total_used_negative_operator = self.total_used_negative_operator.saturating_add(1);
}
self.time_spent.push(*processing_time_ms as usize);
}
}
impl<Method: AggregateMethod> Aggregate for SearchAggregator<Method> {
fn event_name(&self) -> &'static str {
Method::event_name()
}
fn aggregate(mut self: Box<Self>, new: Box<Self>) -> Box<Self> {
let Self {
total_received,
total_succeeded,
mut time_spent,
sort_with_geo_point,
sort_sum_of_criteria_terms,
sort_total_number_of_criteria,
distinct,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
attributes_to_search_on_total_number_of_uses,
max_terms_number,
max_vector_size,
retrieve_vectors,
matching_strategy,
max_limit,
max_offset,
finite_pagination,
max_attributes_to_retrieve,
max_attributes_to_highlight,
highlight_pre_tag,
highlight_post_tag,
max_attributes_to_crop,
crop_marker,
show_matches_position,
crop_length,
facets_sum_of_terms,
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
hybrid,
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
mut locales,
marker: _,
} = *new;
// request
self.total_received = self.total_received.saturating_add(total_received);
self.total_succeeded = self.total_succeeded.saturating_add(total_succeeded);
self.total_degraded = self.total_degraded.saturating_add(total_degraded);
self.total_used_negative_operator =
self.total_used_negative_operator.saturating_add(total_used_negative_operator);
self.time_spent.append(&mut time_spent);
// sort
self.sort_with_geo_point |= sort_with_geo_point;
self.sort_sum_of_criteria_terms =
self.sort_sum_of_criteria_terms.saturating_add(sort_sum_of_criteria_terms);
self.sort_total_number_of_criteria =
self.sort_total_number_of_criteria.saturating_add(sort_total_number_of_criteria);
// distinct
self.distinct |= distinct;
// filter
self.filter_with_geo_radius |= filter_with_geo_radius;
self.filter_with_geo_bounding_box |= filter_with_geo_bounding_box;
self.filter_sum_of_criteria_terms =
self.filter_sum_of_criteria_terms.saturating_add(filter_sum_of_criteria_terms);
self.filter_total_number_of_criteria =
self.filter_total_number_of_criteria.saturating_add(filter_total_number_of_criteria);
for (key, value) in used_syntax.into_iter() {
let used_syntax = self.used_syntax.entry(key).or_insert(0);
*used_syntax = used_syntax.saturating_add(value);
}
// attributes_to_search_on
self.attributes_to_search_on_total_number_of_uses = self
.attributes_to_search_on_total_number_of_uses
.saturating_add(attributes_to_search_on_total_number_of_uses);
// q
self.max_terms_number = self.max_terms_number.max(max_terms_number);
// vector
self.max_vector_size = self.max_vector_size.max(max_vector_size);
self.retrieve_vectors |= retrieve_vectors;
self.semantic_ratio |= semantic_ratio;
self.hybrid |= hybrid;
// pagination
self.max_limit = self.max_limit.max(max_limit);
self.max_offset = self.max_offset.max(max_offset);
self.finite_pagination += finite_pagination;
// formatting
self.max_attributes_to_retrieve =
self.max_attributes_to_retrieve.max(max_attributes_to_retrieve);
self.max_attributes_to_highlight =
self.max_attributes_to_highlight.max(max_attributes_to_highlight);
self.highlight_pre_tag |= highlight_pre_tag;
self.highlight_post_tag |= highlight_post_tag;
self.max_attributes_to_crop = self.max_attributes_to_crop.max(max_attributes_to_crop);
self.crop_marker |= crop_marker;
self.show_matches_position |= show_matches_position;
self.crop_length |= crop_length;
// facets
self.facets_sum_of_terms = self.facets_sum_of_terms.saturating_add(facets_sum_of_terms);
self.facets_total_number_of_facets =
self.facets_total_number_of_facets.saturating_add(facets_total_number_of_facets);
// matching strategy
for (key, value) in matching_strategy.into_iter() {
let matching_strategy = self.matching_strategy.entry(key).or_insert(0);
*matching_strategy = matching_strategy.saturating_add(value);
}
// scoring
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
self.ranking_score_threshold |= ranking_score_threshold;
// locales
self.locales.append(&mut locales);
self
}
fn into_event(self: Box<Self>) -> serde_json::Value {
let Self {
total_received,
total_succeeded,
time_spent,
sort_with_geo_point,
sort_sum_of_criteria_terms,
sort_total_number_of_criteria,
distinct,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
attributes_to_search_on_total_number_of_uses,
max_terms_number,
max_vector_size,
retrieve_vectors,
matching_strategy,
max_limit,
max_offset,
finite_pagination,
max_attributes_to_retrieve,
max_attributes_to_highlight,
highlight_pre_tag,
highlight_post_tag,
max_attributes_to_crop,
crop_marker,
show_matches_position,
crop_length,
facets_sum_of_terms,
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
hybrid,
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
locales,
marker: _,
} = *self;
// we get all the values in a sorted manner
let time_spent = time_spent.into_sorted_vec();
// the index of the 99th percentage of value
let percentile_99th = time_spent.len() * 99 / 100;
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th);
json!({
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
"total_degraded": total_degraded,
"total_used_negative_operator": total_used_negative_operator,
},
"sort": {
"with_geoPoint": sort_with_geo_point,
"avg_criteria_number": format!("{:.2}", sort_sum_of_criteria_terms as f64 / sort_total_number_of_criteria as f64),
},
"distinct": distinct,
"filter": {
"with_geoRadius": filter_with_geo_radius,
"with_geoBoundingBox": filter_with_geo_bounding_box,
"avg_criteria_number": format!("{:.2}", filter_sum_of_criteria_terms as f64 / filter_total_number_of_criteria as f64),
"most_used_syntax": used_syntax.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"attributes_to_search_on": {
"total_number_of_uses": attributes_to_search_on_total_number_of_uses,
},
"q": {
"max_terms_number": max_terms_number,
},
"vector": {
"max_vector_size": max_vector_size,
"retrieve_vectors": retrieve_vectors,
},
"hybrid": {
"enabled": hybrid,
"semantic_ratio": semantic_ratio,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
"most_used_navigation": if finite_pagination > (total_received / 2) { "exhaustive" } else { "estimated" },
},
"formatting": {
"max_attributes_to_retrieve": max_attributes_to_retrieve,
"max_attributes_to_highlight": max_attributes_to_highlight,
"highlight_pre_tag": highlight_pre_tag,
"highlight_post_tag": highlight_post_tag,
"max_attributes_to_crop": max_attributes_to_crop,
"crop_marker": crop_marker,
"show_matches_position": show_matches_position,
"crop_length": crop_length,
},
"facets": {
"avg_facets_number": format!("{:.2}", facets_sum_of_terms as f64 / facets_total_number_of_facets as f64),
},
"matching_strategy": {
"most_used_strategy": matching_strategy.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"locales": locales,
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
"ranking_score_threshold": ranking_score_threshold,
},
})
}
}

View File

@@ -1,15 +1,14 @@
use super::settings_analytics::*;
use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::ResponseError;
use meilisearch_types::facet_values_sort::FacetValuesSort;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::update::Setting;
use meilisearch_types::settings::{settings, RankingRuleView, SecretPolicy, Settings, Unchecked};
use meilisearch_types::settings::{settings, SecretPolicy, Settings, Unchecked};
use meilisearch_types::tasks::KindWithContent;
use serde_json::json;
use tracing::debug;
use crate::analytics::Analytics;
@@ -20,7 +19,7 @@ use crate::Opt;
#[macro_export]
macro_rules! make_setting_route {
($route:literal, $update_verb:ident, $type:ty, $err_ty:ty, $attr:ident, $camelcase_attr:literal, $analytics_var:ident, $analytics:expr) => {
($route:literal, $update_verb:ident, $type:ty, $err_ty:ty, $attr:ident, $camelcase_attr:literal, $analytics:ident) => {
pub mod $attr {
use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse, Resource};
@@ -80,7 +79,7 @@ macro_rules! make_setting_route {
body: deserr::actix_web::AwebJson<Option<$type>, $err_ty>,
req: HttpRequest,
opt: web::Data<Opt>,
$analytics_var: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> std::result::Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
@@ -88,7 +87,10 @@ macro_rules! make_setting_route {
debug!(parameters = ?body, "Update settings");
#[allow(clippy::redundant_closure_call)]
$analytics(&body, &req);
analytics.publish(
$crate::routes::indexes::settings_analytics::$analytics::new(body.as_ref()).into_settings(),
&req,
);
let new_settings = Settings {
$attr: match body {
@@ -160,21 +162,7 @@ make_setting_route!(
>,
filterable_attributes,
"filterableAttributes",
analytics,
|setting: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"FilterableAttributes Updated".to_string(),
json!({
"filterable_attributes": {
"total": setting.as_ref().map(|filter| filter.len()).unwrap_or(0),
"has_geo": setting.as_ref().map(|filter| filter.contains("_geo")).unwrap_or(false),
}
}),
Some(req),
);
}
FilterableAttributesAnalytics
);
make_setting_route!(
@@ -186,21 +174,7 @@ make_setting_route!(
>,
sortable_attributes,
"sortableAttributes",
analytics,
|setting: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"SortableAttributes Updated".to_string(),
json!({
"sortable_attributes": {
"total": setting.as_ref().map(|sort| sort.len()),
"has_geo": setting.as_ref().map(|sort| sort.contains("_geo")),
},
}),
Some(req),
);
}
SortableAttributesAnalytics
);
make_setting_route!(
@@ -212,21 +186,7 @@ make_setting_route!(
>,
displayed_attributes,
"displayedAttributes",
analytics,
|displayed: &Option<Vec<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"DisplayedAttributes Updated".to_string(),
json!({
"displayed_attributes": {
"total": displayed.as_ref().map(|displayed| displayed.len()),
"with_wildcard": displayed.as_ref().map(|displayed| displayed.iter().any(|displayed| displayed == "*")),
},
}),
Some(req),
);
}
DisplayedAttributesAnalytics
);
make_setting_route!(
@@ -238,40 +198,7 @@ make_setting_route!(
>,
typo_tolerance,
"typoTolerance",
analytics,
|setting: &Option<meilisearch_types::settings::TypoSettings>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"TypoTolerance Updated".to_string(),
json!({
"typo_tolerance": {
"enabled": setting.as_ref().map(|s| !matches!(s.enabled, Setting::Set(false))),
"disable_on_attributes": setting
.as_ref()
.and_then(|s| s.disable_on_attributes.as_ref().set().map(|m| !m.is_empty())),
"disable_on_words": setting
.as_ref()
.and_then(|s| s.disable_on_words.as_ref().set().map(|m| !m.is_empty())),
"min_word_size_for_one_typo": setting
.as_ref()
.and_then(|s| s.min_word_size_for_typos
.as_ref()
.set()
.map(|s| s.one_typo.set()))
.flatten(),
"min_word_size_for_two_typos": setting
.as_ref()
.and_then(|s| s.min_word_size_for_typos
.as_ref()
.set()
.map(|s| s.two_typos.set()))
.flatten(),
},
}),
Some(req),
);
}
TypoToleranceAnalytics
);
make_setting_route!(
@@ -283,21 +210,7 @@ make_setting_route!(
>,
searchable_attributes,
"searchableAttributes",
analytics,
|setting: &Option<Vec<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"SearchableAttributes Updated".to_string(),
json!({
"searchable_attributes": {
"total": setting.as_ref().map(|searchable| searchable.len()),
"with_wildcard": setting.as_ref().map(|searchable| searchable.iter().any(|searchable| searchable == "*")),
},
}),
Some(req),
);
}
SearchableAttributesAnalytics
);
make_setting_route!(
@@ -309,20 +222,7 @@ make_setting_route!(
>,
stop_words,
"stopWords",
analytics,
|stop_words: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"StopWords Updated".to_string(),
json!({
"stop_words": {
"total": stop_words.as_ref().map(|stop_words| stop_words.len()),
},
}),
Some(req),
);
}
StopWordsAnalytics
);
make_setting_route!(
@@ -334,20 +234,7 @@ make_setting_route!(
>,
non_separator_tokens,
"nonSeparatorTokens",
analytics,
|non_separator_tokens: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"nonSeparatorTokens Updated".to_string(),
json!({
"non_separator_tokens": {
"total": non_separator_tokens.as_ref().map(|non_separator_tokens| non_separator_tokens.len()),
},
}),
Some(req),
);
}
NonSeparatorTokensAnalytics
);
make_setting_route!(
@@ -359,20 +246,7 @@ make_setting_route!(
>,
separator_tokens,
"separatorTokens",
analytics,
|separator_tokens: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"separatorTokens Updated".to_string(),
json!({
"separator_tokens": {
"total": separator_tokens.as_ref().map(|separator_tokens| separator_tokens.len()),
},
}),
Some(req),
);
}
SeparatorTokensAnalytics
);
make_setting_route!(
@@ -384,20 +258,7 @@ make_setting_route!(
>,
dictionary,
"dictionary",
analytics,
|dictionary: &Option<std::collections::BTreeSet<String>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"dictionary Updated".to_string(),
json!({
"dictionary": {
"total": dictionary.as_ref().map(|dictionary| dictionary.len()),
},
}),
Some(req),
);
}
DictionaryAnalytics
);
make_setting_route!(
@@ -409,20 +270,7 @@ make_setting_route!(
>,
synonyms,
"synonyms",
analytics,
|synonyms: &Option<std::collections::BTreeMap<String, Vec<String>>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"Synonyms Updated".to_string(),
json!({
"synonyms": {
"total": synonyms.as_ref().map(|synonyms| synonyms.len()),
},
}),
Some(req),
);
}
SynonymsAnalytics
);
make_setting_route!(
@@ -434,19 +282,7 @@ make_setting_route!(
>,
distinct_attribute,
"distinctAttribute",
analytics,
|distinct: &Option<String>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"DistinctAttribute Updated".to_string(),
json!({
"distinct_attribute": {
"set": distinct.is_some(),
}
}),
Some(req),
);
}
DistinctAttributeAnalytics
);
make_setting_route!(
@@ -458,20 +294,7 @@ make_setting_route!(
>,
proximity_precision,
"proximityPrecision",
analytics,
|precision: &Option<meilisearch_types::settings::ProximityPrecisionView>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"ProximityPrecision Updated".to_string(),
json!({
"proximity_precision": {
"set": precision.is_some(),
"value": precision.unwrap_or_default(),
}
}),
Some(req),
);
}
ProximityPrecisionAnalytics
);
make_setting_route!(
@@ -483,17 +306,7 @@ make_setting_route!(
>,
localized_attributes,
"localizedAttributes",
analytics,
|rules: &Option<Vec<meilisearch_types::locales::LocalizedAttributesRuleView>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"LocalizedAttributesRules Updated".to_string(),
json!({
"locales": rules.as_ref().map(|rules| rules.iter().flat_map(|rule| rule.locales.iter().cloned()).collect::<std::collections::BTreeSet<_>>())
}),
Some(req),
);
}
LocalesAnalytics
);
make_setting_route!(
@@ -505,26 +318,7 @@ make_setting_route!(
>,
ranking_rules,
"rankingRules",
analytics,
|setting: &Option<Vec<meilisearch_types::settings::RankingRuleView>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"RankingRules Updated".to_string(),
json!({
"ranking_rules": {
"words_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Words))),
"typo_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Typo))),
"proximity_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Proximity))),
"attribute_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Attribute))),
"sort_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Sort))),
"exactness_position": setting.as_ref().map(|rr| rr.iter().position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Exactness))),
"values": setting.as_ref().map(|rr| rr.iter().filter(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Asc(_) | meilisearch_types::settings::RankingRuleView::Desc(_)) ).map(|x| x.to_string()).collect::<Vec<_>>().join(", ")),
}
}),
Some(req),
);
}
RankingRulesAnalytics
);
make_setting_route!(
@@ -536,25 +330,7 @@ make_setting_route!(
>,
faceting,
"faceting",
analytics,
|setting: &Option<meilisearch_types::settings::FacetingSettings>, req: &HttpRequest| {
use serde_json::json;
use meilisearch_types::facet_values_sort::FacetValuesSort;
analytics.publish(
"Faceting Updated".to_string(),
json!({
"faceting": {
"max_values_per_facet": setting.as_ref().and_then(|s| s.max_values_per_facet.set()),
"sort_facet_values_by_star_count": setting.as_ref().and_then(|s| {
s.sort_facet_values_by.as_ref().set().map(|s| s.iter().any(|(k, v)| k == "*" && v == &FacetValuesSort::Count))
}),
"sort_facet_values_by_total": setting.as_ref().and_then(|s| s.sort_facet_values_by.as_ref().set().map(|s| s.len())),
},
}),
Some(req),
);
}
FacetingAnalytics
);
make_setting_route!(
@@ -566,20 +342,7 @@ make_setting_route!(
>,
pagination,
"pagination",
analytics,
|setting: &Option<meilisearch_types::settings::PaginationSettings>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"Pagination Updated".to_string(),
json!({
"pagination": {
"max_total_hits": setting.as_ref().and_then(|s| s.max_total_hits.set()),
},
}),
Some(req),
);
}
PaginationAnalytics
);
make_setting_route!(
@@ -591,68 +354,9 @@ make_setting_route!(
>,
embedders,
"embedders",
analytics,
|setting: &Option<std::collections::BTreeMap<String, Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>>>, req: &HttpRequest| {
analytics.publish(
"Embedders Updated".to_string(),
serde_json::json!({"embedders": crate::routes::indexes::settings::embedder_analytics(setting.as_ref())}),
Some(req),
);
}
EmbeddersAnalytics
);
fn embedder_analytics(
setting: Option<
&std::collections::BTreeMap<
String,
Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>,
>,
>,
) -> serde_json::Value {
let mut sources = std::collections::HashSet::new();
if let Some(s) = &setting {
for source in s
.values()
.filter_map(|config| config.clone().set())
.filter_map(|config| config.source.set())
{
use meilisearch_types::milli::vector::settings::EmbedderSource;
match source {
EmbedderSource::OpenAi => sources.insert("openAi"),
EmbedderSource::HuggingFace => sources.insert("huggingFace"),
EmbedderSource::UserProvided => sources.insert("userProvided"),
EmbedderSource::Ollama => sources.insert("ollama"),
EmbedderSource::Rest => sources.insert("rest"),
};
}
};
let document_template_used = setting.as_ref().map(|map| {
map.values()
.filter_map(|config| config.clone().set())
.any(|config| config.document_template.set().is_some())
});
let document_template_max_bytes = setting.as_ref().and_then(|map| {
map.values()
.filter_map(|config| config.clone().set())
.filter_map(|config| config.document_template_max_bytes.set())
.max()
});
json!(
{
"total": setting.as_ref().map(|s| s.len()),
"sources": sources,
"document_template_used": document_template_used,
"document_template_max_bytes": document_template_max_bytes
}
)
}
make_setting_route!(
"/search-cutoff-ms",
put,
@@ -662,14 +366,7 @@ make_setting_route!(
>,
search_cutoff_ms,
"searchCutoffMs",
analytics,
|setting: &Option<u64>, req: &HttpRequest| {
analytics.publish(
"Search Cutoff Updated".to_string(),
serde_json::json!({"search_cutoff_ms": setting }),
Some(req),
);
}
SearchCutoffMsAnalytics
);
macro_rules! generate_configure {
@@ -713,7 +410,7 @@ pub async fn update_all(
body: AwebJson<Settings<Unchecked>, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
@@ -722,104 +419,45 @@ pub async fn update_all(
let new_settings = validate_settings(new_settings, &index_scheduler)?;
analytics.publish(
"Settings Updated".to_string(),
json!({
"ranking_rules": {
"words_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Words))),
"typo_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Typo))),
"proximity_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Proximity))),
"attribute_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Attribute))),
"sort_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Sort))),
"exactness_position": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().position(|s| matches!(s, RankingRuleView::Exactness))),
"values": new_settings.ranking_rules.as_ref().set().map(|rr| rr.iter().filter(|s| !matches!(s, RankingRuleView::Asc(_) | RankingRuleView::Desc(_)) ).map(|x| x.to_string()).collect::<Vec<_>>().join(", ")),
},
"searchable_attributes": {
"total": new_settings.searchable_attributes.as_ref().set().map(|searchable| searchable.len()),
"with_wildcard": new_settings.searchable_attributes.as_ref().set().map(|searchable| searchable.iter().any(|searchable| searchable == "*")),
},
"displayed_attributes": {
"total": new_settings.displayed_attributes.as_ref().set().map(|displayed| displayed.len()),
"with_wildcard": new_settings.displayed_attributes.as_ref().set().map(|displayed| displayed.iter().any(|displayed| displayed == "*")),
},
"sortable_attributes": {
"total": new_settings.sortable_attributes.as_ref().set().map(|sort| sort.len()),
"has_geo": new_settings.sortable_attributes.as_ref().set().map(|sort| sort.iter().any(|s| s == "_geo")),
},
"filterable_attributes": {
"total": new_settings.filterable_attributes.as_ref().set().map(|filter| filter.len()),
"has_geo": new_settings.filterable_attributes.as_ref().set().map(|filter| filter.iter().any(|s| s == "_geo")),
},
"distinct_attribute": {
"set": new_settings.distinct_attribute.as_ref().set().is_some()
},
"proximity_precision": {
"set": new_settings.proximity_precision.as_ref().set().is_some(),
"value": new_settings.proximity_precision.as_ref().set().copied().unwrap_or_default()
},
"typo_tolerance": {
"enabled": new_settings.typo_tolerance
.as_ref()
.set()
.and_then(|s| s.enabled.as_ref().set())
.copied(),
"disable_on_attributes": new_settings.typo_tolerance
.as_ref()
.set()
.and_then(|s| s.disable_on_attributes.as_ref().set().map(|m| !m.is_empty())),
"disable_on_words": new_settings.typo_tolerance
.as_ref()
.set()
.and_then(|s| s.disable_on_words.as_ref().set().map(|m| !m.is_empty())),
"min_word_size_for_one_typo": new_settings.typo_tolerance
.as_ref()
.set()
.and_then(|s| s.min_word_size_for_typos
.as_ref()
.set()
.map(|s| s.one_typo.set()))
.flatten(),
"min_word_size_for_two_typos": new_settings.typo_tolerance
.as_ref()
.set()
.and_then(|s| s.min_word_size_for_typos
.as_ref()
.set()
.map(|s| s.two_typos.set()))
.flatten(),
},
"faceting": {
"max_values_per_facet": new_settings.faceting
.as_ref()
.set()
.and_then(|s| s.max_values_per_facet.as_ref().set()),
"sort_facet_values_by_star_count": new_settings.faceting
.as_ref()
.set()
.and_then(|s| {
s.sort_facet_values_by.as_ref().set().map(|s| s.iter().any(|(k, v)| k == "*" && v == &FacetValuesSort::Count))
}),
"sort_facet_values_by_total": new_settings.faceting
.as_ref()
.set()
.and_then(|s| s.sort_facet_values_by.as_ref().set().map(|s| s.len())),
},
"pagination": {
"max_total_hits": new_settings.pagination
.as_ref()
.set()
.and_then(|s| s.max_total_hits.as_ref().set()),
},
"stop_words": {
"total": new_settings.stop_words.as_ref().set().map(|stop_words| stop_words.len()),
},
"synonyms": {
"total": new_settings.synonyms.as_ref().set().map(|synonyms| synonyms.len()),
},
"embedders": crate::routes::indexes::settings::embedder_analytics(new_settings.embedders.as_ref().set()),
"search_cutoff_ms": new_settings.search_cutoff_ms.as_ref().set(),
"locales": new_settings.localized_attributes.as_ref().set().map(|rules| rules.iter().flat_map(|rule| rule.locales.iter().cloned()).collect::<std::collections::BTreeSet<_>>()),
}),
Some(&req),
SettingsAnalytics {
ranking_rules: RankingRulesAnalytics::new(new_settings.ranking_rules.as_ref().set()),
searchable_attributes: SearchableAttributesAnalytics::new(
new_settings.searchable_attributes.as_ref().set(),
),
displayed_attributes: DisplayedAttributesAnalytics::new(
new_settings.displayed_attributes.as_ref().set(),
),
sortable_attributes: SortableAttributesAnalytics::new(
new_settings.sortable_attributes.as_ref().set(),
),
filterable_attributes: FilterableAttributesAnalytics::new(
new_settings.filterable_attributes.as_ref().set(),
),
distinct_attribute: DistinctAttributeAnalytics::new(
new_settings.distinct_attribute.as_ref().set(),
),
proximity_precision: ProximityPrecisionAnalytics::new(
new_settings.proximity_precision.as_ref().set(),
),
typo_tolerance: TypoToleranceAnalytics::new(new_settings.typo_tolerance.as_ref().set()),
faceting: FacetingAnalytics::new(new_settings.faceting.as_ref().set()),
pagination: PaginationAnalytics::new(new_settings.pagination.as_ref().set()),
stop_words: StopWordsAnalytics::new(new_settings.stop_words.as_ref().set()),
synonyms: SynonymsAnalytics::new(new_settings.synonyms.as_ref().set()),
embedders: EmbeddersAnalytics::new(new_settings.embedders.as_ref().set()),
search_cutoff_ms: SearchCutoffMsAnalytics::new(
new_settings.search_cutoff_ms.as_ref().set(),
),
locales: LocalesAnalytics::new(new_settings.localized_attributes.as_ref().set()),
dictionary: DictionaryAnalytics::new(new_settings.dictionary.as_ref().set()),
separator_tokens: SeparatorTokensAnalytics::new(
new_settings.separator_tokens.as_ref().set(),
),
non_separator_tokens: NonSeparatorTokensAnalytics::new(
new_settings.non_separator_tokens.as_ref().set(),
),
},
&req,
);
let allow_index_creation = index_scheduler.filters().allow_index_creation(&index_uid);

View File

@@ -0,0 +1,621 @@
//! All the structures used to make the analytics on the settings works.
//! The signatures of the `new` functions are not very rust idiomatic because they must match the types received
//! through the sub-settings route directly without any manipulation.
//! This is why we often use a `Option<&Vec<_>>` instead of a `Option<&[_]>`.
use meilisearch_types::locales::{Locale, LocalizedAttributesRuleView};
use meilisearch_types::milli::update::Setting;
use meilisearch_types::milli::vector::settings::EmbeddingSettings;
use meilisearch_types::settings::{
FacetingSettings, PaginationSettings, ProximityPrecisionView, TypoSettings,
};
use meilisearch_types::{facet_values_sort::FacetValuesSort, settings::RankingRuleView};
use serde::Serialize;
use std::collections::{BTreeMap, BTreeSet, HashSet};
use crate::analytics::Aggregate;
#[derive(Serialize, Default)]
pub struct SettingsAnalytics {
pub ranking_rules: RankingRulesAnalytics,
pub searchable_attributes: SearchableAttributesAnalytics,
pub displayed_attributes: DisplayedAttributesAnalytics,
pub sortable_attributes: SortableAttributesAnalytics,
pub filterable_attributes: FilterableAttributesAnalytics,
pub distinct_attribute: DistinctAttributeAnalytics,
pub proximity_precision: ProximityPrecisionAnalytics,
pub typo_tolerance: TypoToleranceAnalytics,
pub faceting: FacetingAnalytics,
pub pagination: PaginationAnalytics,
pub stop_words: StopWordsAnalytics,
pub synonyms: SynonymsAnalytics,
pub embedders: EmbeddersAnalytics,
pub search_cutoff_ms: SearchCutoffMsAnalytics,
pub locales: LocalesAnalytics,
pub dictionary: DictionaryAnalytics,
pub separator_tokens: SeparatorTokensAnalytics,
pub non_separator_tokens: NonSeparatorTokensAnalytics,
}
impl Aggregate for SettingsAnalytics {
fn event_name(&self) -> &'static str {
"Settings Updated"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
ranking_rules: RankingRulesAnalytics {
words_position: new
.ranking_rules
.words_position
.or(self.ranking_rules.words_position),
typo_position: new.ranking_rules.typo_position.or(self.ranking_rules.typo_position),
proximity_position: new
.ranking_rules
.proximity_position
.or(self.ranking_rules.proximity_position),
attribute_position: new
.ranking_rules
.attribute_position
.or(self.ranking_rules.attribute_position),
sort_position: new.ranking_rules.sort_position.or(self.ranking_rules.sort_position),
exactness_position: new
.ranking_rules
.exactness_position
.or(self.ranking_rules.exactness_position),
values: new.ranking_rules.values.or(self.ranking_rules.values),
},
searchable_attributes: SearchableAttributesAnalytics {
total: new.searchable_attributes.total.or(self.searchable_attributes.total),
with_wildcard: new
.searchable_attributes
.with_wildcard
.or(self.searchable_attributes.with_wildcard),
},
displayed_attributes: DisplayedAttributesAnalytics {
total: new.displayed_attributes.total.or(self.displayed_attributes.total),
with_wildcard: new
.displayed_attributes
.with_wildcard
.or(self.displayed_attributes.with_wildcard),
},
sortable_attributes: SortableAttributesAnalytics {
total: new.sortable_attributes.total.or(self.sortable_attributes.total),
has_geo: new.sortable_attributes.has_geo.or(self.sortable_attributes.has_geo),
},
filterable_attributes: FilterableAttributesAnalytics {
total: new.filterable_attributes.total.or(self.filterable_attributes.total),
has_geo: new.filterable_attributes.has_geo.or(self.filterable_attributes.has_geo),
},
distinct_attribute: DistinctAttributeAnalytics {
set: self.distinct_attribute.set | new.distinct_attribute.set,
},
proximity_precision: ProximityPrecisionAnalytics {
set: self.proximity_precision.set | new.proximity_precision.set,
value: new.proximity_precision.value.or(self.proximity_precision.value),
},
typo_tolerance: TypoToleranceAnalytics {
enabled: new.typo_tolerance.enabled.or(self.typo_tolerance.enabled),
disable_on_attributes: new
.typo_tolerance
.disable_on_attributes
.or(self.typo_tolerance.disable_on_attributes),
disable_on_words: new
.typo_tolerance
.disable_on_words
.or(self.typo_tolerance.disable_on_words),
min_word_size_for_one_typo: new
.typo_tolerance
.min_word_size_for_one_typo
.or(self.typo_tolerance.min_word_size_for_one_typo),
min_word_size_for_two_typos: new
.typo_tolerance
.min_word_size_for_two_typos
.or(self.typo_tolerance.min_word_size_for_two_typos),
},
faceting: FacetingAnalytics {
max_values_per_facet: new
.faceting
.max_values_per_facet
.or(self.faceting.max_values_per_facet),
sort_facet_values_by_star_count: new
.faceting
.sort_facet_values_by_star_count
.or(self.faceting.sort_facet_values_by_star_count),
sort_facet_values_by_total: new
.faceting
.sort_facet_values_by_total
.or(self.faceting.sort_facet_values_by_total),
},
pagination: PaginationAnalytics {
max_total_hits: new.pagination.max_total_hits.or(self.pagination.max_total_hits),
},
stop_words: StopWordsAnalytics {
total: new.stop_words.total.or(self.stop_words.total),
},
synonyms: SynonymsAnalytics { total: new.synonyms.total.or(self.synonyms.total) },
embedders: EmbeddersAnalytics {
total: new.embedders.total.or(self.embedders.total),
sources: match (self.embedders.sources, new.embedders.sources) {
(None, None) => None,
(Some(sources), None) | (None, Some(sources)) => Some(sources),
(Some(this), Some(other)) => Some(this.union(&other).cloned().collect()),
},
document_template_used: match (
self.embedders.document_template_used,
new.embedders.document_template_used,
) {
(None, None) => None,
(Some(used), None) | (None, Some(used)) => Some(used),
(Some(this), Some(other)) => Some(this | other),
},
document_template_max_bytes: match (
self.embedders.document_template_max_bytes,
new.embedders.document_template_max_bytes,
) {
(None, None) => None,
(Some(bytes), None) | (None, Some(bytes)) => Some(bytes),
(Some(this), Some(other)) => Some(this.max(other)),
},
binary_quantization_used: match (
self.embedders.binary_quantization_used,
new.embedders.binary_quantization_used,
) {
(None, None) => None,
(Some(bq), None) | (None, Some(bq)) => Some(bq),
(Some(this), Some(other)) => Some(this | other),
},
},
search_cutoff_ms: SearchCutoffMsAnalytics {
search_cutoff_ms: new
.search_cutoff_ms
.search_cutoff_ms
.or(self.search_cutoff_ms.search_cutoff_ms),
},
locales: LocalesAnalytics { locales: new.locales.locales.or(self.locales.locales) },
dictionary: DictionaryAnalytics {
total: new.dictionary.total.or(self.dictionary.total),
},
separator_tokens: SeparatorTokensAnalytics {
total: new.non_separator_tokens.total.or(self.separator_tokens.total),
},
non_separator_tokens: NonSeparatorTokensAnalytics {
total: new.non_separator_tokens.total.or(self.non_separator_tokens.total),
},
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
#[derive(Serialize, Default)]
pub struct RankingRulesAnalytics {
pub words_position: Option<usize>,
pub typo_position: Option<usize>,
pub proximity_position: Option<usize>,
pub attribute_position: Option<usize>,
pub sort_position: Option<usize>,
pub exactness_position: Option<usize>,
pub values: Option<String>,
}
impl RankingRulesAnalytics {
pub fn new(rr: Option<&Vec<RankingRuleView>>) -> Self {
RankingRulesAnalytics {
words_position: rr.as_ref().and_then(|rr| {
rr.iter()
.position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Words))
}),
typo_position: rr.as_ref().and_then(|rr| {
rr.iter()
.position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Typo))
}),
proximity_position: rr.as_ref().and_then(|rr| {
rr.iter().position(|s| {
matches!(s, meilisearch_types::settings::RankingRuleView::Proximity)
})
}),
attribute_position: rr.as_ref().and_then(|rr| {
rr.iter().position(|s| {
matches!(s, meilisearch_types::settings::RankingRuleView::Attribute)
})
}),
sort_position: rr.as_ref().and_then(|rr| {
rr.iter()
.position(|s| matches!(s, meilisearch_types::settings::RankingRuleView::Sort))
}),
exactness_position: rr.as_ref().and_then(|rr| {
rr.iter().position(|s| {
matches!(s, meilisearch_types::settings::RankingRuleView::Exactness)
})
}),
values: rr.as_ref().map(|rr| {
rr.iter()
.filter(|s| {
matches!(
s,
meilisearch_types::settings::RankingRuleView::Asc(_)
| meilisearch_types::settings::RankingRuleView::Desc(_)
)
})
.map(|x| x.to_string())
.collect::<Vec<_>>()
.join(", ")
}),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { ranking_rules: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct SearchableAttributesAnalytics {
pub total: Option<usize>,
pub with_wildcard: Option<bool>,
}
impl SearchableAttributesAnalytics {
pub fn new(setting: Option<&Vec<String>>) -> Self {
Self {
total: setting.as_ref().map(|searchable| searchable.len()),
with_wildcard: setting
.as_ref()
.map(|searchable| searchable.iter().any(|searchable| searchable == "*")),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { searchable_attributes: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct DisplayedAttributesAnalytics {
pub total: Option<usize>,
pub with_wildcard: Option<bool>,
}
impl DisplayedAttributesAnalytics {
pub fn new(displayed: Option<&Vec<String>>) -> Self {
Self {
total: displayed.as_ref().map(|displayed| displayed.len()),
with_wildcard: displayed
.as_ref()
.map(|displayed| displayed.iter().any(|displayed| displayed == "*")),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { displayed_attributes: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct SortableAttributesAnalytics {
pub total: Option<usize>,
pub has_geo: Option<bool>,
}
impl SortableAttributesAnalytics {
pub fn new(setting: Option<&BTreeSet<String>>) -> Self {
Self {
total: setting.as_ref().map(|sort| sort.len()),
has_geo: setting.as_ref().map(|sort| sort.contains("_geo")),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { sortable_attributes: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct FilterableAttributesAnalytics {
pub total: Option<usize>,
pub has_geo: Option<bool>,
}
impl FilterableAttributesAnalytics {
pub fn new(setting: Option<&BTreeSet<String>>) -> Self {
Self {
total: setting.as_ref().map(|filter| filter.len()),
has_geo: setting.as_ref().map(|filter| filter.contains("_geo")),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { filterable_attributes: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct DistinctAttributeAnalytics {
pub set: bool,
}
impl DistinctAttributeAnalytics {
pub fn new(distinct: Option<&String>) -> Self {
Self { set: distinct.is_some() }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { distinct_attribute: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct ProximityPrecisionAnalytics {
pub set: bool,
pub value: Option<ProximityPrecisionView>,
}
impl ProximityPrecisionAnalytics {
pub fn new(precision: Option<&ProximityPrecisionView>) -> Self {
Self { set: precision.is_some(), value: precision.cloned() }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { proximity_precision: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct TypoToleranceAnalytics {
pub enabled: Option<bool>,
pub disable_on_attributes: Option<bool>,
pub disable_on_words: Option<bool>,
pub min_word_size_for_one_typo: Option<u8>,
pub min_word_size_for_two_typos: Option<u8>,
}
impl TypoToleranceAnalytics {
pub fn new(setting: Option<&TypoSettings>) -> Self {
Self {
enabled: setting.as_ref().map(|s| !matches!(s.enabled, Setting::Set(false))),
disable_on_attributes: setting
.as_ref()
.and_then(|s| s.disable_on_attributes.as_ref().set().map(|m| !m.is_empty())),
disable_on_words: setting
.as_ref()
.and_then(|s| s.disable_on_words.as_ref().set().map(|m| !m.is_empty())),
min_word_size_for_one_typo: setting
.as_ref()
.and_then(|s| s.min_word_size_for_typos.as_ref().set().map(|s| s.one_typo.set()))
.flatten(),
min_word_size_for_two_typos: setting
.as_ref()
.and_then(|s| s.min_word_size_for_typos.as_ref().set().map(|s| s.two_typos.set()))
.flatten(),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { typo_tolerance: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct FacetingAnalytics {
pub max_values_per_facet: Option<usize>,
pub sort_facet_values_by_star_count: Option<bool>,
pub sort_facet_values_by_total: Option<usize>,
}
impl FacetingAnalytics {
pub fn new(setting: Option<&FacetingSettings>) -> Self {
Self {
max_values_per_facet: setting.as_ref().and_then(|s| s.max_values_per_facet.set()),
sort_facet_values_by_star_count: setting.as_ref().and_then(|s| {
s.sort_facet_values_by
.as_ref()
.set()
.map(|s| s.iter().any(|(k, v)| k == "*" && v == &FacetValuesSort::Count))
}),
sort_facet_values_by_total: setting
.as_ref()
.and_then(|s| s.sort_facet_values_by.as_ref().set().map(|s| s.len())),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { faceting: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct PaginationAnalytics {
pub max_total_hits: Option<usize>,
}
impl PaginationAnalytics {
pub fn new(setting: Option<&PaginationSettings>) -> Self {
Self { max_total_hits: setting.as_ref().and_then(|s| s.max_total_hits.set()) }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { pagination: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct StopWordsAnalytics {
pub total: Option<usize>,
}
impl StopWordsAnalytics {
pub fn new(stop_words: Option<&BTreeSet<String>>) -> Self {
Self { total: stop_words.as_ref().map(|stop_words| stop_words.len()) }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { stop_words: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct SynonymsAnalytics {
pub total: Option<usize>,
}
impl SynonymsAnalytics {
pub fn new(synonyms: Option<&BTreeMap<String, Vec<String>>>) -> Self {
Self { total: synonyms.as_ref().map(|synonyms| synonyms.len()) }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { synonyms: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct EmbeddersAnalytics {
// last
pub total: Option<usize>,
// Merge the sources
pub sources: Option<HashSet<String>>,
// |=
pub document_template_used: Option<bool>,
// max
pub document_template_max_bytes: Option<usize>,
// |=
pub binary_quantization_used: Option<bool>,
}
impl EmbeddersAnalytics {
pub fn new(setting: Option<&BTreeMap<String, Setting<EmbeddingSettings>>>) -> Self {
let mut sources = std::collections::HashSet::new();
if let Some(s) = &setting {
for source in s
.values()
.filter_map(|config| config.clone().set())
.filter_map(|config| config.source.set())
{
use meilisearch_types::milli::vector::settings::EmbedderSource;
match source {
EmbedderSource::OpenAi => sources.insert("openAi".to_string()),
EmbedderSource::HuggingFace => sources.insert("huggingFace".to_string()),
EmbedderSource::UserProvided => sources.insert("userProvided".to_string()),
EmbedderSource::Ollama => sources.insert("ollama".to_string()),
EmbedderSource::Rest => sources.insert("rest".to_string()),
};
}
};
Self {
total: setting.as_ref().map(|s| s.len()),
sources: Some(sources),
document_template_used: setting.as_ref().map(|map| {
map.values()
.filter_map(|config| config.clone().set())
.any(|config| config.document_template.set().is_some())
}),
document_template_max_bytes: setting.as_ref().and_then(|map| {
map.values()
.filter_map(|config| config.clone().set())
.filter_map(|config| config.document_template_max_bytes.set())
.max()
}),
binary_quantization_used: setting.as_ref().map(|map| {
map.values()
.filter_map(|config| config.clone().set())
.any(|config| config.binary_quantized.set().is_some())
}),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { embedders: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
#[serde(transparent)]
pub struct SearchCutoffMsAnalytics {
pub search_cutoff_ms: Option<u64>,
}
impl SearchCutoffMsAnalytics {
pub fn new(setting: Option<&u64>) -> Self {
Self { search_cutoff_ms: setting.copied() }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { search_cutoff_ms: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
#[serde(transparent)]
pub struct LocalesAnalytics {
pub locales: Option<BTreeSet<Locale>>,
}
impl LocalesAnalytics {
pub fn new(rules: Option<&Vec<LocalizedAttributesRuleView>>) -> Self {
LocalesAnalytics {
locales: rules.as_ref().map(|rules| {
rules
.iter()
.flat_map(|rule| rule.locales.iter().cloned())
.collect::<std::collections::BTreeSet<_>>()
}),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { locales: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct DictionaryAnalytics {
pub total: Option<usize>,
}
impl DictionaryAnalytics {
pub fn new(dictionary: Option<&BTreeSet<String>>) -> Self {
Self { total: dictionary.as_ref().map(|dictionary| dictionary.len()) }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { dictionary: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct SeparatorTokensAnalytics {
pub total: Option<usize>,
}
impl SeparatorTokensAnalytics {
pub fn new(separator_tokens: Option<&BTreeSet<String>>) -> Self {
Self { total: separator_tokens.as_ref().map(|separator_tokens| separator_tokens.len()) }
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { separator_tokens: self, ..Default::default() }
}
}
#[derive(Serialize, Default)]
pub struct NonSeparatorTokensAnalytics {
pub total: Option<usize>,
}
impl NonSeparatorTokensAnalytics {
pub fn new(non_separator_tokens: Option<&BTreeSet<String>>) -> Self {
Self {
total: non_separator_tokens
.as_ref()
.map(|non_separator_tokens| non_separator_tokens.len()),
}
}
pub fn into_settings(self) -> SettingsAnalytics {
SettingsAnalytics { non_separator_tokens: self, ..Default::default() }
}
}

View File

@@ -13,9 +13,10 @@ use serde_json::Value;
use tracing::debug;
use super::ActionPolicy;
use crate::analytics::{Analytics, SimilarAggregator};
use crate::analytics::Analytics;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::routes::indexes::similar_analytics::{SimilarAggregator, SimilarGET, SimilarPOST};
use crate::search::{
add_search_rules, perform_similar, RankingScoreThresholdSimilar, RetrieveVectors, SearchKind,
SimilarQuery, SimilarResult, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
@@ -34,13 +35,13 @@ pub async fn similar_get(
index_uid: web::Path<String>,
params: AwebQueryParameter<SimilarQueryGet, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.0.try_into()?;
let mut aggregate = SimilarAggregator::from_query(&query, &req);
let mut aggregate = SimilarAggregator::<SimilarGET>::from_query(&query);
debug!(parameters = ?query, "Similar get");
@@ -49,7 +50,7 @@ pub async fn similar_get(
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.get_similar(aggregate);
analytics.publish(aggregate, &req);
let similar = similar?;
@@ -62,21 +63,21 @@ pub async fn similar_post(
index_uid: web::Path<String>,
params: AwebJson<SimilarQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.into_inner();
debug!(parameters = ?query, "Similar post");
let mut aggregate = SimilarAggregator::from_query(&query, &req);
let mut aggregate = SimilarAggregator::<SimilarPOST>::from_query(&query);
let similar = similar(index_scheduler, index_uid, query).await;
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.post_similar(aggregate);
analytics.publish(aggregate, &req);
let similar = similar?;
@@ -102,8 +103,8 @@ async fn similar(
let index = index_scheduler.index(&index_uid)?;
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
let (embedder_name, embedder, quantized) =
SearchKind::embedder(&index_scheduler, &index, &query.embedder, None)?;
tokio::task::spawn_blocking(move || {
perform_similar(
@@ -111,6 +112,7 @@ async fn similar(
query,
embedder_name,
embedder,
quantized,
retrieve_vectors,
index_scheduler.features(),
)
@@ -139,8 +141,8 @@ pub struct SimilarQueryGet {
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThresholdGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: Option<String>,
#[deserr(error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: String,
}
#[derive(Debug, Clone, Copy, PartialEq, deserr::Deserr)]

View File

@@ -0,0 +1,235 @@
use std::collections::{BinaryHeap, HashMap};
use once_cell::sync::Lazy;
use regex::Regex;
use serde_json::{json, Value};
use crate::{
aggregate_methods,
analytics::{Aggregate, AggregateMethod},
search::{SimilarQuery, SimilarResult},
};
aggregate_methods!(
SimilarPOST => "Similar POST",
SimilarGET => "Similar GET",
);
#[derive(Default)]
pub struct SimilarAggregator<Method: AggregateMethod> {
// requests
total_received: usize,
total_succeeded: usize,
time_spent: BinaryHeap<usize>,
// filter
filter_with_geo_radius: bool,
filter_with_geo_bounding_box: bool,
// every time a request has a filter, this field must be incremented by the number of terms it contains
filter_sum_of_criteria_terms: usize,
// every time a request has a filter, this field must be incremented by one
filter_total_number_of_criteria: usize,
used_syntax: HashMap<String, usize>,
// Whether a non-default embedder was specified
retrieve_vectors: bool,
// pagination
max_limit: usize,
max_offset: usize,
// formatting
max_attributes_to_retrieve: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
ranking_score_threshold: bool,
marker: std::marker::PhantomData<Method>,
}
impl<Method: AggregateMethod> SimilarAggregator<Method> {
#[allow(clippy::field_reassign_with_default)]
pub fn from_query(query: &SimilarQuery) -> Self {
let SimilarQuery {
id: _,
embedder: _,
offset,
limit,
attributes_to_retrieve: _,
retrieve_vectors,
show_ranking_score,
show_ranking_score_details,
filter,
ranking_score_threshold,
} = query;
let mut ret = Self::default();
ret.total_received = 1;
if let Some(ref filter) = filter {
static RE: Lazy<Regex> = Lazy::new(|| Regex::new("AND | OR").unwrap());
ret.filter_total_number_of_criteria = 1;
let syntax = match filter {
Value::String(_) => "string".to_string(),
Value::Array(values) => {
if values.iter().map(|v| v.to_string()).any(|s| RE.is_match(&s)) {
"mixed".to_string()
} else {
"array".to_string()
}
}
_ => "none".to_string(),
};
// convert the string to a HashMap
ret.used_syntax.insert(syntax, 1);
let stringified_filters = filter.to_string();
ret.filter_with_geo_radius = stringified_filters.contains("_geoRadius(");
ret.filter_with_geo_bounding_box = stringified_filters.contains("_geoBoundingBox(");
ret.filter_sum_of_criteria_terms = RE.split(&stringified_filters).count();
}
ret.max_limit = *limit;
ret.max_offset = *offset;
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
ret.ranking_score_threshold = ranking_score_threshold.is_some();
ret.retrieve_vectors = *retrieve_vectors;
ret
}
pub fn succeed(&mut self, result: &SimilarResult) {
let SimilarResult { id: _, hits: _, processing_time_ms, hits_info: _ } = result;
self.total_succeeded = self.total_succeeded.saturating_add(1);
self.time_spent.push(*processing_time_ms as usize);
}
}
impl<Method: AggregateMethod> Aggregate for SimilarAggregator<Method> {
fn event_name(&self) -> &'static str {
Method::event_name()
}
/// Aggregate one [SimilarAggregator] into another.
fn aggregate(mut self: Box<Self>, new: Box<Self>) -> Box<Self> {
let Self {
total_received,
total_succeeded,
mut time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
ranking_score_threshold,
retrieve_vectors,
marker: _,
} = *new;
// request
self.total_received = self.total_received.saturating_add(total_received);
self.total_succeeded = self.total_succeeded.saturating_add(total_succeeded);
self.time_spent.append(&mut time_spent);
// filter
self.filter_with_geo_radius |= filter_with_geo_radius;
self.filter_with_geo_bounding_box |= filter_with_geo_bounding_box;
self.filter_sum_of_criteria_terms =
self.filter_sum_of_criteria_terms.saturating_add(filter_sum_of_criteria_terms);
self.filter_total_number_of_criteria =
self.filter_total_number_of_criteria.saturating_add(filter_total_number_of_criteria);
for (key, value) in used_syntax.into_iter() {
let used_syntax = self.used_syntax.entry(key).or_insert(0);
*used_syntax = used_syntax.saturating_add(value);
}
self.retrieve_vectors |= retrieve_vectors;
// pagination
self.max_limit = self.max_limit.max(max_limit);
self.max_offset = self.max_offset.max(max_offset);
// formatting
self.max_attributes_to_retrieve =
self.max_attributes_to_retrieve.max(max_attributes_to_retrieve);
// scoring
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
self.ranking_score_threshold |= ranking_score_threshold;
self
}
fn into_event(self: Box<Self>) -> serde_json::Value {
let Self {
total_received,
total_succeeded,
time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
ranking_score_threshold,
retrieve_vectors,
marker: _,
} = *self;
// we get all the values in a sorted manner
let time_spent = time_spent.into_sorted_vec();
// the index of the 99th percentage of value
let percentile_99th = time_spent.len() * 99 / 100;
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th);
json!({
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
},
"filter": {
"with_geoRadius": filter_with_geo_radius,
"with_geoBoundingBox": filter_with_geo_bounding_box,
"avg_criteria_number": format!("{:.2}", filter_sum_of_criteria_terms as f64 / filter_total_number_of_criteria as f64),
"most_used_syntax": used_syntax.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"vector": {
"retrieve_vectors": retrieve_vectors,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
},
"formatting": {
"max_attributes_to_retrieve": max_attributes_to_retrieve,
},
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
"ranking_score_threshold": ranking_score_threshold,
}
})
}
}

View File

@@ -25,6 +25,7 @@ pub mod indexes;
mod logs;
mod metrics;
mod multi_search;
mod multi_search_analytics;
mod snapshot;
mod swap_indexes;
pub mod tasks;

View File

@@ -9,7 +9,7 @@ use meilisearch_types::keys::actions;
use serde::Serialize;
use tracing::debug;
use crate::analytics::{Analytics, MultiSearchAggregator};
use crate::analytics::Analytics;
use crate::error::MeilisearchHttpError;
use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::{AuthenticationError, GuardedData};
@@ -21,6 +21,8 @@ use crate::search::{
};
use crate::search_queue::SearchQueue;
use super::multi_search_analytics::MultiSearchAggregator;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("").route(web::post().to(SeqHandler(multi_search_with_post))));
}
@@ -35,7 +37,7 @@ pub async fn multi_search_with_post(
search_queue: Data<SearchQueue>,
params: AwebJson<FederatedSearch, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
// Since we don't want to process half of the search requests and then get a permit refused
// we're going to get one permit for the whole duration of the multi-search request.
@@ -43,7 +45,7 @@ pub async fn multi_search_with_post(
let federated_search = params.into_inner();
let mut multi_aggregate = MultiSearchAggregator::from_federated_search(&federated_search, &req);
let mut multi_aggregate = MultiSearchAggregator::from_federated_search(&federated_search);
let FederatedSearch { mut queries, federation } = federated_search;
@@ -87,7 +89,7 @@ pub async fn multi_search_with_post(
multi_aggregate.succeed();
}
analytics.post_multi_search(multi_aggregate);
analytics.publish(multi_aggregate, &req);
HttpResponse::Ok().json(search_result??)
}
None => {
@@ -149,7 +151,7 @@ pub async fn multi_search_with_post(
if search_results.is_ok() {
multi_aggregate.succeed();
}
analytics.post_multi_search(multi_aggregate);
analytics.publish(multi_aggregate, &req);
let search_results = search_results.map_err(|(mut err, query_index)| {
// Add the query index that failed as context for the error message.

View File

@@ -0,0 +1,170 @@
use std::collections::HashSet;
use serde_json::json;
use crate::{
analytics::Aggregate,
search::{FederatedSearch, SearchQueryWithIndex},
};
#[derive(Default)]
pub struct MultiSearchAggregator {
// requests
total_received: usize,
total_succeeded: usize,
// sum of the number of distinct indexes in each single request, use with total_received to compute an avg
total_distinct_index_count: usize,
// number of queries with a single index, use with total_received to compute a proportion
total_single_index: usize,
// sum of the number of search queries in the requests, use with total_received to compute an average
total_search_count: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
// federation
use_federation: bool,
}
impl MultiSearchAggregator {
pub fn from_federated_search(federated_search: &FederatedSearch) -> Self {
let use_federation = federated_search.federation.is_some();
let distinct_indexes: HashSet<_> = federated_search
.queries
.iter()
.map(|query| {
let query = &query;
// make sure we get a compilation error if a field gets added to / removed from SearchQueryWithIndex
let SearchQueryWithIndex {
index_uid,
federation_options: _,
q: _,
vector: _,
offset: _,
limit: _,
page: _,
hits_per_page: _,
attributes_to_retrieve: _,
retrieve_vectors: _,
attributes_to_crop: _,
crop_length: _,
attributes_to_highlight: _,
show_ranking_score: _,
show_ranking_score_details: _,
show_matches_position: _,
filter: _,
sort: _,
distinct: _,
facets: _,
highlight_pre_tag: _,
highlight_post_tag: _,
crop_marker: _,
matching_strategy: _,
attributes_to_search_on: _,
hybrid: _,
ranking_score_threshold: _,
locales: _,
} = query;
index_uid.as_str()
})
.collect();
let show_ranking_score =
federated_search.queries.iter().any(|query| query.show_ranking_score);
let show_ranking_score_details =
federated_search.queries.iter().any(|query| query.show_ranking_score_details);
Self {
total_received: 1,
total_succeeded: 0,
total_distinct_index_count: distinct_indexes.len(),
total_single_index: if distinct_indexes.len() == 1 { 1 } else { 0 },
total_search_count: federated_search.queries.len(),
show_ranking_score,
show_ranking_score_details,
use_federation,
}
}
pub fn succeed(&mut self) {
self.total_succeeded = self.total_succeeded.saturating_add(1);
}
}
impl Aggregate for MultiSearchAggregator {
fn event_name(&self) -> &'static str {
"Documents Searched by Multi-Search POST"
}
/// Aggregate one [MultiSearchAggregator] into another.
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
// write the aggregate in a way that will cause a compilation error if a field is added.
// get ownership of self, replacing it by a default value.
let this = *self;
let total_received = this.total_received.saturating_add(new.total_received);
let total_succeeded = this.total_succeeded.saturating_add(new.total_succeeded);
let total_distinct_index_count =
this.total_distinct_index_count.saturating_add(new.total_distinct_index_count);
let total_single_index = this.total_single_index.saturating_add(new.total_single_index);
let total_search_count = this.total_search_count.saturating_add(new.total_search_count);
let show_ranking_score = this.show_ranking_score || new.show_ranking_score;
let show_ranking_score_details =
this.show_ranking_score_details || new.show_ranking_score_details;
let use_federation = this.use_federation || new.use_federation;
Box::new(Self {
total_received,
total_succeeded,
total_distinct_index_count,
total_single_index,
total_search_count,
show_ranking_score,
show_ranking_score_details,
use_federation,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
let Self {
total_received,
total_succeeded,
total_distinct_index_count,
total_single_index,
total_search_count,
show_ranking_score,
show_ranking_score_details,
use_federation,
} = *self;
json!({
"requests": {
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
},
"indexes": {
"total_single_index": total_single_index,
"total_distinct_index_count": total_distinct_index_count,
"avg_distinct_index_count": (total_distinct_index_count as f64) / (total_received as f64), // not 0 else returned early
},
"searches": {
"total_search_count": total_search_count,
"avg_search_count": (total_search_count as f64) / (total_received as f64),
},
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
},
"federation": {
"use_federation": use_federation,
}
})
}
}

View File

@@ -3,7 +3,6 @@ use actix_web::{web, HttpRequest, HttpResponse};
use index_scheduler::IndexScheduler;
use meilisearch_types::error::ResponseError;
use meilisearch_types::tasks::KindWithContent;
use serde_json::json;
use tracing::debug;
use crate::analytics::Analytics;
@@ -17,13 +16,15 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("").route(web::post().to(SeqHandler(create_snapshot))));
}
crate::empty_analytics!(SnapshotAnalytics, "Snapshot Created");
pub async fn create_snapshot(
index_scheduler: GuardedData<ActionPolicy<{ actions::SNAPSHOTS_CREATE }>, Data<IndexScheduler>>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
analytics.publish("Snapshot Created".to_string(), json!({}), Some(&req));
analytics.publish(SnapshotAnalytics::default(), &req);
let task = KindWithContent::SnapshotCreation;
let uid = get_task_id(&req, &opt)?;

View File

@@ -8,10 +8,10 @@ use meilisearch_types::error::deserr_codes::InvalidSwapIndexes;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::tasks::{IndexSwap, KindWithContent};
use serde_json::json;
use serde::Serialize;
use super::{get_task_id, is_dry_run, SummarizedTaskView};
use crate::analytics::Analytics;
use crate::analytics::{Aggregate, Analytics};
use crate::error::MeilisearchHttpError;
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::{AuthenticationError, GuardedData};
@@ -29,21 +29,36 @@ pub struct SwapIndexesPayload {
indexes: Vec<IndexUid>,
}
#[derive(Serialize)]
struct IndexSwappedAnalytics {
swap_operation_number: usize,
}
impl Aggregate for IndexSwappedAnalytics {
fn event_name(&self) -> &'static str {
"Indexes Swapped"
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
swap_operation_number: self.swap_operation_number.max(new.swap_operation_number),
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
pub async fn swap_indexes(
index_scheduler: GuardedData<ActionPolicy<{ actions::INDEXES_SWAP }>, Data<IndexScheduler>>,
params: AwebJson<Vec<SwapIndexesPayload>, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let params = params.into_inner();
analytics.publish(
"Indexes Swapped".to_string(),
json!({
"swap_operation_number": params.len(),
}),
Some(&req),
);
analytics.publish(IndexSwappedAnalytics { swap_operation_number: params.len() }, &req);
let filters = index_scheduler.filters();
let mut swaps = vec![];

View File

@@ -12,18 +12,17 @@ use meilisearch_types::star_or::{OptionStarOr, OptionStarOrList};
use meilisearch_types::task_view::TaskView;
use meilisearch_types::tasks::{Kind, KindWithContent, Status};
use serde::Serialize;
use serde_json::json;
use time::format_description::well_known::Rfc3339;
use time::macros::format_description;
use time::{Date, Duration, OffsetDateTime, Time};
use tokio::task;
use super::{get_task_id, is_dry_run, SummarizedTaskView};
use crate::analytics::Analytics;
use crate::analytics::{Aggregate, AggregateMethod, Analytics};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::Opt;
use crate::{aggregate_methods, Opt};
const DEFAULT_LIMIT: u32 = 20;
@@ -158,12 +157,69 @@ impl TaskDeletionOrCancelationQuery {
}
}
aggregate_methods!(
CancelTasks => "Tasks Canceled",
DeleteTasks => "Tasks Deleted",
);
#[derive(Serialize)]
struct TaskFilterAnalytics<Method: AggregateMethod> {
filtered_by_uid: bool,
filtered_by_index_uid: bool,
filtered_by_type: bool,
filtered_by_status: bool,
filtered_by_canceled_by: bool,
filtered_by_before_enqueued_at: bool,
filtered_by_after_enqueued_at: bool,
filtered_by_before_started_at: bool,
filtered_by_after_started_at: bool,
filtered_by_before_finished_at: bool,
filtered_by_after_finished_at: bool,
#[serde(skip)]
marker: std::marker::PhantomData<Method>,
}
impl<Method: AggregateMethod + 'static> Aggregate for TaskFilterAnalytics<Method> {
fn event_name(&self) -> &'static str {
Method::event_name()
}
fn aggregate(self: Box<Self>, new: Box<Self>) -> Box<Self> {
Box::new(Self {
filtered_by_uid: self.filtered_by_uid | new.filtered_by_uid,
filtered_by_index_uid: self.filtered_by_index_uid | new.filtered_by_index_uid,
filtered_by_type: self.filtered_by_type | new.filtered_by_type,
filtered_by_status: self.filtered_by_status | new.filtered_by_status,
filtered_by_canceled_by: self.filtered_by_canceled_by | new.filtered_by_canceled_by,
filtered_by_before_enqueued_at: self.filtered_by_before_enqueued_at
| new.filtered_by_before_enqueued_at,
filtered_by_after_enqueued_at: self.filtered_by_after_enqueued_at
| new.filtered_by_after_enqueued_at,
filtered_by_before_started_at: self.filtered_by_before_started_at
| new.filtered_by_before_started_at,
filtered_by_after_started_at: self.filtered_by_after_started_at
| new.filtered_by_after_started_at,
filtered_by_before_finished_at: self.filtered_by_before_finished_at
| new.filtered_by_before_finished_at,
filtered_by_after_finished_at: self.filtered_by_after_finished_at
| new.filtered_by_after_finished_at,
marker: std::marker::PhantomData,
})
}
fn into_event(self: Box<Self>) -> serde_json::Value {
serde_json::to_value(*self).unwrap_or_default()
}
}
async fn cancel_tasks(
index_scheduler: GuardedData<ActionPolicy<{ actions::TASKS_CANCEL }>, Data<IndexScheduler>>,
params: AwebQueryParameter<TaskDeletionOrCancelationQuery, DeserrQueryParamError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let params = params.into_inner();
@@ -172,21 +228,22 @@ async fn cancel_tasks(
}
analytics.publish(
"Tasks Canceled".to_string(),
json!({
"filtered_by_uid": params.uids.is_some(),
"filtered_by_index_uid": params.index_uids.is_some(),
"filtered_by_type": params.types.is_some(),
"filtered_by_status": params.statuses.is_some(),
"filtered_by_canceled_by": params.canceled_by.is_some(),
"filtered_by_before_enqueued_at": params.before_enqueued_at.is_some(),
"filtered_by_after_enqueued_at": params.after_enqueued_at.is_some(),
"filtered_by_before_started_at": params.before_started_at.is_some(),
"filtered_by_after_started_at": params.after_started_at.is_some(),
"filtered_by_before_finished_at": params.before_finished_at.is_some(),
"filtered_by_after_finished_at": params.after_finished_at.is_some(),
}),
Some(&req),
TaskFilterAnalytics::<CancelTasks> {
filtered_by_uid: params.uids.is_some(),
filtered_by_index_uid: params.index_uids.is_some(),
filtered_by_type: params.types.is_some(),
filtered_by_status: params.statuses.is_some(),
filtered_by_canceled_by: params.canceled_by.is_some(),
filtered_by_before_enqueued_at: params.before_enqueued_at.is_some(),
filtered_by_after_enqueued_at: params.after_enqueued_at.is_some(),
filtered_by_before_started_at: params.before_started_at.is_some(),
filtered_by_after_started_at: params.after_started_at.is_some(),
filtered_by_before_finished_at: params.before_finished_at.is_some(),
filtered_by_after_finished_at: params.after_finished_at.is_some(),
marker: std::marker::PhantomData,
},
&req,
);
let query = params.into_query();
@@ -214,7 +271,7 @@ async fn delete_tasks(
params: AwebQueryParameter<TaskDeletionOrCancelationQuery, DeserrQueryParamError>,
req: HttpRequest,
opt: web::Data<Opt>,
analytics: web::Data<dyn Analytics>,
analytics: web::Data<Analytics>,
) -> Result<HttpResponse, ResponseError> {
let params = params.into_inner();
@@ -223,22 +280,24 @@ async fn delete_tasks(
}
analytics.publish(
"Tasks Deleted".to_string(),
json!({
"filtered_by_uid": params.uids.is_some(),
"filtered_by_index_uid": params.index_uids.is_some(),
"filtered_by_type": params.types.is_some(),
"filtered_by_status": params.statuses.is_some(),
"filtered_by_canceled_by": params.canceled_by.is_some(),
"filtered_by_before_enqueued_at": params.before_enqueued_at.is_some(),
"filtered_by_after_enqueued_at": params.after_enqueued_at.is_some(),
"filtered_by_before_started_at": params.before_started_at.is_some(),
"filtered_by_after_started_at": params.after_started_at.is_some(),
"filtered_by_before_finished_at": params.before_finished_at.is_some(),
"filtered_by_after_finished_at": params.after_finished_at.is_some(),
}),
Some(&req),
TaskFilterAnalytics::<DeleteTasks> {
filtered_by_uid: params.uids.is_some(),
filtered_by_index_uid: params.index_uids.is_some(),
filtered_by_type: params.types.is_some(),
filtered_by_status: params.statuses.is_some(),
filtered_by_canceled_by: params.canceled_by.is_some(),
filtered_by_before_enqueued_at: params.before_enqueued_at.is_some(),
filtered_by_after_enqueued_at: params.after_enqueued_at.is_some(),
filtered_by_before_started_at: params.before_started_at.is_some(),
filtered_by_after_started_at: params.after_started_at.is_some(),
filtered_by_before_finished_at: params.before_finished_at.is_some(),
filtered_by_after_finished_at: params.after_finished_at.is_some(),
marker: std::marker::PhantomData,
},
&req,
);
let query = params.into_query();
let (tasks, _) = index_scheduler.get_task_ids_from_authorized_indexes(

View File

@@ -267,58 +267,54 @@ impl fmt::Debug for SearchQuery {
pub struct HybridQuery {
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
pub semantic_ratio: SemanticRatio,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(error = DeserrJsonError<InvalidEmbedder>)]
pub embedder: String,
}
#[derive(Clone)]
pub enum SearchKind {
KeywordOnly,
SemanticOnly { embedder_name: String, embedder: Arc<Embedder> },
Hybrid { embedder_name: String, embedder: Arc<Embedder>, semantic_ratio: f32 },
SemanticOnly { embedder_name: String, embedder: Arc<Embedder>, quantized: bool },
Hybrid { embedder_name: String, embedder: Arc<Embedder>, quantized: bool, semantic_ratio: f32 },
}
impl SearchKind {
pub(crate) fn semantic(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
let (embedder_name, embedder, quantized) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::SemanticOnly { embedder_name, embedder })
Ok(Self::SemanticOnly { embedder_name, embedder, quantized })
}
pub(crate) fn hybrid(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
semantic_ratio: f32,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
let (embedder_name, embedder, quantized) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
Ok(Self::Hybrid { embedder_name, embedder, quantized, semantic_ratio })
}
pub(crate) fn embedder(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
embedder_name: &str,
vector_len: Option<usize>,
) -> Result<(String, Arc<Embedder>), ResponseError> {
) -> Result<(String, Arc<Embedder>, bool), ResponseError> {
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name());
let embedder = embedders.get(embedder_name);
let embedder = embedder
let (embedder, _, quantized) = embedders
.get(embedder_name)
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
.map_err(milli::Error::from)?
.0;
.map_err(milli::Error::from)?;
if let Some(vector_len) = vector_len {
if vector_len != embedder.dimensions() {
@@ -332,7 +328,7 @@ impl SearchKind {
}
}
Ok((embedder_name.to_owned(), embedder))
Ok((embedder_name.to_owned(), embedder, quantized))
}
}
@@ -538,8 +534,8 @@ pub struct SimilarQuery {
pub limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidSimilarFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(error = DeserrJsonError<InvalidEmbedder>)]
pub embedder: String,
#[deserr(default, error = DeserrJsonError<InvalidSimilarAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarRetrieveVectors>)]
@@ -793,28 +789,35 @@ fn prepare_search<'t>(
search.query(q);
}
}
SearchKind::SemanticOnly { embedder_name, embedder } => {
SearchKind::SemanticOnly { embedder_name, embedder, quantized } => {
let vector = match query.vector.clone() {
Some(vector) => vector,
None => {
let span = tracing::trace_span!(target: "search::vector", "embed_one");
let _entered = span.enter();
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(10);
embedder
.embed_one(query.q.clone().unwrap())
.embed_one(query.q.clone().unwrap(), Some(deadline))
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?
}
};
search.semantic(embedder_name.clone(), embedder.clone(), Some(vector));
search.semantic(embedder_name.clone(), embedder.clone(), *quantized, Some(vector));
}
SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => {
SearchKind::Hybrid { embedder_name, embedder, quantized, semantic_ratio: _ } => {
if let Some(q) = &query.q {
search.query(q);
}
// will be embedded in hybrid search if necessary
search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone());
search.semantic(
embedder_name.clone(),
embedder.clone(),
*quantized,
query.vector.clone(),
);
}
}
@@ -1194,8 +1197,13 @@ impl<'a> HitMaker<'a> {
let vectors_is_hidden = match (&displayed_ids, vectors_fid) {
// displayed_ids is a wildcard, so `_vectors` can be displayed regardless of its fid
(None, _) => false,
// displayed_ids is a finite list, and `_vectors` cannot be part of it because it is not an existing field
(Some(_), None) => true,
// vectors has no fid, so check its explicit name
(Some(_), None) => {
// unwrap as otherwise we'd go to the first one
let displayed_names = index.displayed_fields(rtxn)?.unwrap();
!displayed_names
.contains(&milli::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME)
}
// displayed_ids is a finit list, so hide if `_vectors` is not part of it
(Some(map), Some(vectors_fid)) => map.contains(&vectors_fid),
};
@@ -1443,6 +1451,7 @@ pub fn perform_similar(
query: SimilarQuery,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
retrieve_vectors: RetrieveVectors,
features: RoFeatures,
) -> Result<SimilarResult, ResponseError> {
@@ -1471,8 +1480,16 @@ pub fn perform_similar(
));
};
let mut similar =
milli::Similar::new(internal_id, offset, limit, index, &rtxn, embedder_name, embedder);
let mut similar = milli::Similar::new(
internal_id,
offset,
limit,
index,
&rtxn,
embedder_name,
embedder,
quantized,
);
if let Some(ref filter) = query.filter {
if let Some(facets) = parse_filter(filter, Code::InvalidSimilarFilter, features)? {

View File

@@ -381,7 +381,6 @@ pub fn default_settings(dir: impl AsRef<Path>) -> Opt {
db_path: dir.as_ref().join("db"),
dump_dir: dir.as_ref().join("dumps"),
env: "development".to_owned(),
#[cfg(feature = "analytics")]
no_analytics: true,
max_index_size: Byte::from_u64_with_unit(100, Unit::MiB).unwrap(),
max_task_db_size: Byte::from_u64_with_unit(1, Unit::GiB).unwrap(),

View File

@@ -9,8 +9,9 @@ use actix_web::test;
use actix_web::test::TestRequest;
use actix_web::web::Data;
use index_scheduler::IndexScheduler;
use meilisearch::analytics::Analytics;
use meilisearch::search_queue::SearchQueue;
use meilisearch::{analytics, create_app, Opt, SubscriberForSecondLayer};
use meilisearch::{create_app, Opt, SubscriberForSecondLayer};
use meilisearch_auth::AuthController;
use tracing::level_filters::LevelFilter;
use tracing_subscriber::Layer;
@@ -141,7 +142,7 @@ impl Service {
Data::new(search_queue),
self.options.clone(),
(route_layer_handle, stderr_layer_handle),
analytics::MockAnalytics::new(&self.options),
Data::new(Analytics::no_analytics()),
true,
))
.await

View File

@@ -7,8 +7,9 @@ use std::str::FromStr;
use actix_web::http::header::ContentType;
use actix_web::web::Data;
use meili_snap::snapshot;
use meilisearch::analytics::Analytics;
use meilisearch::search_queue::SearchQueue;
use meilisearch::{analytics, create_app, Opt, SubscriberForSecondLayer};
use meilisearch::{create_app, Opt, SubscriberForSecondLayer};
use tracing::level_filters::LevelFilter;
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::Layer;
@@ -54,7 +55,7 @@ async fn basic_test_log_stream_route() {
Data::new(search_queue),
server.service.options.clone(),
(route_layer_handle, stderr_layer_handle),
analytics::MockAnalytics::new(&server.service.options),
Data::new(Analytics::no_analytics()),
true,
))
.await;

View File

@@ -128,7 +128,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2, "embedder": "default"}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -137,7 +137,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -146,7 +146,7 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -161,7 +161,7 @@ async fn limit_offset() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true, "offset": 1, "limit": 1}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2, "embedder": "default"}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
@@ -174,7 +174,7 @@ async fn limit_offset() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.9}, "retrieveVectors": true, "offset": 1, "limit": 1}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.9, "embedder": "default"}, "retrieveVectors": true, "offset": 1, "limit": 1}),
)
.await;
snapshot!(code, @"200 OK");
@@ -188,8 +188,11 @@ async fn simple_search_hf() {
let server = Server::new().await;
let index = index_with_documents_hf(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) =
index.search_post(json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}})).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2, "embedder": "default"}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"0");
@@ -197,7 +200,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
// disable ranking score as the vectors between architectures are not equal
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.55}, "showRankingScore": false}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.55}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -206,7 +209,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.8}, "showRankingScore": false}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.8}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -215,7 +218,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Movie World", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
json!({"q": "Movie World", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -224,7 +227,7 @@ async fn simple_search_hf() {
let (response, code) = index
.search_post(
json!({"q": "Wonder replacement", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
json!({"q": "Wonder replacement", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
@@ -237,7 +240,7 @@ async fn distribution_shift() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}, "retrieveVectors": true});
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "retrieveVectors": true});
let (response, code) = index.search_post(search.clone()).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9472135901451112}]"###);
@@ -271,7 +274,7 @@ async fn highlighter() {
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.2},
"hybrid": {"embedder": "default", "semanticRatio": 0.2},
"retrieveVectors": true,
"attributesToHighlight": [
"desc",
@@ -287,7 +290,7 @@ async fn highlighter() {
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.8},
"hybrid": {"embedder": "default", "semanticRatio": 0.8},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
@@ -304,7 +307,7 @@ async fn highlighter() {
// no highlighting on full semantic
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 1.0},
"hybrid": {"embedder": "default", "semanticRatio": 1.0},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
@@ -326,7 +329,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 1.2}}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": 1.2}}),
)
.await;
snapshot!(code, @"400 Bad Request");
@@ -341,7 +344,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": -0.8}}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": -0.8}}),
)
.await;
snapshot!(code, @"400 Bad Request");
@@ -357,7 +360,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": 1.2}),
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridEmbedder": "default", "hybridSemanticRatio": 1.2}),
)
.unwrap(),
)
@@ -375,7 +378,7 @@ async fn invalid_semantic_ratio() {
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": -0.2}),
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridEmbedder": "default", "hybridSemanticRatio": -0.2}),
)
.unwrap(),
)
@@ -398,7 +401,7 @@ async fn single_document() {
let (response, code) = index
.search_post(
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -414,7 +417,7 @@ async fn query_combination() {
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -423,7 +426,7 @@ async fn query_combination() {
// same with a different semantic ratio
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"hybrid": {"embedder": "default", "semanticRatio": 0.76}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -432,7 +435,7 @@ async fn query_combination() {
// wrong vector dimensions
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"400 Bad Request");
@@ -447,7 +450,7 @@ async fn query_combination() {
// full vector
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -456,7 +459,7 @@ async fn query_combination() {
// full keyword, without a query
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -465,7 +468,7 @@ async fn query_combination() {
// query + vector, full keyword => keyword
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"embedder": "default", "semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
@@ -480,7 +483,7 @@ async fn query_combination() {
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.",
"message": "Invalid request: missing `hybrid` parameter when `vector` is present.",
"code": "missing_search_hybrid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#missing_search_hybrid"
@@ -490,7 +493,7 @@ async fn query_combination() {
// full vector, without a vector => error
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -507,7 +510,7 @@ async fn query_combination() {
// hybrid without a vector => full keyword
let (response, code) = index
.search_post(
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true, "retrieveVectors": true}),
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99, "embedder": "default"}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@@ -523,7 +526,58 @@ async fn retrieve_vectors() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["hits"], {"[]._vectors.default.embeddings" => "[vectors]"}, @r###"
[
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
},
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
}
]
"###);
// use explicit `_vectors` in displayed attributes
let (response, code) = index
.update_settings(json!({ "displayedAttributes": ["id", "title", "desc", "_vectors"]} ))
.await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
@@ -573,7 +627,7 @@ async fn retrieve_vectors() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
json!({"q": "Captain", "hybrid": {"embedder": "default", "semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");

View File

@@ -922,7 +922,7 @@ async fn invalid_locales() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Unknown value `invalid` at `.locales[0]`: expected one of `af`, `ak`, `am`, `ar`, `az`, `be`, `bn`, `bg`, `ca`, `cs`, `zh`, `da`, `de`, `el`, `en`, `eo`, `et`, `fi`, `fr`, `gu`, `he`, `hi`, `hr`, `hu`, `hy`, `id`, `it`, `jv`, `ja`, `kn`, `ka`, `km`, `ko`, `la`, `lv`, `lt`, `ml`, `mr`, `mk`, `my`, `ne`, `nl`, `nb`, `or`, `pa`, `fa`, `pl`, `pt`, `ro`, `ru`, `si`, `sk`, `sl`, `sn`, `es`, `sr`, `sv`, `ta`, `te`, `tl`, `th`, `tk`, `tr`, `uk`, `ur`, `uz`, `vi`, `yi`, `zu`, `afr`, `aka`, `amh`, `ara`, `aze`, `bel`, `ben`, `bul`, `cat`, `ces`, `cmn`, `dan`, `deu`, `ell`, `eng`, `epo`, `est`, `fin`, `fra`, `guj`, `heb`, `hin`, `hrv`, `hun`, `hye`, `ind`, `ita`, `jav`, `jpn`, `kan`, `kat`, `khm`, `kor`, `lat`, `lav`, `lit`, `mal`, `mar`, `mkd`, `mya`, `nep`, `nld`, `nob`, `ori`, `pan`, `pes`, `pol`, `por`, `ron`, `rus`, `sin`, `slk`, `slv`, `sna`, `spa`, `srp`, `swe`, `tam`, `tel`, `tgl`, `tha`, `tuk`, `tur`, `ukr`, `urd`, `uzb`, `vie`, `yid`, `zul`",
"message": "Unknown value `invalid` at `.locales[0]`: expected one of `af`, `ak`, `am`, `ar`, `az`, `be`, `bn`, `bg`, `ca`, `cs`, `da`, `de`, `el`, `en`, `eo`, `et`, `fi`, `fr`, `gu`, `he`, `hi`, `hr`, `hu`, `hy`, `id`, `it`, `jv`, `ja`, `kn`, `ka`, `km`, `ko`, `la`, `lv`, `lt`, `ml`, `mr`, `mk`, `my`, `ne`, `nl`, `nb`, `or`, `pa`, `fa`, `pl`, `pt`, `ro`, `ru`, `si`, `sk`, `sl`, `sn`, `es`, `sr`, `sv`, `ta`, `te`, `tl`, `th`, `tk`, `tr`, `uk`, `ur`, `uz`, `vi`, `yi`, `zh`, `zu`, `afr`, `aka`, `amh`, `ara`, `aze`, `bel`, `ben`, `bul`, `cat`, `ces`, `dan`, `deu`, `ell`, `eng`, `epo`, `est`, `fin`, `fra`, `guj`, `heb`, `hin`, `hrv`, `hun`, `hye`, `ind`, `ita`, `jav`, `jpn`, `kan`, `kat`, `khm`, `kor`, `lat`, `lav`, `lit`, `mal`, `mar`, `mkd`, `mya`, `nep`, `nld`, `nob`, `ori`, `pan`, `pes`, `pol`, `por`, `ron`, `rus`, `sin`, `slk`, `slv`, `sna`, `spa`, `srp`, `swe`, `tam`, `tel`, `tgl`, `tha`, `tuk`, `tur`, `ukr`, `urd`, `uzb`, `vie`, `yid`, `zho`, `zul`, `cmn`",
"code": "invalid_search_locales",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_locales"
@@ -935,7 +935,7 @@ async fn invalid_locales() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `locales`: Unsupported locale `invalid`, expected one of af, ak, am, ar, az, be, bn, bg, ca, cs, zh, da, de, el, en, eo, et, fi, fr, gu, he, hi, hr, hu, hy, id, it, jv, ja, kn, ka, km, ko, la, lv, lt, ml, mr, mk, my, ne, nl, nb, or, pa, fa, pl, pt, ro, ru, si, sk, sl, sn, es, sr, sv, ta, te, tl, th, tk, tr, uk, ur, uz, vi, yi, zu, afr, aka, amh, ara, aze, bel, ben, bul, cat, ces, cmn, dan, deu, ell, eng, epo, est, fin, fra, guj, heb, hin, hrv, hun, hye, ind, ita, jav, jpn, kan, kat, khm, kor, lat, lav, lit, mal, mar, mkd, mya, nep, nld, nob, ori, pan, pes, pol, por, ron, rus, sin, slk, slv, sna, spa, srp, swe, tam, tel, tgl, tha, tuk, tur, ukr, urd, uzb, vie, yid, zul",
"message": "Invalid value in parameter `locales`: Unsupported locale `invalid`, expected one of af, ak, am, ar, az, be, bg, bn, ca, cs, da, de, el, en, eo, es, et, fa, fi, fr, gu, he, hi, hr, hu, hy, id, it, ja, jv, ka, km, kn, ko, la, lt, lv, mk, ml, mr, my, nb, ne, nl, or, pa, pl, pt, ro, ru, si, sk, sl, sn, sr, sv, ta, te, th, tk, tl, tr, uk, ur, uz, vi, yi, zh, zu, afr, aka, amh, ara, aze, bel, ben, bul, cat, ces, cmn, dan, deu, ell, eng, epo, est, fin, fra, guj, heb, hin, hrv, hun, hye, ind, ita, jav, jpn, kan, kat, khm, kor, lat, lav, lit, mal, mar, mkd, mya, nep, nld, nob, ori, pan, pes, pol, por, ron, rus, sin, slk, slv, sna, spa, srp, swe, tam, tel, tgl, tha, tuk, tur, ukr, urd, uzb, vie, yid, zho, zul",
"code": "invalid_search_locales",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_locales"
@@ -957,7 +957,7 @@ async fn invalid_localized_attributes_rules() {
.await;
snapshot!(response, @r###"
{
"message": "Unknown value `japan` at `.localizedAttributes[0].locales[0]`: expected one of `af`, `ak`, `am`, `ar`, `az`, `be`, `bn`, `bg`, `ca`, `cs`, `zh`, `da`, `de`, `el`, `en`, `eo`, `et`, `fi`, `fr`, `gu`, `he`, `hi`, `hr`, `hu`, `hy`, `id`, `it`, `jv`, `ja`, `kn`, `ka`, `km`, `ko`, `la`, `lv`, `lt`, `ml`, `mr`, `mk`, `my`, `ne`, `nl`, `nb`, `or`, `pa`, `fa`, `pl`, `pt`, `ro`, `ru`, `si`, `sk`, `sl`, `sn`, `es`, `sr`, `sv`, `ta`, `te`, `tl`, `th`, `tk`, `tr`, `uk`, `ur`, `uz`, `vi`, `yi`, `zu`, `afr`, `aka`, `amh`, `ara`, `aze`, `bel`, `ben`, `bul`, `cat`, `ces`, `cmn`, `dan`, `deu`, `ell`, `eng`, `epo`, `est`, `fin`, `fra`, `guj`, `heb`, `hin`, `hrv`, `hun`, `hye`, `ind`, `ita`, `jav`, `jpn`, `kan`, `kat`, `khm`, `kor`, `lat`, `lav`, `lit`, `mal`, `mar`, `mkd`, `mya`, `nep`, `nld`, `nob`, `ori`, `pan`, `pes`, `pol`, `por`, `ron`, `rus`, `sin`, `slk`, `slv`, `sna`, `spa`, `srp`, `swe`, `tam`, `tel`, `tgl`, `tha`, `tuk`, `tur`, `ukr`, `urd`, `uzb`, `vie`, `yid`, `zul`",
"message": "Unknown value `japan` at `.localizedAttributes[0].locales[0]`: expected one of `af`, `ak`, `am`, `ar`, `az`, `be`, `bn`, `bg`, `ca`, `cs`, `da`, `de`, `el`, `en`, `eo`, `et`, `fi`, `fr`, `gu`, `he`, `hi`, `hr`, `hu`, `hy`, `id`, `it`, `jv`, `ja`, `kn`, `ka`, `km`, `ko`, `la`, `lv`, `lt`, `ml`, `mr`, `mk`, `my`, `ne`, `nl`, `nb`, `or`, `pa`, `fa`, `pl`, `pt`, `ro`, `ru`, `si`, `sk`, `sl`, `sn`, `es`, `sr`, `sv`, `ta`, `te`, `tl`, `th`, `tk`, `tr`, `uk`, `ur`, `uz`, `vi`, `yi`, `zh`, `zu`, `afr`, `aka`, `amh`, `ara`, `aze`, `bel`, `ben`, `bul`, `cat`, `ces`, `dan`, `deu`, `ell`, `eng`, `epo`, `est`, `fin`, `fra`, `guj`, `heb`, `hin`, `hrv`, `hun`, `hye`, `ind`, `ita`, `jav`, `jpn`, `kan`, `kat`, `khm`, `kor`, `lat`, `lav`, `lit`, `mal`, `mar`, `mkd`, `mya`, `nep`, `nld`, `nob`, `ori`, `pan`, `pes`, `pol`, `por`, `ron`, `rus`, `sin`, `slk`, `slv`, `sna`, `spa`, `srp`, `swe`, `tam`, `tel`, `tgl`, `tha`, `tuk`, `tur`, `ukr`, `urd`, `uzb`, `vie`, `yid`, `zho`, `zul`, `cmn`",
"code": "invalid_settings_localized_attributes",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_localized_attributes"
@@ -1143,3 +1143,195 @@ async fn facet_search_with_localized_attributes() {
}
"###);
}
#[actix_rt::test]
async fn swedish_search() {
let server = Server::new().await;
let index = server.index("test");
let documents = json!([
{"id": "tra1-1", "product": "trä"},
{"id": "tra2-1", "product": "traktor"},
{"id": "tra1-2", "product": "träbjälke"},
{"id": "tra2-2", "product": "trafiksignal"},
]);
index.add_documents(documents, None).await;
let (_response, _) = index
.update_settings(json!({
"searchableAttributes": ["product"],
"localizedAttributes": [
// force swedish
{"attributePatterns": ["product"], "locales": ["swe"]}
]
}))
.await;
index.wait_task(1).await;
// infer swedish
index
.search(json!({"q": "trä", "attributesToRetrieve": ["product"]}), |response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "trä"
},
{
"product": "träbjälke"
}
],
"query": "trä",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 2
}
"###);
snapshot!(code, @"200 OK");
})
.await;
index
.search(json!({"q": "tra", "attributesToRetrieve": ["product"]}), |response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "traktor"
},
{
"product": "trafiksignal"
}
],
"query": "tra",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 2
}
"###);
snapshot!(code, @"200 OK");
})
.await;
// force swedish
index
.search(
json!({"q": "trä", "locales": ["swe"], "attributesToRetrieve": ["product"]}),
|response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "trä"
},
{
"product": "träbjälke"
}
],
"query": "trä",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 2
}
"###);
snapshot!(code, @"200 OK");
},
)
.await;
index
.search(
json!({"q": "tra", "locales": ["swe"], "attributesToRetrieve": ["product"]}),
|response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "traktor"
},
{
"product": "trafiksignal"
}
],
"query": "tra",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 2
}
"###);
snapshot!(code, @"200 OK");
},
)
.await;
}
#[actix_rt::test]
async fn german_search() {
let server = Server::new().await;
let index = server.index("test");
let documents = json!([
{"id": 1, "product": "Interkulturalität"},
{"id": 2, "product": "Wissensorganisation"},
]);
index.add_documents(documents, None).await;
let (_response, _) = index
.update_settings(json!({
"searchableAttributes": ["product"],
"localizedAttributes": [
// force swedish
{"attributePatterns": ["product"], "locales": ["deu"]}
]
}))
.await;
index.wait_task(1).await;
// infer swedish
index
.search(
json!({"q": "kulturalität", "attributesToRetrieve": ["product"]}),
|response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "Interkulturalität"
}
],
"query": "kulturalität",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 1
}
"###);
snapshot!(code, @"200 OK");
},
)
.await;
index
.search(
json!({"q": "organisation", "attributesToRetrieve": ["product"]}),
|response, code| {
snapshot!(response, @r###"
{
"hits": [
{
"product": "Wissensorganisation"
}
],
"query": "organisation",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 1
}
"###);
snapshot!(code, @"200 OK");
},
)
.await;
}

View File

@@ -1099,22 +1099,28 @@ async fn experimental_feature_vector_store() {
index.add_documents(json!(documents), None).await;
index.wait_task(0).await;
index
.search(json!({
let (response, code) = index
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
"hybrid": {
"embedder": "manual",
},
"showRankingScore": true
}), |response, code|{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
})
}))
.await;
{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
}
index
.search(json!({
"retrieveVectors": true,
@@ -1162,6 +1168,9 @@ async fn experimental_feature_vector_store() {
let (response, code) = index
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
"hybrid": {
"embedder": "manual",
},
"showRankingScore": true,
"retrieveVectors": true,
}))

View File

@@ -18,7 +18,7 @@ async fn similar_unexisting_index() {
});
index
.similar(json!({"id": 287947}), |response, code| {
.similar(json!({"id": 287947, "embedder": "manual"}), |response, code| {
assert_eq!(code, 404);
assert_eq!(response, expected_response);
})
@@ -44,7 +44,7 @@ async fn similar_feature_not_enabled() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"id": 287947})).await;
let (response, code) = index.similar_post(json!({"id": 287947, "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -199,7 +199,8 @@ async fn similar_not_found_id() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "definitely-doesnt-exist"})).await;
let (response, code) =
index.similar_post(json!({"id": "definitely-doesnt-exist", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -230,7 +231,8 @@ async fn similar_bad_offset() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "offset": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"id": 287947, "offset": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -241,7 +243,7 @@ async fn similar_bad_offset() {
}
"###);
let (response, code) = index.similar_get("?id=287947&offset=doggo").await;
let (response, code) = index.similar_get("?id=287947&offset=doggo&embedder=manual").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -272,7 +274,8 @@ async fn similar_bad_limit() {
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "limit": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"id": 287947, "limit": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -283,7 +286,7 @@ async fn similar_bad_limit() {
}
"###);
let (response, code) = index.similar_get("?id=287946&limit=doggo").await;
let (response, code) = index.similar_get("?id=287946&limit=doggo&embedder=manual").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -323,7 +326,8 @@ async fn similar_bad_filter() {
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (response, code) = index.similar_post(json!({ "id": 287947, "filter": true })).await;
let (response, code) =
index.similar_post(json!({ "id": 287947, "filter": true, "embedder": "manual" })).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -361,7 +365,7 @@ async fn filter_invalid_syntax_object() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 287947, "filter": "title & Glass"}), |response, code| {
.similar(json!({"id": 287947, "filter": "title & Glass", "embedder": "manual"}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
@@ -400,7 +404,7 @@ async fn filter_invalid_syntax_array() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 287947, "filter": ["title & Glass"]}), |response, code| {
.similar(json!({"id": 287947, "filter": ["title & Glass"], "embedder": "manual"}), |response, code| {
snapshot!(response, @r###"
{
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `CONTAINS`, `NOT CONTAINS`, `STARTS WITH`, `NOT STARTS WITH`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
@@ -446,7 +450,7 @@ async fn filter_invalid_syntax_string() {
});
index
.similar(
json!({"id": 287947, "filter": "title = Glass XOR title = Glass"}),
json!({"id": 287947, "filter": "title = Glass XOR title = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
@@ -486,10 +490,13 @@ async fn filter_invalid_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["many = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["many = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -524,10 +531,13 @@ async fn filter_invalid_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "many = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "many = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -562,10 +572,13 @@ async fn filter_reserved_geo_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geo = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geo = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -600,10 +613,13 @@ async fn filter_reserved_geo_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geo = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geo = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -638,10 +654,13 @@ async fn filter_reserved_attribute_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoDistance = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geoDistance = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -676,10 +695,13 @@ async fn filter_reserved_attribute_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoDistance = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geoDistance = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -714,10 +736,13 @@ async fn filter_reserved_geo_point_array() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoPoint = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": ["_geoPoint = Glass"], "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -752,10 +777,13 @@ async fn filter_reserved_geo_point_string() {
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoPoint = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.similar(
json!({"id": 287947, "filter": "_geoPoint = Glass", "embedder": "manual"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
@@ -765,7 +793,8 @@ async fn similar_bad_retrieve_vectors() {
server.set_features(json!({"vectorStore": true})).await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"retrieveVectors": "doggo"})).await;
let (response, code) =
index.similar_post(json!({"retrieveVectors": "doggo", "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
@@ -776,7 +805,8 @@ async fn similar_bad_retrieve_vectors() {
}
"###);
let (response, code) = index.similar_post(json!({"retrieveVectors": [true]})).await;
let (response, code) =
index.similar_post(json!({"retrieveVectors": [true], "embedder": "manual"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{

View File

@@ -80,9 +80,11 @@ async fn basic() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": 143, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
@@ -154,13 +156,16 @@ async fn basic() {
}
]
"###);
})
},
)
.await;
index
.similar(json!({"id": "299537", "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": "299537", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "How to Train Your Dragon: The Hidden World",
@@ -232,7 +237,8 @@ async fn basic() {
}
]
"###);
})
},
)
.await;
}
@@ -272,7 +278,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"4");
@@ -358,7 +364,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"3");
@@ -426,7 +432,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"2");
@@ -476,7 +482,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"1");
@@ -508,7 +514,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9, "retrieveVectors": true}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @"[]");
@@ -553,7 +559,7 @@ async fn filter() {
index
.similar(
json!({"id": 522681, "filter": "release_year = 2019", "retrieveVectors": true}),
json!({"id": 522681, "filter": "release_year = 2019", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
@@ -617,7 +623,7 @@ async fn filter() {
index
.similar(
json!({"id": 522681, "filter": "release_year < 2000", "retrieveVectors": true}),
json!({"id": 522681, "filter": "release_year < 2000", "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
@@ -681,9 +687,11 @@ async fn limit_and_offset() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "limit": 1, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
.similar(
json!({"id": 143, "limit": 1, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
@@ -704,12 +712,13 @@ async fn limit_and_offset() {
}
]
"###);
})
},
)
.await;
index
.similar(
json!({"id": 143, "limit": 1, "offset": 1, "retrieveVectors": true}),
json!({"id": 143, "limit": 1, "offset": 1, "retrieveVectors": true, "embedder": "manual"}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"

View File

@@ -0,0 +1,380 @@
use meili_snap::{json_string, snapshot};
use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
use crate::vector::generate_default_user_provided_documents;
#[actix_rt::test]
async fn retrieve_binary_quantize_status_in_the_settings() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3}"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3,"binaryQuantized":false}"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (settings, code) = index.settings().await;
snapshot!(code, @"200 OK");
snapshot!(settings["embedders"]["manual"], @r###"{"source":"userProvided","dimensions":3,"binaryQuantized":true}"###);
}
#[actix_rt::test]
async fn binary_quantize_before_sending_documents() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await.succeeded();
// Make sure the documents are binary quantized
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
-1.0,
-1.0,
1.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
-1.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
}
#[actix_rt::test]
async fn binary_quantize_after_sending_documents() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await.succeeded();
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
// Make sure the documents are binary quantized
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
-1.0,
-1.0,
1.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
-1.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
}
#[actix_rt::test]
async fn try_to_disable_binary_quantization() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
let ret = server.wait_task(response.uid()).await;
snapshot!(ret, @r###"
{
"uid": "[uid]",
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
"binaryQuantized": false
}
}
},
"error": {
"message": "`.embedders.manual.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors.",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
}
#[actix_rt::test]
async fn binary_quantize_clear_documents() {
let server = Server::new().await;
let index = generate_default_user_provided_documents(&server).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"binaryQuantized": true,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await.succeeded();
let (value, _code) = index.clear_all_documents().await;
index.wait_task(value.uid()).await.succeeded();
// Make sure the documents DB has been cleared
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [],
"offset": 0,
"limit": 20,
"total": 0
}
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) =
index.search_post(json!({ "hybrid": { "embedder": "manual" }, "vector": [1, 1, 1] })).await;
snapshot!(documents, @r###"
{
"hits": [],
"query": "",
"processingTimeMs": "[duration]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 0,
"semanticHitCount": 0
}
"###);
}

View File

@@ -1,3 +1,4 @@
mod binary_quantized;
mod openai;
mod rest;
mod settings;
@@ -624,7 +625,8 @@ async fn clear_documents() {
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
let (documents, _code) =
index.search_post(json!({ "vector": [1, 1, 1], "hybrid": {"embedder": "manual"} })).await;
snapshot!(documents, @r###"
{
"hits": [],
@@ -685,7 +687,11 @@ async fn add_remove_one_vector_4588() {
let task = index.wait_task(value.uid()).await;
snapshot!(task, name: "document-deleted");
let (documents, _code) = index.search_post(json!({"vector": [1, 1, 1] })).await;
let (documents, _code) = index
.search_post(
json!({"vector": [1, 1, 1], "hybrid": {"semanticRatio": 1.0, "embedder": "manual"} }),
)
.await;
snapshot!(documents, @r###"
{
"hits": [

View File

@@ -137,13 +137,14 @@ fn long_text() -> &'static str {
}
async fn create_mock_tokenized() -> (MockServer, Value) {
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false).await
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false, false).await
}
async fn create_mock_with_template(
document_template: &str,
model_dimensions: ModelDimensions,
fallible: bool,
slow: bool,
) -> (MockServer, Value) {
let mock_server = MockServer::start().await;
const API_KEY: &str = "my-api-key";
@@ -154,7 +155,11 @@ async fn create_mock_with_template(
Mock::given(method("POST"))
.and(path("/"))
.respond_with(move |req: &Request| {
// 0. maybe return 500
// 0. wait for a long time
if slow {
std::thread::sleep(std::time::Duration::from_secs(1));
}
// 1. maybe return 500
if fallible {
let attempt = attempt.fetch_add(1, Ordering::Relaxed);
let failed = matches!(attempt % 4, 0 | 1 | 3);
@@ -167,7 +172,7 @@ async fn create_mock_with_template(
}))
}
}
// 1. check API key
// 3. check API key
match req.headers.get("Authorization") {
Some(api_key) if api_key == API_KEY_BEARER => {
{}
@@ -202,7 +207,7 @@ async fn create_mock_with_template(
)
}
}
// 2. parse text inputs
// 3. parse text inputs
let query: serde_json::Value = match req.body_json() {
Ok(query) => query,
Err(_error) => return ResponseTemplate::new(400).set_body_json(
@@ -223,7 +228,7 @@ async fn create_mock_with_template(
panic!("Expected {model_dimensions:?}, got {query_model_dimensions:?}")
}
// 3. for each text, find embedding in responses
// 4. for each text, find embedding in responses
let serde_json::Value::Array(inputs) = &query["input"] else {
panic!("Unexpected `input` value")
};
@@ -283,7 +288,7 @@ async fn create_mock_with_template(
"embedding": embedding,
})).collect();
// 4. produce output from embeddings
// 5. produce output from embeddings
ResponseTemplate::new(200).set_body_json(json!({
"object": "list",
"data": data,
@@ -317,23 +322,27 @@ const DOGGO_TEMPLATE: &str = r#"{%- if doc.gender == "F" -%}Une chienne nommée
{%- endif %}, de race {{doc.breed}}."#;
async fn create_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false, false).await
}
async fn create_mock_dimensions() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false, false).await
}
async fn create_mock_small_embedding_model() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false, false).await
}
async fn create_mock_legacy_embedding_model() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false, false).await
}
async fn create_fallible_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true).await
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, false).await
}
async fn create_slow_mock() -> (MockServer, Value) {
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, true).await
}
// basic test "it works"
@@ -449,7 +458,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"},
}))
.await;
snapshot!(code, @"200 OK");
@@ -489,7 +498,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -529,7 +538,7 @@ async fn it_works() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -616,7 +625,7 @@ async fn tokenize_long_text() {
"q": "grand chien de berger des montagnes",
"showRankingScore": true,
"attributesToRetrieve": ["id"],
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1064,7 +1073,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1104,7 +1113,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1144,7 +1153,7 @@ async fn smaller_dimensions() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1295,7 +1304,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1335,7 +1344,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1375,7 +1384,7 @@ async fn small_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1525,7 +1534,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1565,7 +1574,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1605,7 +1614,7 @@ async fn legacy_embedding_model() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1756,7 +1765,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "chien de chasse",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1796,7 +1805,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "petit chien",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1836,7 +1845,7 @@ async fn it_still_works() {
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 1.0}
"hybrid": {"semanticRatio": 1.0, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
@@ -1873,4 +1882,114 @@ async fn it_still_works() {
]
"###);
}
// test with a server that responds 500 on 3 out of 4 calls
#[actix_rt::test]
async fn timeout() {
let (_mock, setting) = create_slow_mock().await;
let server = get_server_vector().await;
let index = server.index("doggo");
let (response, code) = index
.update_settings(json!({
"embedders": {
"default": setting,
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
let documents = json!([
{"id": 0, "name": "kefir", "gender": "M", "birthyear": 2023, "breed": "Patou"},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
let task = index.wait_task(value.uid()).await;
snapshot!(task, @r###"
{
"uid": "[uid]",
"indexUid": "doggo",
"status": "succeeded",
"type": "documentAdditionOrUpdate",
"canceledBy": null,
"details": {
"receivedDocuments": 1,
"indexedDocuments": 1
},
"error": null,
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents, {".results.*._vectors.default.embeddings" => "[vector]"}), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"gender": "M",
"birthyear": 2023,
"breed": "Patou",
"_vectors": {
"default": {
"embeddings": "[vector]",
"regenerate": true
}
}
}
],
"offset": 0,
"limit": 20,
"total": 1
}
"###);
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"0");
snapshot!(json_string!(response["hits"]), @"[]");
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"1");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"id": 0,
"name": "kefir",
"gender": "M",
"birthyear": 2023,
"breed": "Patou"
}
]
"###);
let (response, code) = index
.search_post(json!({
"q": "grand chien de berger des montagnes",
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["semanticHitCount"]), @"0");
snapshot!(json_string!(response["hits"]), @"[]");
}
// test with a server that wrongly responds 400

View File

@@ -4,6 +4,53 @@ use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
use crate::vector::generate_default_user_provided_documents;
#[actix_rt::test]
async fn field_unavailable_for_source() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "manual": {"source": "userProvided", "documentTemplate": "{{doc.documentTemplate}}"}},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.manual`: Field `documentTemplate` unavailable for source `userProvided` (only available for sources: `huggingFace`, `openAi`, `ollama`, `rest`). Available fields: `source`, `dimensions`, `distribution`, `binaryQuantized`",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "default": {"source": "openAi", "revision": "42"}},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.default`: Field `revision` unavailable for source `openAi` (only available for sources: `huggingFace`). Available fields: `source`, `model`, `apiKey`, `documentTemplate`, `dimensions`, `distribution`, `url`, `binaryQuantized`",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
}
#[actix_rt::test]
async fn update_embedder() {
let server = Server::new().await;
@@ -218,7 +265,8 @@ async fn reset_embedder_documents() {
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
let (documents, _code) =
index.search_post(json!({ "vector": [1, 1, 1], "hybrid": {"embedder": "default"} })).await;
snapshot!(json_string!(documents), @r###"
{
"message": "Cannot find embedder with name `default`.",

View File

@@ -17,7 +17,7 @@ bincode = "1.3.3"
bstr = "1.9.1"
bytemuck = { version = "1.16.1", features = ["extern_crate_alloc"] }
byteorder = "1.5.0"
charabia = { version = "0.9.0", default-features = false }
charabia = { version = "0.9.1", default-features = false }
concat-arrays = "0.1.2"
crossbeam-channel = "0.5.13"
deserr = "0.6.2"
@@ -79,8 +79,8 @@ hf-hub = { git = "https://github.com/dureuill/hf-hub.git", branch = "rust_tls",
] }
tiktoken-rs = "0.5.9"
liquid = "0.26.6"
rhai = { version = "1.19.0", features = ["serde", "no_module", "no_custom_syntax", "no_time", "sync"] }
arroy = "0.4.0"
rhai = { git = "https://github.com/rhaiscript/rhai", rev = "ef3df63121d27aacd838f366f2b83fd65f20a1e4", features = ["serde", "no_module", "no_custom_syntax", "no_time", "sync"] }
arroy = "0.5.0"
rand = "0.8.5"
tracing = "0.1.40"
ureq = { version = "2.10.0", features = ["json"] }
@@ -98,14 +98,7 @@ rand = { version = "0.8.5", features = ["small_rng"] }
[features]
all-tokenizations = [
"charabia/chinese",
"charabia/hebrew",
"charabia/japanese",
"charabia/thai",
"charabia/korean",
"charabia/greek",
"charabia/khmer",
"charabia/vietnamese",
"charabia/default",
]
# Use POSIX semaphores instead of SysV semaphores in LMDB
@@ -138,8 +131,14 @@ khmer = ["charabia/khmer"]
# allow vietnamese specialized tokenization
vietnamese = ["charabia/vietnamese"]
# allow german specialized tokenization
german = ["charabia/german-segmentation"]
# force swedish character recomposition
swedish-recomposition = ["charabia/swedish-recomposition"]
# allow turkish specialized tokenization
turkish = ["charabia/turkish"]
# allow CUDA support, see <https://github.com/meilisearch/meilisearch/issues/4306>
cuda = ["candle-core/cuda"]

View File

@@ -258,6 +258,10 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
},
#[error("`.embedders.{embedder_name}.dimensions`: `dimensions` cannot be zero")]
InvalidSettingsDimensions { embedder_name: String },
#[error(
"`.embedders.{embedder_name}.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors."
)]
InvalidDisableBinaryQuantization { embedder_name: String },
#[error("`.embedders.{embedder_name}.documentTemplateMaxBytes`: `documentTemplateMaxBytes` cannot be zero")]
InvalidSettingsDocumentTemplateMaxBytes { embedder_name: String },
#[error("`.embedders.{embedder_name}.url`: could not parse `{url}`: {inner_error}")]
@@ -293,6 +297,7 @@ impl From<arroy::Error> for Error {
arroy::Error::InvalidVecDimension { expected, received } => {
Error::UserError(UserError::InvalidVectorDimensions { expected, found: received })
}
arroy::Error::BuildCancelled => Error::InternalError(InternalError::AbortedIndexation),
arroy::Error::DatabaseFull
| arroy::Error::InvalidItemAppend
| arroy::Error::UnmatchingDistance { .. }

View File

@@ -21,7 +21,7 @@ use crate::heed_codec::{BEU16StrCodec, FstSetCodec, StrBEU16Codec, StrRefCodec};
use crate::order_by_map::OrderByMap;
use crate::proximity::ProximityPrecision;
use crate::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME;
use crate::vector::{Embedding, EmbeddingConfig};
use crate::vector::{ArroyWrapper, Embedding, EmbeddingConfig};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldIdWordCountCodec,
@@ -162,7 +162,7 @@ pub struct Index {
/// Maps an embedder name to its id in the arroy store.
pub embedder_category_id: Database<Str, U8>,
/// Vector store based on arroy™.
pub vector_arroy: arroy::Database<arroy::distances::Angular>,
pub vector_arroy: arroy::Database<Unspecified>,
/// Maps the document id to the document as an obkv store.
pub(crate) documents: Database<BEU32, ObkvCodec>,
@@ -1610,22 +1610,6 @@ impl Index {
.unwrap_or_default())
}
pub fn arroy_readers<'a>(
&'a self,
rtxn: &'a RoTxn<'a>,
embedder_id: u8,
) -> impl Iterator<Item = Result<arroy::Reader<'a, arroy::distances::Angular>>> + 'a {
crate::vector::arroy_db_range_for_embedder(embedder_id).map_while(move |k| {
arroy::Reader::open(rtxn, k, self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e.into()),
})
.transpose()
})
}
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
}
@@ -1644,32 +1628,13 @@ impl Index {
docid: DocumentId,
) -> Result<BTreeMap<String, Vec<Embedding>>> {
let mut res = BTreeMap::new();
for row in self.embedder_category_id.iter(rtxn)? {
let (embedder_name, embedder_id) = row?;
let embedder_id = (embedder_id as u16) << 8;
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(rtxn, embedder_id | (i as u16), self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata(_) => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader?.item_vector(rtxn, docid)?;
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
res.insert(embedder_name.to_owned(), embeddings);
let embedding_configs = self.embedding_configs(rtxn)?;
for config in embedding_configs {
let embedder_id = self.embedder_category_id.get(rtxn, &config.name)?.unwrap();
let reader =
ArroyWrapper::new(self.vector_arroy, embedder_id, config.config.quantized());
let embeddings = reader.item_vectors(rtxn, docid)?;
res.insert(config.name.to_owned(), embeddings);
}
Ok(res)
}

View File

@@ -190,7 +190,7 @@ impl<'a> Search<'a> {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
// no embedder, no semantic search
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
let Some(SemanticSearch { vector, embedder_name, embedder, quantized }) = semantic else {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
@@ -201,7 +201,9 @@ impl<'a> Search<'a> {
let span = tracing::trace_span!(target: "search::hybrid", "embed_one");
let _entered = span.enter();
match embedder.embed_one(query) {
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(3);
match embedder.embed_one(query, Some(deadline)) {
Ok(embedding) => embedding,
Err(error) => {
tracing::error!(error=%error, "Embedding failed");
@@ -212,7 +214,7 @@ impl<'a> Search<'a> {
};
search.semantic =
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder, quantized });
// TODO: would be better to have two distinct functions at this point
let vector_results = search.execute()?;

View File

@@ -32,6 +32,7 @@ pub struct SemanticSearch {
vector: Option<Vec<f32>>,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
}
pub struct Search<'a> {
@@ -89,9 +90,10 @@ impl<'a> Search<'a> {
&mut self,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
vector: Option<Vec<f32>>,
) -> &mut Search<'a> {
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
self.semantic = Some(SemanticSearch { embedder_name, embedder, quantized, vector });
self
}
@@ -206,7 +208,7 @@ impl<'a> Search<'a> {
degraded,
used_negative_operator,
} = match self.semantic.as_ref() {
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder, quantized }) => {
execute_vector_search(
&mut ctx,
vector,
@@ -219,6 +221,7 @@ impl<'a> Search<'a> {
self.limit,
embedder_name,
embedder,
*quantized,
self.time_budget.clone(),
self.ranking_score_threshold,
)?

View File

@@ -312,6 +312,7 @@ fn get_ranking_rules_for_placeholder_search<'ctx>(
Ok(ranking_rules)
}
#[allow(clippy::too_many_arguments)]
fn get_ranking_rules_for_vector<'ctx>(
ctx: &SearchContext<'ctx>,
sort_criteria: &Option<Vec<AscDesc>>,
@@ -320,6 +321,7 @@ fn get_ranking_rules_for_vector<'ctx>(
target: &[f32],
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
// query graph search
@@ -347,6 +349,7 @@ fn get_ranking_rules_for_vector<'ctx>(
limit_plus_offset,
embedder_name,
embedder,
quantized,
)?;
ranking_rules.push(Box::new(vector_sort));
vector = true;
@@ -576,6 +579,7 @@ pub fn execute_vector_search(
length: usize,
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
) -> Result<PartialSearchResult> {
@@ -591,6 +595,7 @@ pub fn execute_vector_search(
vector,
embedder_name,
embedder,
quantized,
)?;
let mut placeholder_search_logger = logger::DefaultSearchLogger;

View File

@@ -1,11 +1,10 @@
use std::iter::FromIterator;
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::score_details::{self, ScoreDetails};
use crate::vector::{DistributionShift, Embedder};
use crate::vector::{ArroyWrapper, DistributionShift, Embedder};
use crate::{DocumentId, Result, SearchContext, SearchLogger};
pub struct VectorSort<Q: RankingRuleQueryTrait> {
@@ -16,6 +15,7 @@ pub struct VectorSort<Q: RankingRuleQueryTrait> {
limit: usize,
distribution_shift: Option<DistributionShift>,
embedder_index: u8,
quantized: bool,
}
impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
@@ -26,6 +26,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
limit: usize,
embedder_name: &str,
embedder: &Embedder,
quantized: bool,
) -> Result<Self> {
let embedder_index = ctx
.index
@@ -41,6 +42,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
limit,
distribution_shift: embedder.distribution(),
embedder_index,
quantized,
})
}
@@ -49,19 +51,10 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
ctx: &mut SearchContext<'_>,
vector_candidates: &RoaringBitmap,
) -> Result<()> {
let readers: std::result::Result<Vec<_>, _> =
ctx.index.arroy_readers(ctx.txn, self.embedder_index).collect();
let readers = readers?;
let target = &self.target;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_vector =
reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?;
results.extend(nns_by_vector.into_iter());
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
let reader = ArroyWrapper::new(ctx.index.vector_arroy, self.embedder_index, self.quantized);
let results = reader.nns_by_vector(ctx.txn, target, self.limit, Some(vector_candidates))?;
self.cached_sorted_docids = results.into_iter();
Ok(())

View File

@@ -1,10 +1,9 @@
use std::sync::Arc;
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use crate::score_details::{self, ScoreDetails};
use crate::vector::Embedder;
use crate::vector::{ArroyWrapper, Embedder};
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
pub struct Similar<'a> {
@@ -18,9 +17,11 @@ pub struct Similar<'a> {
embedder_name: String,
embedder: Arc<Embedder>,
ranking_score_threshold: Option<f64>,
quantized: bool,
}
impl<'a> Similar<'a> {
#[allow(clippy::too_many_arguments)]
pub fn new(
id: DocumentId,
offset: usize,
@@ -29,6 +30,7 @@ impl<'a> Similar<'a> {
rtxn: &'a heed::RoTxn<'a>,
embedder_name: String,
embedder: Arc<Embedder>,
quantized: bool,
) -> Self {
Self {
id,
@@ -40,6 +42,7 @@ impl<'a> Similar<'a> {
embedder_name,
embedder,
ranking_score_threshold: None,
quantized,
}
}
@@ -67,29 +70,13 @@ impl<'a> Similar<'a> {
.get(self.rtxn, &self.embedder_name)?
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
let readers: std::result::Result<Vec<_>, _> =
self.index.arroy_readers(self.rtxn, embedder_index).collect();
let readers = readers?;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_item = reader.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
None,
Some(&universe),
)?;
if let Some(mut nns_by_item) = nns_by_item {
results.append(&mut nns_by_item);
} else {
break;
}
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
let reader = ArroyWrapper::new(self.index.vector_arroy, embedder_index, self.quantized);
let results = reader.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
Some(&universe),
)?;
let mut documents_ids = Vec::with_capacity(self.limit);
let mut document_scores = Vec::with_capacity(self.limit);

View File

@@ -149,7 +149,7 @@ impl<'i> FacetsUpdate<'i> {
self.index.set_updated_at(wtxn, &OffsetDateTime::now_utc())?;
// See self::comparison_bench::benchmark_facet_indexing
if self.data_size >= (self.database.len(wtxn)? / 500) {
if self.data_size >= (self.database.len(wtxn)? * 500) {
let field_ids =
self.index.faceted_fields_ids(wtxn)?.iter().copied().collect::<Vec<_>>();
let bulk_update = FacetsUpdateBulk::new(

View File

@@ -20,7 +20,7 @@ use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::error::{EmbedErrorKind, PossibleEmbeddingMistakes, UnusedVectorsDistribution};
use crate::vector::parsed_vectors::{ParsedVectorsDiff, VectorState, RESERVED_VECTORS_FIELD_NAME};
use crate::vector::settings::{EmbedderAction, ReindexAction};
use crate::vector::settings::ReindexAction;
use crate::vector::{Embedder, Embeddings};
use crate::{try_split_array_at, DocumentId, FieldId, Result, ThreadPoolNoAbort};
@@ -208,65 +208,65 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
if reindex_vectors {
for (name, action) in settings_diff.embedding_config_updates.iter() {
match action {
EmbedderAction::WriteBackToDocuments(_) => continue, // already deleted
EmbedderAction::Reindex(action) => {
let Some((embedder_name, (embedder, prompt))) = configs.remove_entry(name)
else {
tracing::error!(embedder = name, "Requested embedder config not found");
continue;
};
if let Some(action) = action.reindex() {
let Some((embedder_name, (embedder, prompt, _quantized))) =
configs.remove_entry(name)
else {
tracing::error!(embedder = name, "Requested embedder config not found");
continue;
};
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let action = match action {
ReindexAction::FullReindex => ExtractionAction::SettingsFullReindex,
ReindexAction::RegeneratePrompts => {
let Some((_, old_prompt)) = old_configs.get(name) else {
tracing::error!(embedder = name, "Old embedder config not found");
continue;
};
let action = match action {
ReindexAction::FullReindex => ExtractionAction::SettingsFullReindex,
ReindexAction::RegeneratePrompts => {
let Some((_, old_prompt, _quantized)) = old_configs.get(name) else {
tracing::error!(embedder = name, "Old embedder config not found");
continue;
};
ExtractionAction::SettingsRegeneratePrompts { old_prompt }
}
};
ExtractionAction::SettingsRegeneratePrompts { old_prompt }
}
};
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
prompts_writer,
remove_vectors_writer,
manual_vectors_writer,
add_to_user_provided: RoaringBitmap::new(),
action,
});
}
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
prompts_writer,
remove_vectors_writer,
manual_vectors_writer,
add_to_user_provided: RoaringBitmap::new(),
action,
});
} else {
continue;
}
}
} else {
// document operation
for (embedder_name, (embedder, prompt)) in configs.into_iter() {
for (embedder_name, (embedder, prompt, _quantized)) in configs.into_iter() {
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,

View File

@@ -43,7 +43,7 @@ use crate::update::index_documents::parallel::ImmutableObkvs;
use crate::update::{
IndexerConfig, UpdateIndexingStep, WordPrefixDocids, WordPrefixIntegerDocids, WordsPrefixesFst,
};
use crate::vector::EmbeddingConfigs;
use crate::vector::{ArroyWrapper, EmbeddingConfigs};
use crate::{CboRoaringBitmapCodec, Index, Object, Result};
static MERGED_DATABASE_COUNT: usize = 7;
@@ -679,23 +679,42 @@ where
let number_of_documents = self.index.number_of_documents(self.wtxn)?;
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
// If an embedder wasn't used in the typedchunk but must be binary quantized
// we should insert it in `dimension`
for (name, action) in settings_diff.embedding_config_updates.iter() {
if action.is_being_quantized && !dimension.contains_key(name.as_str()) {
let index = self.index.embedder_category_id.get(self.wtxn, name)?.ok_or(
InternalError::DatabaseMissingEntry {
db_name: "embedder_category_id",
key: None,
},
)?;
let reader =
ArroyWrapper::new(self.index.vector_arroy, index, action.was_quantized);
let dim = reader.dimensions(self.wtxn)?;
dimension.insert(name.to_string(), dim);
}
}
for (embedder_name, dimension) in dimension {
let wtxn = &mut *self.wtxn;
let vector_arroy = self.index.vector_arroy;
let cancel = &self.should_abort;
let embedder_index = self.index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
)?;
let embedder_config = settings_diff.embedding_config_updates.get(&embedder_name);
let was_quantized = settings_diff
.old
.embedding_configs
.get(&embedder_name)
.map_or(false, |conf| conf.2);
let is_quantizing = embedder_config.map_or(false, |action| action.is_being_quantized);
pool.install(|| {
for k in crate::vector::arroy_db_range_for_embedder(embedder_index) {
let writer = arroy::Writer::new(vector_arroy, k, dimension);
if writer.need_build(wtxn)? {
writer.build(wtxn, &mut rng, None)?;
} else if writer.is_empty(wtxn)? {
break;
}
}
let mut writer = ArroyWrapper::new(vector_arroy, embedder_index, was_quantized);
writer.build_and_quantize(wtxn, &mut rng, dimension, is_quantizing, cancel)?;
Result::Ok(())
})
.map_err(InternalError::from)??;
@@ -2746,6 +2765,7 @@ mod tests {
response: Setting::NotSet,
distribution: Setting::NotSet,
headers: Setting::NotSet,
binary_quantized: Setting::NotSet,
}),
);
settings.set_embedder_settings(embedders);
@@ -2774,7 +2794,7 @@ mod tests {
std::sync::Arc::new(crate::vector::Embedder::new(embedder.embedder_options).unwrap());
let res = index
.search(&rtxn)
.semantic(embedder_name, embedder, Some([0.0, 1.0, 2.0].to_vec()))
.semantic(embedder_name, embedder, false, Some([0.0, 1.0, 2.0].to_vec()))
.execute()
.unwrap();
assert_eq!(res.documents_ids.len(), 3);

View File

@@ -28,7 +28,8 @@ use crate::update::index_documents::GrenadParameters;
use crate::update::settings::{InnerIndexSettings, InnerIndexSettingsDiff};
use crate::update::{AvailableDocumentsIds, UpdateIndexingStep};
use crate::vector::parsed_vectors::{ExplicitVectors, VectorOrArrayOfVectors};
use crate::vector::settings::{EmbedderAction, WriteBackToDocuments};
use crate::vector::settings::WriteBackToDocuments;
use crate::vector::ArroyWrapper;
use crate::{
is_faceted_by, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldsIdsMap, Index, Result,
};
@@ -989,29 +990,24 @@ impl<'a, 'i> Transform<'a, 'i> {
None
};
let readers: Result<
BTreeMap<&str, (Vec<arroy::Reader<'_, arroy::distances::Angular>>, &RoaringBitmap)>,
> = settings_diff
let readers: BTreeMap<&str, (ArroyWrapper, &RoaringBitmap)> = settings_diff
.embedding_config_updates
.iter()
.filter_map(|(name, action)| {
if let EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}) = action
if let Some(WriteBackToDocuments { embedder_id, user_provided }) =
action.write_back()
{
let readers: Result<Vec<_>> =
self.index.arroy_readers(wtxn, *embedder_id).collect();
match readers {
Ok(readers) => Some(Ok((name.as_str(), (readers, user_provided)))),
Err(error) => Some(Err(error)),
}
let reader = ArroyWrapper::new(
self.index.vector_arroy,
*embedder_id,
action.was_quantized,
);
Some((name.as_str(), (reader, user_provided)))
} else {
None
}
})
.collect();
let readers = readers?;
let old_vectors_fid = settings_diff
.old
@@ -1049,34 +1045,24 @@ impl<'a, 'i> Transform<'a, 'i> {
arroy::Error,
> = readers
.iter()
.filter_map(|(name, (readers, user_provided))| {
.filter_map(|(name, (reader, user_provided))| {
if !user_provided.contains(docid) {
return None;
}
let mut vectors = Vec::new();
for reader in readers {
let Some(vector) = reader.item_vector(wtxn, docid).transpose() else {
break;
};
match vector {
Ok(vector) => vectors.push(vector),
Err(error) => return Some(Err(error)),
}
match reader.item_vectors(wtxn, docid) {
Ok(vectors) if vectors.is_empty() => None,
Ok(vectors) => Some(Ok((
name.to_string(),
serde_json::to_value(ExplicitVectors {
embeddings: Some(
VectorOrArrayOfVectors::from_array_of_vectors(vectors),
),
regenerate: false,
})
.unwrap(),
))),
Err(e) => Some(Err(e)),
}
if vectors.is_empty() {
return None;
}
Some(Ok((
name.to_string(),
serde_json::to_value(ExplicitVectors {
embeddings: Some(VectorOrArrayOfVectors::from_array_of_vectors(
vectors,
)),
regenerate: false,
})
.unwrap(),
)))
})
.collect();
@@ -1104,21 +1090,10 @@ impl<'a, 'i> Transform<'a, 'i> {
}
}
let mut writers = Vec::new();
// delete all vectors from the embedders that need removal
for (_, (readers, _)) in readers {
for reader in readers {
let dimensions = reader.dimensions();
let arroy_index = reader.index();
drop(reader);
let writer = arroy::Writer::new(self.index.vector_arroy, arroy_index, dimensions);
writers.push(writer);
}
}
for writer in writers {
writer.clear(wtxn)?;
for (_, (reader, _)) in readers {
let dimensions = reader.dimensions(wtxn)?;
reader.clear(wtxn, dimensions)?;
}
let grenad_params = GrenadParameters {

View File

@@ -27,6 +27,7 @@ use crate::update::index_documents::helpers::{
as_cloneable_grenad, keep_latest_obkv, try_split_array_at,
};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::ArroyWrapper;
use crate::{
lat_lng_to_xyz, CboRoaringBitmapCodec, DocumentId, FieldId, GeoPoint, Index, InternalError,
Result, SerializationError, U8StrStrCodec,
@@ -666,23 +667,20 @@ pub(crate) fn write_typed_chunk_into_index(
let embedder_index = index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
)?;
let binary_quantized = settings_diff
.old
.embedding_configs
.get(&embedder_name)
.map_or(false, |conf| conf.2);
// FIXME: allow customizing distance
let writers: Vec<_> = crate::vector::arroy_db_range_for_embedder(embedder_index)
.map(|k| arroy::Writer::new(index.vector_arroy, k, expected_dimension))
.collect();
let writer = ArroyWrapper::new(index.vector_arroy, embedder_index, binary_quantized);
// remove vectors for docids we want them removed
let merger = remove_vectors_builder.build();
let mut iter = merger.into_stream_merger_iter()?;
while let Some((key, _)) = iter.next()? {
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
for writer in &writers {
// Uses invariant: vectors are packed in the first writers.
if !writer.del_item(wtxn, docid)? {
break;
}
}
writer.del_items(wtxn, expected_dimension, docid)?;
}
// add generated embeddings
@@ -710,9 +708,7 @@ pub(crate) fn write_typed_chunk_into_index(
embeddings.embedding_count(),
)));
}
for (embedding, writer) in embeddings.iter().zip(&writers) {
writer.add_item(wtxn, docid, embedding)?;
}
writer.add_items(wtxn, docid, &embeddings)?;
}
// perform the manual diff
@@ -727,46 +723,14 @@ pub(crate) fn write_typed_chunk_into_index(
if let Some(value) = vector_deladd_obkv.get(DelAdd::Deletion) {
let vector: Vec<f32> = pod_collect_to_vec(value);
let mut deleted_index = None;
for (index, writer) in writers.iter().enumerate() {
let Some(candidate) = writer.item_vector(wtxn, docid)? else {
// uses invariant: vectors are packed in the first writers.
break;
};
if candidate == vector {
writer.del_item(wtxn, docid)?;
deleted_index = Some(index);
}
}
// 🥲 enforce invariant: vectors are packed in the first writers.
if let Some(deleted_index) = deleted_index {
let mut last_index_with_a_vector = None;
for (index, writer) in writers.iter().enumerate().skip(deleted_index) {
let Some(candidate) = writer.item_vector(wtxn, docid)? else {
break;
};
last_index_with_a_vector = Some((index, candidate));
}
if let Some((last_index, vector)) = last_index_with_a_vector {
// unwrap: computed the index from the list of writers
let writer = writers.get(last_index).unwrap();
writer.del_item(wtxn, docid)?;
writers.get(deleted_index).unwrap().add_item(wtxn, docid, &vector)?;
}
}
writer.del_item(wtxn, docid, &vector)?;
}
if let Some(value) = vector_deladd_obkv.get(DelAdd::Addition) {
let vector = pod_collect_to_vec(value);
// overflow was detected during vector extraction.
for writer in &writers {
if !writer.contains_item(wtxn, docid)? {
writer.add_item(wtxn, docid, &vector)?;
break;
}
}
writer.add_item(wtxn, docid, &vector)?;
}
}

View File

@@ -954,7 +954,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
let old_configs = self.index.embedding_configs(self.wtxn)?;
let remove_all: Result<BTreeMap<String, EmbedderAction>> = old_configs
.into_iter()
.map(|IndexEmbeddingConfig { name, config: _, user_provided }| -> Result<_> {
.map(|IndexEmbeddingConfig { name, config, user_provided }| -> Result<_> {
let embedder_id =
self.index.embedder_category_id.get(self.wtxn, &name)?.ok_or(
crate::InternalError::DatabaseMissingEntry {
@@ -964,10 +964,10 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
)?;
Ok((
name,
EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}),
EmbedderAction::with_write_back(
WriteBackToDocuments { embedder_id, user_provided },
config.quantized(),
),
))
})
.collect();
@@ -1004,7 +1004,8 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
match joined {
// updated config
EitherOrBoth::Both((name, (old, user_provided)), (_, new)) => {
let settings_diff = SettingsDiff::from_settings(old, new);
let was_quantized = old.binary_quantized.set().unwrap_or_default();
let settings_diff = SettingsDiff::from_settings(&name, old, new)?;
match settings_diff {
SettingsDiff::Remove => {
tracing::debug!(
@@ -1023,25 +1024,29 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
self.index.embedder_category_id.delete(self.wtxn, &name)?;
embedder_actions.insert(
name,
EmbedderAction::WriteBackToDocuments(WriteBackToDocuments {
embedder_id,
user_provided,
}),
EmbedderAction::with_write_back(
WriteBackToDocuments { embedder_id, user_provided },
was_quantized,
),
);
}
SettingsDiff::Reindex { action, updated_settings } => {
SettingsDiff::Reindex { action, updated_settings, quantize } => {
tracing::debug!(
embedder = name,
user_provided = user_provided.len(),
?action,
"reindex embedder"
);
embedder_actions.insert(name.clone(), EmbedderAction::Reindex(action));
embedder_actions.insert(
name.clone(),
EmbedderAction::with_reindex(action, was_quantized)
.with_is_being_quantized(quantize),
);
let new =
validate_embedding_settings(Setting::Set(updated_settings), &name)?;
updated_configs.insert(name, (new, user_provided));
}
SettingsDiff::UpdateWithoutReindex { updated_settings } => {
SettingsDiff::UpdateWithoutReindex { updated_settings, quantize } => {
tracing::debug!(
embedder = name,
user_provided = user_provided.len(),
@@ -1049,6 +1054,12 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
);
let new =
validate_embedding_settings(Setting::Set(updated_settings), &name)?;
if quantize {
embedder_actions.insert(
name.clone(),
EmbedderAction::default().with_is_being_quantized(true),
);
}
updated_configs.insert(name, (new, user_provided));
}
}
@@ -1067,8 +1078,10 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
&mut setting,
);
let setting = validate_embedding_settings(setting, &name)?;
embedder_actions
.insert(name.clone(), EmbedderAction::Reindex(ReindexAction::FullReindex));
embedder_actions.insert(
name.clone(),
EmbedderAction::with_reindex(ReindexAction::FullReindex, false),
);
updated_configs.insert(name, (setting, RoaringBitmap::new()));
}
}
@@ -1082,19 +1095,14 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
let mut find_free_index =
move || free_indices.find(|(_, free)| **free).map(|(index, _)| index as u8);
for (name, action) in embedder_actions.iter() {
match action {
EmbedderAction::Reindex(ReindexAction::RegeneratePrompts) => {
/* cannot be a new embedder, so has to have an id already */
}
EmbedderAction::Reindex(ReindexAction::FullReindex) => {
if self.index.embedder_category_id.get(self.wtxn, name)?.is_none() {
let id = find_free_index()
.ok_or(UserError::TooManyEmbedders(updated_configs.len()))?;
tracing::debug!(embedder = name, id, "assigning free id to new embedder");
self.index.embedder_category_id.put(self.wtxn, name, &id)?;
}
}
EmbedderAction::WriteBackToDocuments(_) => { /* already removed */ }
// ignore actions that are not possible for a new embedder
if matches!(action.reindex(), Some(ReindexAction::FullReindex))
&& self.index.embedder_category_id.get(self.wtxn, name)?.is_none()
{
let id =
find_free_index().ok_or(UserError::TooManyEmbedders(updated_configs.len()))?;
tracing::debug!(embedder = name, id, "assigning free id to new embedder");
self.index.embedder_category_id.put(self.wtxn, name, &id)?;
}
}
let updated_configs: Vec<IndexEmbeddingConfig> = updated_configs
@@ -1277,7 +1285,11 @@ impl InnerIndexSettingsDiff {
// if the user-defined searchables changed, then we need to reindex prompts.
if cache_user_defined_searchables {
for (embedder_name, (config, _)) in new_settings.embedding_configs.inner_as_ref() {
for (embedder_name, (config, _, _quantized)) in
new_settings.embedding_configs.inner_as_ref()
{
let was_quantized =
old_settings.embedding_configs.get(embedder_name).map_or(false, |conf| conf.2);
// skip embedders that don't use document templates
if !config.uses_document_template() {
continue;
@@ -1287,16 +1299,19 @@ impl InnerIndexSettingsDiff {
// this always makes the code clearer by explicitly handling the cases
match embedding_config_updates.entry(embedder_name.clone()) {
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(EmbedderAction::Reindex(ReindexAction::RegeneratePrompts));
entry.insert(EmbedderAction::with_reindex(
ReindexAction::RegeneratePrompts,
was_quantized,
));
}
std::collections::btree_map::Entry::Occupied(entry) => {
let EmbedderAction {
was_quantized: _,
is_being_quantized: _,
write_back: _, // We are deleting this embedder, so no point in regeneration
reindex: _, // We are already fully reindexing
} = entry.get();
}
std::collections::btree_map::Entry::Occupied(entry) => match entry.get() {
EmbedderAction::WriteBackToDocuments(_) => { /* we are deleting this embedder, so no point in regeneration */
}
EmbedderAction::Reindex(ReindexAction::FullReindex) => { /* we are already fully reindexing */
}
EmbedderAction::Reindex(ReindexAction::RegeneratePrompts) => { /* we are already regenerating prompts */
}
},
};
}
}
@@ -1546,7 +1561,7 @@ fn embedders(embedding_configs: Vec<IndexEmbeddingConfig>) -> Result<EmbeddingCo
.map(
|IndexEmbeddingConfig {
name,
config: EmbeddingConfig { embedder_options, prompt },
config: EmbeddingConfig { embedder_options, prompt, quantized },
..
}| {
let prompt = Arc::new(prompt.try_into().map_err(crate::Error::from)?);
@@ -1556,7 +1571,7 @@ fn embedders(embedding_configs: Vec<IndexEmbeddingConfig>) -> Result<EmbeddingCo
.map_err(crate::vector::Error::from)
.map_err(crate::Error::from)?,
);
Ok((name, (embedder, prompt)))
Ok((name, (embedder, prompt, quantized.unwrap_or_default())))
},
)
.collect();
@@ -1581,6 +1596,7 @@ fn validate_prompt(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}) => {
let max_bytes = match document_template_max_bytes.set() {
Some(max_bytes) => NonZeroUsize::new(max_bytes).ok_or_else(|| {
@@ -1613,6 +1629,7 @@ fn validate_prompt(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}))
}
new => Ok(new),
@@ -1638,6 +1655,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
} = settings;
if let Some(0) = dimensions.set() {
@@ -1678,6 +1696,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}));
};
match inferred_source {
@@ -1779,6 +1798,7 @@ pub fn validate_embedding_settings(
response,
distribution,
headers,
binary_quantized: binary_quantize,
}))
}

View File

@@ -58,7 +58,7 @@ pub enum EmbedErrorKind {
ManualEmbed(String),
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually{}", option_info(.0.as_deref(), "server replied with "))]
OllamaModelNotFoundError(Option<String>),
#[error("error deserialization the response body as JSON:\n - {0}")]
#[error("error deserializing the response body as JSON:\n - {0}")]
RestResponseDeserialization(std::io::Error),
#[error("expected a response containing {0} embeddings, got only {1}")]
RestResponseEmbeddingCount(usize, usize),

View File

@@ -1,8 +1,13 @@
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Instant;
use arroy::distances::{BinaryQuantizedCosine, Cosine};
use arroy::ItemId;
use deserr::{DeserializeError, Deserr};
use heed::{RoTxn, RwTxn, Unspecified};
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use serde::{Deserialize, Serialize};
use self::error::{EmbedError, NewEmbedderError};
@@ -26,6 +31,386 @@ pub type Embedding = Vec<f32>;
pub const REQUEST_PARALLELISM: usize = 40;
pub struct ArroyWrapper {
quantized: bool,
embedder_index: u8,
database: arroy::Database<Unspecified>,
}
impl ArroyWrapper {
pub fn new(
database: arroy::Database<Unspecified>,
embedder_index: u8,
quantized: bool,
) -> Self {
Self { database, embedder_index, quantized }
}
pub fn embedder_index(&self) -> u8 {
self.embedder_index
}
fn readers<'a, D: arroy::Distance>(
&'a self,
rtxn: &'a RoTxn<'a>,
db: arroy::Database<D>,
) -> impl Iterator<Item = Result<arroy::Reader<D>, arroy::Error>> + 'a {
arroy_db_range_for_embedder(self.embedder_index).map_while(move |index| {
match arroy::Reader::open(rtxn, index, db) {
Ok(reader) => match reader.is_empty(rtxn) {
Ok(false) => Some(Ok(reader)),
Ok(true) => None,
Err(e) => Some(Err(e)),
},
Err(arroy::Error::MissingMetadata(_)) => None,
Err(e) => Some(Err(e)),
}
})
}
pub fn dimensions(&self, rtxn: &RoTxn) -> Result<usize, arroy::Error> {
let first_id = arroy_db_range_for_embedder(self.embedder_index).next().unwrap();
if self.quantized {
Ok(arroy::Reader::open(rtxn, first_id, self.quantized_db())?.dimensions())
} else {
Ok(arroy::Reader::open(rtxn, first_id, self.angular_db())?.dimensions())
}
}
pub fn build_and_quantize<R: rand::Rng + rand::SeedableRng>(
&mut self,
wtxn: &mut RwTxn,
rng: &mut R,
dimension: usize,
quantizing: bool,
cancel: &(impl Fn() -> bool + Sync + Send),
) -> Result<(), arroy::Error> {
for index in arroy_db_range_for_embedder(self.embedder_index) {
if self.quantized {
let writer = arroy::Writer::new(self.quantized_db(), index, dimension);
if writer.need_build(wtxn)? {
writer.builder(rng).build(wtxn)?
} else if writer.is_empty(wtxn)? {
break;
}
} else {
let writer = arroy::Writer::new(self.angular_db(), index, dimension);
// If we are quantizing the databases, we can't know from meilisearch
// if the db was empty but still contained the wrong metadata, thus we need
// to quantize everything and can't stop early. Since this operation can
// only happens once in the life of an embedder, it's not very performances
// sensitive.
if quantizing && !self.quantized {
let writer = writer.prepare_changing_distance::<BinaryQuantizedCosine>(wtxn)?;
writer.builder(rng).cancel(cancel).build(wtxn)?;
} else if writer.need_build(wtxn)? {
writer.builder(rng).cancel(cancel).build(wtxn)?;
} else if writer.is_empty(wtxn)? {
break;
}
}
}
Ok(())
}
/// Overwrite all the embeddings associated with the index and item ID.
/// /!\ It won't remove embeddings after the last passed embedding, which can leave stale embeddings.
/// You should call `del_items` on the `item_id` before calling this method.
/// /!\ Cannot insert more than u8::MAX embeddings; after inserting u8::MAX embeddings, all the remaining ones will be silently ignored.
pub fn add_items(
&self,
wtxn: &mut RwTxn,
item_id: arroy::ItemId,
embeddings: &Embeddings<f32>,
) -> Result<(), arroy::Error> {
let dimension = embeddings.dimension();
for (index, vector) in
arroy_db_range_for_embedder(self.embedder_index).zip(embeddings.iter())
{
if self.quantized {
arroy::Writer::new(self.quantized_db(), index, dimension)
.add_item(wtxn, item_id, vector)?
} else {
arroy::Writer::new(self.angular_db(), index, dimension)
.add_item(wtxn, item_id, vector)?
}
}
Ok(())
}
/// Add one document int for this index where we can find an empty spot.
pub fn add_item(
&self,
wtxn: &mut RwTxn,
item_id: arroy::ItemId,
vector: &[f32],
) -> Result<(), arroy::Error> {
if self.quantized {
self._add_item(wtxn, self.quantized_db(), item_id, vector)
} else {
self._add_item(wtxn, self.angular_db(), item_id, vector)
}
}
fn _add_item<D: arroy::Distance>(
&self,
wtxn: &mut RwTxn,
db: arroy::Database<D>,
item_id: arroy::ItemId,
vector: &[f32],
) -> Result<(), arroy::Error> {
let dimension = vector.len();
for index in arroy_db_range_for_embedder(self.embedder_index) {
let writer = arroy::Writer::new(db, index, dimension);
if !writer.contains_item(wtxn, item_id)? {
writer.add_item(wtxn, item_id, vector)?;
break;
}
}
Ok(())
}
/// Delete all embeddings from a specific `item_id`
pub fn del_items(
&self,
wtxn: &mut RwTxn,
dimension: usize,
item_id: arroy::ItemId,
) -> Result<(), arroy::Error> {
for index in arroy_db_range_for_embedder(self.embedder_index) {
if self.quantized {
let writer = arroy::Writer::new(self.quantized_db(), index, dimension);
if !writer.del_item(wtxn, item_id)? {
break;
}
} else {
let writer = arroy::Writer::new(self.angular_db(), index, dimension);
if !writer.del_item(wtxn, item_id)? {
break;
}
}
}
Ok(())
}
/// Delete one item.
pub fn del_item(
&self,
wtxn: &mut RwTxn,
item_id: arroy::ItemId,
vector: &[f32],
) -> Result<bool, arroy::Error> {
if self.quantized {
self._del_item(wtxn, self.quantized_db(), item_id, vector)
} else {
self._del_item(wtxn, self.angular_db(), item_id, vector)
}
}
fn _del_item<D: arroy::Distance>(
&self,
wtxn: &mut RwTxn,
db: arroy::Database<D>,
item_id: arroy::ItemId,
vector: &[f32],
) -> Result<bool, arroy::Error> {
let dimension = vector.len();
let mut deleted_index = None;
for index in arroy_db_range_for_embedder(self.embedder_index) {
let writer = arroy::Writer::new(db, index, dimension);
let Some(candidate) = writer.item_vector(wtxn, item_id)? else {
// uses invariant: vectors are packed in the first writers.
break;
};
if candidate == vector {
writer.del_item(wtxn, item_id)?;
deleted_index = Some(index);
}
}
// 🥲 enforce invariant: vectors are packed in the first writers.
if let Some(deleted_index) = deleted_index {
let mut last_index_with_a_vector = None;
for index in
arroy_db_range_for_embedder(self.embedder_index).skip(deleted_index as usize)
{
let writer = arroy::Writer::new(db, index, dimension);
let Some(candidate) = writer.item_vector(wtxn, item_id)? else {
break;
};
last_index_with_a_vector = Some((index, candidate));
}
if let Some((last_index, vector)) = last_index_with_a_vector {
let writer = arroy::Writer::new(db, last_index, dimension);
writer.del_item(wtxn, item_id)?;
let writer = arroy::Writer::new(db, deleted_index, dimension);
writer.add_item(wtxn, item_id, &vector)?;
}
}
Ok(deleted_index.is_some())
}
pub fn clear(&self, wtxn: &mut RwTxn, dimension: usize) -> Result<(), arroy::Error> {
for index in arroy_db_range_for_embedder(self.embedder_index) {
if self.quantized {
let writer = arroy::Writer::new(self.quantized_db(), index, dimension);
if writer.is_empty(wtxn)? {
break;
}
writer.clear(wtxn)?;
} else {
let writer = arroy::Writer::new(self.angular_db(), index, dimension);
if writer.is_empty(wtxn)? {
break;
}
writer.clear(wtxn)?;
}
}
Ok(())
}
pub fn contains_item(
&self,
rtxn: &RoTxn,
dimension: usize,
item: arroy::ItemId,
) -> Result<bool, arroy::Error> {
for index in arroy_db_range_for_embedder(self.embedder_index) {
let contains = if self.quantized {
let writer = arroy::Writer::new(self.quantized_db(), index, dimension);
if writer.is_empty(rtxn)? {
break;
}
writer.contains_item(rtxn, item)?
} else {
let writer = arroy::Writer::new(self.angular_db(), index, dimension);
if writer.is_empty(rtxn)? {
break;
}
writer.contains_item(rtxn, item)?
};
if contains {
return Ok(contains);
}
}
Ok(false)
}
pub fn nns_by_item(
&self,
rtxn: &RoTxn,
item: ItemId,
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
if self.quantized {
self._nns_by_item(rtxn, self.quantized_db(), item, limit, filter)
} else {
self._nns_by_item(rtxn, self.angular_db(), item, limit, filter)
}
}
fn _nns_by_item<D: arroy::Distance>(
&self,
rtxn: &RoTxn,
db: arroy::Database<D>,
item: ItemId,
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
let mut results = Vec::new();
for reader in self.readers(rtxn, db) {
let reader = reader?;
let mut searcher = reader.nns(limit);
if let Some(filter) = filter {
searcher.candidates(filter);
}
if let Some(mut ret) = searcher.by_item(rtxn, item)? {
results.append(&mut ret);
} else {
break;
}
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
Ok(results)
}
pub fn nns_by_vector(
&self,
rtxn: &RoTxn,
vector: &[f32],
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
if self.quantized {
self._nns_by_vector(rtxn, self.quantized_db(), vector, limit, filter)
} else {
self._nns_by_vector(rtxn, self.angular_db(), vector, limit, filter)
}
}
fn _nns_by_vector<D: arroy::Distance>(
&self,
rtxn: &RoTxn,
db: arroy::Database<D>,
vector: &[f32],
limit: usize,
filter: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
let mut results = Vec::new();
for reader in self.readers(rtxn, db) {
let reader = reader?;
let mut searcher = reader.nns(limit);
if let Some(filter) = filter {
searcher.candidates(filter);
}
results.append(&mut searcher.by_vector(rtxn, vector)?);
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
Ok(results)
}
pub fn item_vectors(&self, rtxn: &RoTxn, item_id: u32) -> Result<Vec<Vec<f32>>, arroy::Error> {
let mut vectors = Vec::new();
if self.quantized {
for reader in self.readers(rtxn, self.quantized_db()) {
if let Some(vec) = reader?.item_vector(rtxn, item_id)? {
vectors.push(vec);
} else {
break;
}
}
} else {
for reader in self.readers(rtxn, self.angular_db()) {
if let Some(vec) = reader?.item_vector(rtxn, item_id)? {
vectors.push(vec);
} else {
break;
}
}
}
Ok(vectors)
}
fn angular_db(&self) -> arroy::Database<Cosine> {
self.database.remap_data_type()
}
fn quantized_db(&self) -> arroy::Database<BinaryQuantizedCosine> {
self.database.remap_data_type()
}
}
/// One or multiple embeddings stored consecutively in a flat vector.
pub struct Embeddings<F> {
data: Vec<F>,
@@ -124,62 +509,48 @@ pub struct EmbeddingConfig {
pub embedder_options: EmbedderOptions,
/// Document template
pub prompt: PromptData,
/// If this embedder is binary quantized
pub quantized: Option<bool>,
// TODO: add metrics and anything needed
}
impl EmbeddingConfig {
pub fn quantized(&self) -> bool {
self.quantized.unwrap_or_default()
}
}
/// Map of embedder configurations.
///
/// Each configuration is mapped to a name.
#[derive(Clone, Default)]
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)>);
impl EmbeddingConfigs {
/// Create the map from its internal component.s
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)>) -> Self {
Self(data)
}
/// Get an embedder configuration and template from its name.
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>, bool)> {
self.0.get(name).cloned()
}
/// Get the default embedder configuration, if any.
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
self.get(self.get_default_embedder_name())
}
pub fn inner_as_ref(&self) -> &HashMap<String, (Arc<Embedder>, Arc<Prompt>)> {
pub fn inner_as_ref(&self) -> &HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)> {
&self.0
}
pub fn into_inner(self) -> HashMap<String, (Arc<Embedder>, Arc<Prompt>)> {
pub fn into_inner(self) -> HashMap<String, (Arc<Embedder>, Arc<Prompt>, bool)> {
self.0
}
/// Get the name of the default embedder configuration.
///
/// The default embedder is determined as follows:
///
/// - If there is only one embedder, it is always the default.
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
/// - In all other cases, there is no default embedder.
pub fn get_default_embedder_name(&self) -> &str {
let mut it = self.0.keys();
let first_name = it.next();
let second_name = it.next();
match (first_name, second_name) {
(None, _) => "default",
(Some(first), None) => first,
(Some(_), Some(_)) => "default",
}
}
}
impl IntoIterator for EmbeddingConfigs {
type Item = (String, (Arc<Embedder>, Arc<Prompt>));
type Item = (String, (Arc<Embedder>, Arc<Prompt>, bool));
type IntoIter = std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>)>;
type IntoIter =
std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>, bool)>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
@@ -224,18 +595,23 @@ impl Embedder {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts),
Embedder::Ollama(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts, deadline),
Embedder::Ollama(embedder) => embedder.embed(texts, deadline),
Embedder::UserProvided(embedder) => embedder.embed(texts),
Embedder::Rest(embedder) => embedder.embed(texts),
Embedder::Rest(embedder) => embedder.embed(texts, deadline),
}
}
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text])?;
pub fn embed_one(
&self,
text: String,
deadline: Option<Instant>,
) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text], deadline)?;
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
Ok(if embeddings.iter().nth(1).is_some() {
tracing::warn!("Ignoring embeddings past the first one in long search query");

View File

@@ -1,3 +1,5 @@
use std::time::Instant;
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
@@ -75,8 +77,12 @@ impl Embedder {
Ok(Self { rest_embedder })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed(texts) {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed(texts, deadline) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
Err(EmbedError::ollama_model_not_found(error))
@@ -92,7 +98,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),

View File

@@ -1,3 +1,5 @@
use std::time::Instant;
use ordered_float::OrderedFloat;
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
@@ -206,32 +208,40 @@ impl Embedder {
Ok(Self { options, rest_embedder, tokenizer })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed_ref(&texts) {
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed_ref(&texts, deadline) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error, _), fault: _ }) => {
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
self.try_embed_tokenized(&texts)
self.try_embed_tokenized(&texts, deadline)
}
Err(error) => Err(error),
}
}
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
fn try_embed_tokenized(
&self,
text: &[String],
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let mut all_embeddings = Vec::with_capacity(text.len());
for text in text {
let max_token_count = self.options.embedding_model.max_token();
let encoded = self.tokenizer.encode_ordinary(text.as_str());
let len = encoded.len();
if len < max_token_count {
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text], deadline)?);
continue;
}
let tokens = &encoded.as_slice()[0..max_token_count];
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
let embedding = self.rest_embedder.embed_tokens(tokens)?;
let embedding = self.rest_embedder.embed_tokens(tokens, deadline)?;
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
EmbedError::rest_unexpected_dimension(self.dimensions(), got.len())
})?;
@@ -248,7 +258,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),

View File

@@ -1,4 +1,5 @@
use std::collections::BTreeMap;
use std::time::Instant;
use deserr::Deserr;
use rand::Rng;
@@ -130,6 +131,7 @@ impl Embedder {
let client = ureq::AgentBuilder::new()
.max_idle_connections(REQUEST_PARALLELISM * 2)
.max_idle_connections_per_host(REQUEST_PARALLELISM * 2)
.timeout(std::time::Duration::from_secs(30))
.build();
let request = Request::new(options.request)?;
@@ -154,19 +156,31 @@ impl Embedder {
Ok(Self { data, dimensions, distribution: options.distribution })
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions))
pub fn embed(
&self,
texts: Vec<String>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions), deadline)
}
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
pub fn embed_ref<S>(
&self,
texts: &[S],
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: AsRef<str> + Serialize,
{
embed(&self.data, texts, texts.len(), Some(self.dimensions))
embed(&self.data, texts, texts.len(), Some(self.dimensions), deadline)
}
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions))?;
pub fn embed_tokens(
&self,
tokens: &[usize],
deadline: Option<Instant>,
) -> Result<Embeddings<f32>, EmbedError> {
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions), deadline)?;
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
Ok(embeddings.pop().unwrap())
}
@@ -178,7 +192,7 @@ impl Embedder {
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
})
.map_err(|error| EmbedError {
kind: EmbedErrorKind::PanicInThreadPool(error),
@@ -207,7 +221,7 @@ impl Embedder {
}
fn infer_dimensions(data: &EmbedderData) -> Result<usize, NewEmbedderError> {
let v = embed(data, ["test"].as_slice(), 1, None)
let v = embed(data, ["test"].as_slice(), 1, None, None)
.map_err(NewEmbedderError::could_not_determine_dimension)?;
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
Ok(v.first().unwrap().dimension())
@@ -218,6 +232,7 @@ fn embed<S>(
inputs: &[S],
expected_count: usize,
expected_dimension: Option<usize>,
deadline: Option<Instant>,
) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: Serialize,
@@ -237,15 +252,26 @@ where
for attempt in 0..10 {
let response = request.clone().send_json(&body);
let result = check_response(response, data.configuration_source);
let result = check_response(response, data.configuration_source).and_then(|response| {
response_to_embedding(response, data, expected_count, expected_dimension)
});
let retry_duration = match result {
Ok(response) => {
return response_to_embedding(response, data, expected_count, expected_dimension)
}
Ok(response) => return Ok(response),
Err(retry) => {
tracing::warn!("Failed: {}", retry.error);
retry.into_duration(attempt)
if let Some(deadline) = deadline {
let now = std::time::Instant::now();
if now > deadline {
tracing::warn!("Could not embed due to deadline");
return Err(retry.into_error());
}
let duration_to_deadline = deadline - now;
retry.into_duration(attempt).map(|duration| duration.min(duration_to_deadline))
} else {
retry.into_duration(attempt)
}
}
}?;
@@ -263,6 +289,7 @@ where
let result = check_response(response, data.configuration_source);
result.map_err(Retry::into_error).and_then(|response| {
response_to_embedding(response, data, expected_count, expected_dimension)
.map_err(Retry::into_error)
})
}
@@ -304,23 +331,28 @@ fn response_to_embedding(
data: &EmbedderData,
expected_count: usize,
expected_dimensions: Option<usize>,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let response: serde_json::Value =
response.into_json().map_err(EmbedError::rest_response_deserialization)?;
) -> Result<Vec<Embeddings<f32>>, Retry> {
let response: serde_json::Value = response
.into_json()
.map_err(EmbedError::rest_response_deserialization)
.map_err(Retry::retry_later)?;
let embeddings = data.response.extract_embeddings(response)?;
let embeddings = data.response.extract_embeddings(response).map_err(Retry::give_up)?;
if embeddings.len() != expected_count {
return Err(EmbedError::rest_response_embedding_count(expected_count, embeddings.len()));
return Err(Retry::give_up(EmbedError::rest_response_embedding_count(
expected_count,
embeddings.len(),
)));
}
if let Some(dimensions) = expected_dimensions {
for embedding in &embeddings {
if embedding.dimension() != dimensions {
return Err(EmbedError::rest_unexpected_dimension(
return Err(Retry::give_up(EmbedError::rest_unexpected_dimension(
dimensions,
embedding.dimension(),
));
)));
}
}
}

View File

@@ -32,6 +32,9 @@ pub struct EmbeddingSettings {
pub dimensions: Setting<usize>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub binary_quantized: Setting<bool>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub document_template: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
@@ -85,23 +88,63 @@ pub enum ReindexAction {
pub enum SettingsDiff {
Remove,
Reindex { action: ReindexAction, updated_settings: EmbeddingSettings },
UpdateWithoutReindex { updated_settings: EmbeddingSettings },
Reindex { action: ReindexAction, updated_settings: EmbeddingSettings, quantize: bool },
UpdateWithoutReindex { updated_settings: EmbeddingSettings, quantize: bool },
}
pub enum EmbedderAction {
WriteBackToDocuments(WriteBackToDocuments),
Reindex(ReindexAction),
#[derive(Default, Debug)]
pub struct EmbedderAction {
pub was_quantized: bool,
pub is_being_quantized: bool,
pub write_back: Option<WriteBackToDocuments>,
pub reindex: Option<ReindexAction>,
}
impl EmbedderAction {
pub fn is_being_quantized(&self) -> bool {
self.is_being_quantized
}
pub fn write_back(&self) -> Option<&WriteBackToDocuments> {
self.write_back.as_ref()
}
pub fn reindex(&self) -> Option<&ReindexAction> {
self.reindex.as_ref()
}
pub fn with_is_being_quantized(mut self, quantize: bool) -> Self {
self.is_being_quantized = quantize;
self
}
pub fn with_write_back(write_back: WriteBackToDocuments, was_quantized: bool) -> Self {
Self {
was_quantized,
is_being_quantized: false,
write_back: Some(write_back),
reindex: None,
}
}
pub fn with_reindex(reindex: ReindexAction, was_quantized: bool) -> Self {
Self { was_quantized, is_being_quantized: false, write_back: None, reindex: Some(reindex) }
}
}
#[derive(Debug)]
pub struct WriteBackToDocuments {
pub embedder_id: u8,
pub user_provided: RoaringBitmap,
}
impl SettingsDiff {
pub fn from_settings(old: EmbeddingSettings, new: Setting<EmbeddingSettings>) -> Self {
match new {
pub fn from_settings(
embedder_name: &str,
old: EmbeddingSettings,
new: Setting<EmbeddingSettings>,
) -> Result<Self, UserError> {
let ret = match new {
Setting::Set(new) => {
let EmbeddingSettings {
mut source,
@@ -116,6 +159,7 @@ impl SettingsDiff {
mut distribution,
mut headers,
mut document_template_max_bytes,
binary_quantized: mut binary_quantize,
} = old;
let EmbeddingSettings {
@@ -131,8 +175,17 @@ impl SettingsDiff {
distribution: new_distribution,
headers: new_headers,
document_template_max_bytes: new_document_template_max_bytes,
binary_quantized: new_binary_quantize,
} = new;
if matches!(binary_quantize, Setting::Set(true))
&& matches!(new_binary_quantize, Setting::Set(false))
{
return Err(UserError::InvalidDisableBinaryQuantization {
embedder_name: embedder_name.to_string(),
});
}
let mut reindex_action = None;
// **Warning**: do not use short-circuiting || here, we want all these operations applied
@@ -172,6 +225,7 @@ impl SettingsDiff {
_ => {}
}
}
let binary_quantize_changed = binary_quantize.apply(new_binary_quantize);
if url.apply(new_url) {
match source {
// do not regenerate on an url change in OpenAI
@@ -231,16 +285,27 @@ impl SettingsDiff {
distribution,
headers,
document_template_max_bytes,
binary_quantized: binary_quantize,
};
match reindex_action {
Some(action) => Self::Reindex { action, updated_settings },
None => Self::UpdateWithoutReindex { updated_settings },
Some(action) => Self::Reindex {
action,
updated_settings,
quantize: binary_quantize_changed,
},
None => Self::UpdateWithoutReindex {
updated_settings,
quantize: binary_quantize_changed,
},
}
}
Setting::Reset => Self::Remove,
Setting::NotSet => Self::UpdateWithoutReindex { updated_settings: old },
}
Setting::NotSet => {
Self::UpdateWithoutReindex { updated_settings: old, quantize: false }
}
};
Ok(ret)
}
}
@@ -352,6 +417,8 @@ impl EmbeddingSettings {
pub const DISTRIBUTION: &'static str = "distribution";
pub const BINARY_QUANTIZED: &'static str = "binaryQuantized";
pub fn allowed_sources_for_field(field: &'static str) -> &'static [EmbedderSource] {
match field {
Self::SOURCE => &[
@@ -391,6 +458,13 @@ impl EmbeddingSettings {
EmbedderSource::Rest,
EmbedderSource::UserProvided,
],
Self::BINARY_QUANTIZED => &[
EmbedderSource::HuggingFace,
EmbedderSource::Ollama,
EmbedderSource::OpenAi,
EmbedderSource::Rest,
EmbedderSource::UserProvided,
],
_other => unreachable!("unknown field"),
}
}
@@ -405,6 +479,7 @@ impl EmbeddingSettings {
Self::DIMENSIONS,
Self::DISTRIBUTION,
Self::URL,
Self::BINARY_QUANTIZED,
],
EmbedderSource::HuggingFace => &[
Self::SOURCE,
@@ -412,6 +487,7 @@ impl EmbeddingSettings {
Self::REVISION,
Self::DOCUMENT_TEMPLATE,
Self::DISTRIBUTION,
Self::BINARY_QUANTIZED,
],
EmbedderSource::Ollama => &[
Self::SOURCE,
@@ -421,8 +497,11 @@ impl EmbeddingSettings {
Self::API_KEY,
Self::DIMENSIONS,
Self::DISTRIBUTION,
Self::BINARY_QUANTIZED,
],
EmbedderSource::UserProvided => &[Self::SOURCE, Self::DIMENSIONS, Self::DISTRIBUTION],
EmbedderSource::UserProvided => {
&[Self::SOURCE, Self::DIMENSIONS, Self::DISTRIBUTION, Self::BINARY_QUANTIZED]
}
EmbedderSource::Rest => &[
Self::SOURCE,
Self::API_KEY,
@@ -433,6 +512,7 @@ impl EmbeddingSettings {
Self::RESPONSE,
Self::HEADERS,
Self::DISTRIBUTION,
Self::BINARY_QUANTIZED,
],
}
}
@@ -486,7 +566,7 @@ impl std::fmt::Display for EmbedderSource {
impl From<EmbeddingConfig> for EmbeddingSettings {
fn from(value: EmbeddingConfig) -> Self {
let EmbeddingConfig { embedder_options, prompt } = value;
let EmbeddingConfig { embedder_options, prompt, quantized } = value;
let document_template_max_bytes =
Setting::Set(prompt.max_bytes.unwrap_or(default_max_bytes()).get());
match embedder_options {
@@ -507,6 +587,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::OpenAi(super::openai::EmbedderOptions {
url,
@@ -527,6 +608,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::Ollama(super::ollama::EmbedderOptions {
embedding_model,
@@ -547,6 +629,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::UserProvided(super::manual::EmbedderOptions {
dimensions,
@@ -564,6 +647,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::NotSet,
headers: Setting::NotSet,
distribution: Setting::some_or_not_set(distribution),
binary_quantized: Setting::some_or_not_set(quantized),
},
super::EmbedderOptions::Rest(super::rest::EmbedderOptions {
api_key,
@@ -586,6 +670,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
response: Setting::Set(response),
distribution: Setting::some_or_not_set(distribution),
headers: Setting::Set(headers),
binary_quantized: Setting::some_or_not_set(quantized),
},
}
}
@@ -607,8 +692,11 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
response,
distribution,
headers,
binary_quantized,
} = value;
this.quantized = binary_quantized.set();
if let Some(source) = source.set() {
match source {
EmbedderSource::OpenAi => {

View File

@@ -77,7 +77,8 @@
"q": "puppy cute comforting movie",
"limit": 100,
"hybrid": {
"semanticRatio": 0.1
"semanticRatio": 0.1,
"embedder": "default"
}
}
},
@@ -91,7 +92,8 @@
"q": "puppy cute comforting movie",
"limit": 100,
"hybrid": {
"semanticRatio": 0.5
"semanticRatio": 0.5,
"embedder": "default"
}
}
},
@@ -105,7 +107,8 @@
"q": "puppy cute comforting movie",
"limit": 100,
"hybrid": {
"semanticRatio": 0.9
"semanticRatio": 0.9,
"embedder": "default"
}
}
},
@@ -119,7 +122,8 @@
"q": "puppy cute comforting movie",
"limit": 100,
"hybrid": {
"semanticRatio": 1.0
"semanticRatio": 1.0,
"embedder": "default"
}
}
},
@@ -133,7 +137,8 @@
"q": "shrek",
"limit": 100,
"hybrid": {
"semanticRatio": 1.0
"semanticRatio": 1.0,
"embedder": "default"
}
}
},
@@ -147,7 +152,8 @@
"q": "shrek",
"limit": 100,
"hybrid": {
"semanticRatio": 0.5
"semanticRatio": 0.5,
"embedder": "default"
}
}
},
@@ -161,7 +167,8 @@
"q": "shrek",
"limit": 100,
"hybrid": {
"semanticRatio": 0.1
"semanticRatio": 0.1,
"embedder": "default"
}
}
},