Compare commits

..

113 Commits

Author SHA1 Message Date
ManyTheFish
9874efc352 WIP 2024-07-04 11:18:45 +02:00
meili-bors[bot]
a838f39fce Merge #4682
4682: Speed Up Filter ANDs operations r=Kerollmops a=Kerollmops

This PR fixes #4659 and improves the way we do AND operations by using the latest [RoaringBitmap feature to do intersections with serialized bitmaps](https://github.com/RoaringBitmap/roaring-rs/pull/281). Doing so drastically reduces the time spent reading, copying bytes in memory to use and keep a subset of the containers in the bitmap.

### Some Example Results

With a 45M documents dataset running on a good NVMe. This example filter was taking 77ms and with this PR only 13ms (6x speedup):

```sql
artist = 'The Beatles' AND (duration 150 TO 500 OR duration NOT EXISTS) AND genres IN [Rock, 'Rock and Roll'] AND rating > 4 AND released_year 1960 TO 1990
```

By reordering the filter AND clauses we can reach a constant 8ms execution time. However, note that it is a manual operation. On the other side the previous filter pipeline is still at a constant 45ms execution time with this filter. (6x speedup)

```sql
artist = 'The Beatles' AND genres IN [Rock, 'Rock and Roll'] AND released_year 1960 TO 1990 AND (duration 150 TO 500 OR duration NOT EXISTS)
```

### To Do
- [x] Rebase on `release-v1.9.0`.
- [ ] ~Skip branches of the facet/filter tree when nothing is in common with the universe~ slower this way.
- [x] When the universe is required use the universe given in parameter if possible.

Co-authored-by: Clément Renault <clement@meilisearch.com>
2024-06-11 02:51:17 +00:00
meili-bors[bot]
7add7d053c Merge #4689
4689: Bring back changes from v1.8.2 into v1.9.0 r=curquiza a=dureuill



Co-authored-by: dureuill <dureuill@users.noreply.github.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
Co-authored-by: meili-bors[bot] <89034592+meili-bors[bot]@users.noreply.github.com>
2024-06-10 14:03:55 +00:00
Louis Dureuil
7559dfc814 Merge tag 'v1.8.2' into release-v1.9.0 2024-06-10 15:07:34 +02:00
meili-bors[bot]
6c6c4732a1 Merge #4681
4681: Fix concurrency issue r=irevoire a=dureuill

# Pull Request

## Related issue
Fixes #4654 

## What does this PR do?
- Asynchronously drop permits


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-06-10 09:36:08 +00:00
meili-bors[bot]
3976fe660e Merge #4688
4688: Update version for the next release (v1.8.2) in Cargo.toml r=dureuill a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: dureuill <dureuill@users.noreply.github.com>
2024-06-10 08:28:34 +00:00
Louis Dureuil
50f8218a5d Asynchronously drop permits 2024-06-10 10:19:57 +02:00
dureuill
19585f1a4f Update version for the next release (v1.8.2) in Cargo.toml 2024-06-10 07:59:36 +00:00
Clément Renault
8ec6e175e5 Replace roaring patch to the v0.10.5 2024-06-07 22:11:26 -04:00
Clément Renault
75b2e02cd2 Log more stuff around filtering 2024-06-06 11:00:07 -04:00
Clément Renault
40f05fe156 Bump roaring to the latest commit 2024-06-06 10:59:55 -04:00
Clément Renault
52d0d35b39 Revert "Reduce the universe while exploring the facet tree" because it's slower this way
This reverts commit 14026115f21409535772ede0ee4273f37848dd61.
2024-06-06 09:17:51 -04:00
Clément Renault
5432776132 Reduce the universe while exploring the facet tree 2024-06-06 09:17:51 -04:00
Clément Renault
66470b27e6 Use the MultiOps trait for IN operations 2024-06-06 09:17:51 -04:00
Clément Renault
0a9bd398c7 Improve the NOT operator to use the universe when possible 2024-06-06 09:17:51 -04:00
Clément Renault
7967e93c16 Skip evaluating when a universe is empty, nothing can be found 2024-06-06 09:17:51 -04:00
Clément Renault
a6f3a01c6a Expose the universe to do efficient intersections on deserialization 2024-06-06 09:17:51 -04:00
Clément Renault
4ca4a3f954 Make the CboRoaringBitmapCodec support intersection on deserialization 2024-06-06 09:17:51 -04:00
Clément Renault
e4a69c5ac3 Introduce the FacetGroupLazyValue type 2024-06-06 09:17:50 -04:00
Clément Renault
ff2e498267 Patch roaring to use the version supporting intersection on deserialization 2024-06-06 09:17:50 -04:00
Clément Renault
531e3d7d6a MultiOps trait for OR operations 2024-06-06 09:17:50 -04:00
meili-bors[bot]
cb765ad249 Merge #4684
4684: Update Charabia v0.8.11 r=irevoire a=ManyTheFish

# Update Charabia v0.8.11

### Adds a new normalizer to normalize œ to oe and æ to ae
Now search words containing `œ` or `æ` will be retrieved using `oe` or `ae`, like `Daemon` <=> `Dæmon`

### Fix: make `chinese-normalization-pinyin` feature flag compile
Fixes #4629



Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-06-06 08:59:49 +00:00
ManyTheFish
2e50c6ec81 Update Charabia 2024-06-06 10:18:43 +02:00
meili-bors[bot]
40b2345394 Merge #4680
4680: Speedup additional searchables r=Kerollmops a=ManyTheFish

Fixes #4492.

## To Do
 - [x] Do not call the `InnerSettingsDiff::only_additional_fields` function too many times

Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-06-05 15:39:28 +00:00
ManyTheFish
30293883e0 Fix condition mistake 2024-06-05 17:30:07 +02:00
ManyTheFish
b833be46b9 Avoid running proximity when only the exact attributes changes 2024-06-05 17:30:07 +02:00
ManyTheFish
0a4118329e Put only_additional_fields to None if the difference gives an empty result. 2024-06-05 17:30:07 +02:00
ManyTheFish
261e92d7e6 Skip iterating over documents when the faceted field list doesn't change 2024-06-05 17:30:07 +02:00
ManyTheFish
5cd08979b1 iterate over the faceted fields instead of over the whole document 2024-06-05 17:30:07 +02:00
Clément Renault
2af7e4dbe9 Rename the embeddings workloads 2024-06-05 17:30:07 +02:00
Clément Renault
a998b881f6 Cache a lot of operations to know if a field must be indexed 2024-06-05 17:30:07 +02:00
Clément Renault
b81953a65d Add a span for the prepare_for_documents_reindexing 2024-06-05 17:30:07 +02:00
Clément Renault
091bb157f1 Add a span for the settings diff creation 2024-06-05 17:30:07 +02:00
Clément Renault
1b639ce44b Reduce the number of complex calls to settings diff functions 2024-06-05 17:30:07 +02:00
Clément Renault
87cf8a3c94 Introduce a new way to determine the operations to perform on the fields 2024-06-05 17:30:07 +02:00
Clément Renault
0f578348f1 Introduce a dedicated function to write proximity entries in database 2024-06-05 17:30:07 +02:00
Clément Renault
fad4675abe Give the settings diff to the write_typed_chunk_into_index function 2024-06-05 17:30:07 +02:00
Clément Renault
1ab03c4ede Fix an issue with settings diff and * in the searchable attributes 2024-06-05 17:30:07 +02:00
Clément Renault
0c6e4b2f00 Introducing a new into_del_add_obkv_conditional_operation function 2024-06-05 17:30:07 +02:00
Clément Renault
42b3f52ef9 Introduce the SettingDiff only_additional_fields method 2024-06-05 17:30:07 +02:00
meili-bors[bot]
98e062a714 Merge #4675
4675: Update actix-web 4.5.1 -> 4.6.0 r=dureuill a=dureuill

# Pull Request

- actix-web 4.5.1 -> 4.6.0
- actix-http 3.6.0 -> 3.7.0
- actix-web-static-files (commit 2d3b6160) -> 4.0.1
- tracing-actix-web 0.7.9 -> 0.7.10
- brotli 3.4.0 -> 6.0.0

## Related issue
Fixes #4625 


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-06-05 07:40:35 +00:00
Louis Dureuil
8412665957 Update actix-web 4.5.1 -> 4.6.0 2024-06-04 09:54:30 +02:00
meili-bors[bot]
fc584f1db3 Merge #4666
4666: Add a score threshold search parameter r=ManyTheFish a=dureuill

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4609

## What does this PR do?
- See [usage](https://meilisearch.notion.site/Filter-by-score-usage-224a183ce7b24ca99b6a9a8da755668a?pvs=25#95b76ded400342ba9ab3d67c734836f0) and [the known limitation](https://meilisearch.notion.site/Filter-by-score-usage-224a183ce7b24ca99b6a9a8da755668a?pvs=25#e4e32195bf0e4195b5daecdbb7a97a17)


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-06-03 08:42:44 +00:00
Louis Dureuil
2b6db6541e Changes after review 2024-06-03 10:30:00 +02:00
meili-bors[bot]
d6bd88ce4f Merge #4667
4667: Frequency matching strategy r=Kerollmops a=ManyTheFish

# Pull Request

## Related issue
Fixes #3773

## What does this PR do?
- add test for matching strategy
- implement frequency matching strategy

See the [PRD for more details](https://www.notion.so/meilisearch/Frequency-Matching-Strategy-0f3ba08833a442a39590a53a1505ab00).

[Public API](https://www.notion.so/meilisearch/frequency-matching-strategy-89868fb7fc584026bc56e378eb854a7f).


Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-05-30 14:53:31 +00:00
Louis Dureuil
c2fb7afe59 fmt 2024-05-30 12:06:46 +02:00
ManyTheFish
3f1a510069 Add tests and fix matching strategy 2024-05-30 12:02:42 +02:00
Louis Dureuil
41976b82b1 Tests for ranking_score_threshold 2024-05-30 11:22:26 +02:00
Louis Dureuil
c36410fcbf Analytics for ranking score threshold 2024-05-30 11:22:12 +02:00
Louis Dureuil
7ce2691374 Add ranking score threshold to similar API 2024-05-30 11:21:31 +02:00
Louis Dureuil
4f03b0cf5b Add ranking score threshold to similar 2024-05-30 11:20:50 +02:00
Louis Dureuil
c26db7878c Expose rankingScoreThreshold in API 2024-05-30 10:32:35 +02:00
meili-bors[bot]
06a9803544 Merge #4664
4664: Update README.md r=curquiza a=tpayet

Add hybrid & semantic as a feature

# Pull Request

## Related issue
Fixes #<issue_number>

## What does this PR do?
- ...

## PR checklist
Please check if your PR fulfills the following requirements:
- [ ] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [ ] Have you read the contributing guidelines?
- [ ] Have you made sure that the title is accurate and descriptive of the changes?

Thank you so much for contributing to Meilisearch!


Co-authored-by: Thomas Payet <thomas@meilisearch.com>
2024-05-29 16:55:20 +00:00
Thomas Payet
b2588d8101 Update README.md
Add hybrid & semantic as a feature
2024-05-29 17:48:48 +02:00
meili-bors[bot]
62d27172f4 Merge #4663
4663: Bring back release v1.8.1 into main r=ManyTheFish a=ManyTheFish



Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: meili-bors[bot] <89034592+meili-bors[bot]@users.noreply.github.com>
Co-authored-by: ManyTheFish <ManyTheFish@users.noreply.github.com>
Co-authored-by: Many the fish <many@meilisearch.com>
2024-05-29 14:47:38 +00:00
ManyTheFish
1ab88e10b9 Merge branch 'main' into merge-release-v1.8.1-in-main 2024-05-29 16:24:00 +02:00
ManyTheFish
6a4b2516aa WIP 2024-05-29 16:21:24 +02:00
Louis Dureuil
aac1d769a7 Add ranking_score_threshold to milli 2024-05-29 14:17:09 +02:00
ManyTheFish
abdc4afcca Implement Frequency matching strategy 2024-05-29 13:59:08 +02:00
meili-bors[bot]
75d5c0ae1f Merge #4647
4647: Feature: get similar documents r=dureuill a=dureuill

# Pull Request

## Related issue
Fixes #4610 

## What does this PR do?
[Usage](https://meilisearch.notion.site/Get-similar-documents-usage-540919ca755c4da0b7cdee273db3f290)

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-05-29 11:42:23 +00:00
meili-bors[bot]
a88554216a Merge #4657
4657: Update version for the next release (v1.9.0) in Cargo.toml r=curquiza a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: curquiza <curquiza@users.noreply.github.com>
2024-05-29 11:14:19 +00:00
Louis Dureuil
2cf3e1c80a Temporarily ignore perform snapshot test under Windows 2024-05-29 12:42:47 +02:00
Many the fish
e1fbfde6c4 Merge branch 'main' into merge-release-v1.8.1-in-main 2024-05-29 11:31:03 +02:00
ManyTheFish
27b75ec648 merge main into v1.8.1 2024-05-29 11:26:07 +02:00
curquiza
07fdb081a4 Update version for the next release (v1.9.0) in Cargo.toml 2024-05-28 14:19:40 +00:00
Louis Dureuil
ca006e38ec Basic tests 2024-05-28 15:28:19 +02:00
Louis Dureuil
e26bd87780 Error tests for similar routes 2024-05-28 15:28:19 +02:00
Louis Dureuil
c01e498a63 Test server can call similar 2024-05-28 15:28:19 +02:00
Louis Dureuil
ca6cc4654b Add similar route 2024-05-28 15:28:19 +02:00
Louis Dureuil
3bd9d2478c Add error codes 2024-05-28 15:27:43 +02:00
Louis Dureuil
54b15059a0 Analytics changes 2024-05-28 15:27:43 +02:00
Louis Dureuil
d35278320e Add support functions for accessing arroy writers and readers 2024-05-28 15:27:43 +02:00
Louis Dureuil
e172e938e7 add search rules directly takes the filter rather than the searchquery 2024-05-28 15:22:25 +02:00
Louis Dureuil
02b3d82c60 filtered_universe accepts index and txn instead of SearchContext 2024-05-28 15:22:12 +02:00
Louis Dureuil
fd2c95999d Change validate_document_id to public and remove extra layer of result 2024-05-28 15:21:19 +02:00
meili-bors[bot]
e248d2a1e6 Merge #4655
4655: Remove `exportPuffinReport` experimental feature r=Kerollmops a=Kerollmops

This PR fixes #4605 by removing every trace of Puffin. Puffin is a great tool, but we use a better approach to measuring performance.

Co-authored-by: Clément Renault <clement@meilisearch.com>
2024-05-28 07:01:16 +00:00
Clément Renault
487431a035 Fix tests 2024-05-27 16:12:20 +02:00
Clément Renault
b6d450d484 Remove puffin experimental feature 2024-05-27 15:59:28 +02:00
Clément Renault
dc949ab46a Remove puffin usage 2024-05-27 15:59:14 +02:00
Clément Renault
7f3e51349e Remove puffin for the dependencies 2024-05-27 15:53:06 +02:00
meili-bors[bot]
19acc65ad2 Merge #4646
4646: Reduce `Transform`'s disk usage r=Kerollmops a=Kerollmops

This PR implements what is described in #4485. It reduces the number of disk writes and disk usage.

Co-authored-by: Clément Renault <clement@meilisearch.com>
2024-05-23 16:06:50 +00:00
meili-bors[bot]
3a3ab17714 Merge #4651
4651: Allow to comment with the results of benchmark invocation r=Kerollmops a=dureuill



Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-05-23 15:32:09 +00:00
Louis Dureuil
eaf57056ca comment with the results of benchmarks 2024-05-23 15:34:39 +02:00
Louis Dureuil
e340705634 Change benchmark outputs
- logs to stderr instead of stdout
- prints links to the dashboard when there is a dashboard
2024-05-23 15:29:06 +02:00
Clément Renault
fe17c0f52e Construct the minimal OBKVs according to the settings diff 2024-05-23 11:23:57 +02:00
meili-bors[bot]
14bc80e3df Merge #4633
4633: Allow to mark vectors as "userProvided" r=Kerollmops a=dureuill

# Pull Request

## Related issue
Fixes #4606 

## What does this PR do?

[See usage in PRD](https://meilisearch.notion.site/v1-9-AI-search-changes-e90d6803eca8417aa70a1ac5d0225697#deb96fb0595947bda7d4a371100326eb)

- Extends the shape of the special `_vectors` field in documents.
    - previously, the `_vectors` field had to be an object, with each field the name of a configured embedder, and each value either `null`, an embedding (array of numbers), or an array of embeddings.
    - In this PR, the value of an embedder in the `_vectors` field can additionally be an object. The object has two fields:
      1. `embeddings`: `null`, an embedding (array of numbers), or an array of embeddings.
      2. `userProvided`: a boolean indicating if the vector was provided by the user.
    - The previous form `embedder_or_array_of_embedders` is semantically equivalent to:
    ```json
    {
        "embeddings": embedder_or_array_of_embedders,
        "userProvided": true
    }
    ```
- During the indexing step, the subfields and values of the `_vectors` field that have `userProvided` set to **false** are added in the vector DB, but not in the documents DB: that means that future modifications of the documents will trigger a regeneration of that particular vector using the document template.
- This allows **importing** embeddings as a one-shot process, while still retaining the ability to regenerate embeddings on document change.
- The dump process now uses this ability: it enriches the `_vectors` fields of documents with the embeddings that were autogenerated, marking them as not `userProvided`. This allows importing the vectors from a dump without regenerating them.

### Tests

This PR adds the following tests

- Long-needed hybrid search tests of a simple hf embedder
- Dump test that imports vectors. Due to the difficulty of actually importing a dump in tests, we just read the dump and check it contains the expected content.
- Tests in the index-scheduler: this tests that documents containing the same kind of instructions as in the dump indexes as expected


Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2024-05-23 08:17:54 +00:00
Clément Renault
bc5663e673 FieldIdsMap no longer useful thanks to #4631 2024-05-22 16:06:15 +02:00
Louis Dureuil
8a941c0241 Smaller review changes 2024-05-22 14:44:42 +02:00
Louis Dureuil
3412e7fbcf "[]" is deserialized as 0 embedding rather than 1 embedding of dim 0 2024-05-22 12:25:21 +02:00
Louis Dureuil
16037e2169 Don't remove embedders that are not in the config from the document DB 2024-05-22 12:24:51 +02:00
Louis Dureuil
8f7c8ca7f0 Remove now unused error variant 2024-05-22 12:23:43 +02:00
meili-bors[bot]
ba75d23bfe Merge #4648
4648: Update version for the next release (v1.8.1) in Cargo.toml r=ManyTheFish a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one and Cargo.lock has been updated before merging.

Co-authored-by: ManyTheFish <ManyTheFish@users.noreply.github.com>
2024-05-21 16:38:36 +00:00
ManyTheFish
7fbb3bf8e8 Update version for the next release (v1.8.1) in Cargo.toml 2024-05-21 15:13:03 +00:00
Clément Renault
500ddc76b5 Make the flattened sorter optional 2024-05-21 16:16:36 +02:00
meili-bors[bot]
9066a446a3 Merge #4642
4642: Index the _geo fields when changing the setting while there is already documents in the DB r=ManyTheFish a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4640
Fixes https://github.com/meilisearch/meilisearch/issues/4628

## What does this PR do?
- Add an integration test that first indexes the document and then changes the settings
- Fix `extract_geo_point` by detecting if the `_geo` field has been faceted in this setting change and index all documents

Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
2024-05-21 13:16:11 +00:00
Louis Dureuil
eccbcf5130 Increase index-scheduler test timeouts 2024-05-21 14:59:08 +02:00
Clément Renault
943f8dba0c Make clippy happy 2024-05-21 14:58:41 +02:00
Clément Renault
1aa8ed9ef7 Make the original sorter optional 2024-05-21 14:53:26 +02:00
ManyTheFish
f762307838 Fix clippy 2024-05-21 13:44:20 +02:00
ManyTheFish
3e94a90722 Fixes 2024-05-21 13:39:46 +02:00
Louis Dureuil
9969f7a638 Add test on index-scheduler 2024-05-20 14:44:10 +02:00
Louis Dureuil
b17cb56dee Test array of vectors 2024-05-20 14:44:10 +02:00
Louis Dureuil
afcd7b9f0c Test hybrid search with hf embedder 2024-05-20 14:44:10 +02:00
ManyTheFish
fc7e817221 Index geo points based on the settings differences 2024-05-20 12:27:26 +02:00
Tamo
0f78703b85 add a test reproducing the bug 2024-05-20 10:58:08 +02:00
Louis Dureuil
30cf972987 Add test with a dump 2024-05-20 10:36:18 +02:00
Louis Dureuil
d05d49ffd8 Fix tests 2024-05-20 10:36:18 +02:00
Louis Dureuil
0462ebbe58 Don't write an empty _vectors field 2024-05-20 10:36:18 +02:00
Louis Dureuil
2f7a8a4efb Don't write vectors that weren't autogenerated in document DB 2024-05-20 10:36:18 +02:00
Louis Dureuil
02714ef5ed Add vectors from vector DB in dump 2024-05-20 10:36:18 +02:00
Louis Dureuil
52d9cb6e5a Refactor vector indexing
- use the parsed_vectors module
- only parse `_vectors` once per document, instead of once per embedder per document
2024-05-20 10:36:17 +02:00
Louis Dureuil
261de888b7 Add function to get the embeddings of a document in an index 2024-05-20 10:36:17 +02:00
Louis Dureuil
98c811247e Add parsed vectors module 2024-05-20 10:25:59 +02:00
116 changed files with 9521 additions and 1402 deletions

View File

@@ -43,4 +43,11 @@ jobs:
- name: Run benchmarks on PR ${{ github.event.issue.id }}
run: |
cargo xtask bench --api-key "${{ secrets.BENCHMARK_API_KEY }}" --dashboard-url "${{ vars.BENCHMARK_DASHBOARD_URL }}" --reason "[Comment](${{ github.event.comment.html_url }}) on [#${{ github.event.issue.number }}](${{ github.event.issue.html_url }})" -- ${{ steps.command.outputs.command-arguments }}
cargo xtask bench --api-key "${{ secrets.BENCHMARK_API_KEY }}" \
--dashboard-url "${{ vars.BENCHMARK_DASHBOARD_URL }}" \
--reason "[Comment](${{ github.event.comment.html_url }}) on [#${{ github.event.issue.number }}](${{ github.event.issue.html_url }})" \
-- ${{ steps.command.outputs.command-arguments }} > benchlinks.txt
- name: Send comment in PR
run: |
gh pr comment ${{github.event.issue.number}} --body-file benchlinks.txt

602
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -22,7 +22,7 @@ members = [
]
[workspace.package]
version = "1.8.0"
version = "1.9.0"
authors = [
"Quentin de Quelen <quentin@dequelen.me>",
"Clément Renault <clement@meilisearch.com>",

View File

@@ -25,7 +25,7 @@
<p align="center">⚡ A lightning-fast search engine that fits effortlessly into your apps, websites, and workflow 🔍</p>
Meilisearch helps you shape a delightful search experience in a snap, offering features that work out-of-the-box to speed up your workflow.
[Meilisearch](https://www.meilisearch.com) helps you shape a delightful search experience in a snap, offering features that work out of the box to speed up your workflow.
<p align="center" name="demo">
<a href="https://where2watch.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=demo-gif#gh-light-mode-only" target="_blank">
@@ -39,8 +39,8 @@ Meilisearch helps you shape a delightful search experience in a snap, offering f
🔥 [**Try it!**](https://where2watch.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=demo-link) 🔥
## ✨ Features
- **Search-as-you-type:** find search results in less than 50 milliseconds
- **Hybrid search:** Combine the best of both [semantic](https://www.meilisearch.com/docs/learn/experimental/vector_search) & full-text search to get the most relevant results
- **Search-as-you-type:** find & display results in less than 50 milliseconds to provide an intuitive experience
- **[Typo tolerance](https://www.meilisearch.com/docs/learn/configuration/typo_tolerance?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** get relevant matches even when queries contain typos and misspellings
- **[Filtering](https://www.meilisearch.com/docs/learn/fine_tuning_results/filtering?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features) and [faceted search](https://www.meilisearch.com/docs/learn/fine_tuning_results/faceted_search?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** enhance your users' search experience with custom filters and build a faceted search interface in a few lines of code
- **[Sorting](https://www.meilisearch.com/docs/learn/fine_tuning_results/sorting?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=features):** sort results based on price, date, or pretty much anything else your users need
@@ -55,15 +55,15 @@ Meilisearch helps you shape a delightful search experience in a snap, offering f
## 📖 Documentation
You can consult Meilisearch's documentation at [https://www.meilisearch.com/docs](https://www.meilisearch.com/docs/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=docs).
You can consult Meilisearch's documentation at [meilisearch.com/docs](https://www.meilisearch.com/docs/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=docs).
## 🚀 Getting started
For basic instructions on how to set up Meilisearch, add documents to an index, and search for documents, take a look at our [Quick Start](https://www.meilisearch.com/docs/learn/getting_started/quick_start?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=get-started) guide.
## Supercharge your Meilisearch experience
## 🌍 Supercharge your Meilisearch experience
Say goodbye to server deployment and manual updates with [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=oss&utm_source=github&utm_medium=meilisearch). No credit card required.
Say goodbye to server deployment and manual updates with [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=oss&utm_source=github&utm_medium=meilisearch). Additional features include analytics & monitoring in many regions around the world. No credit card is required.
## 🧰 SDKs & integration tools
@@ -85,13 +85,13 @@ Finally, for more in-depth information, refer to our articles explaining fundame
Meilisearch collects **anonymized** data from users to help us improve our product. You can [deactivate this](https://www.meilisearch.com/docs/learn/what_is_meilisearch/telemetry?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=telemetry#how-to-disable-data-collection) whenever you want.
To request deletion of collected data, please write to us at [privacy@meilisearch.com](mailto:privacy@meilisearch.com). Don't forget to include your `Instance UID` in the message, as this helps us quickly find and delete your data.
To request deletion of collected data, please write to us at [privacy@meilisearch.com](mailto:privacy@meilisearch.com). Remember to include your `Instance UID` in the message, as this helps us quickly find and delete your data.
If you want to know more about the kind of data we collect and what we use it for, check the [telemetry section](https://www.meilisearch.com/docs/learn/what_is_meilisearch/telemetry?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=telemetry#how-to-disable-data-collection) of our documentation.
## 📫 Get in touch!
Meilisearch is a search engine created by [Meili](https://www.welcometothejungle.com/en/companies/meilisearch), a software development company based in France and with team members all over the world. Want to know more about us? [Check out our blog!](https://blog.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=contact)
Meilisearch is a search engine created by [Meili]([https://www.welcometothejungle.com/en/companies/meilisearch](https://www.meilisearch.com/careers)), a software development company headquartered in France and with team members all over the world. Want to know more about us? [Check out our blog!](https://blog.meilisearch.com/?utm_campaign=oss&utm_source=github&utm_medium=meilisearch&utm_content=contact)
🗞 [Subscribe to our newsletter](https://meilisearch.us2.list-manage.com/subscribe?u=27870f7b71c908a8b359599fb&id=79582d828e) if you don't want to miss any updates! We promise we won't clutter your mailbox: we only send one edition every two months.

View File

@@ -15,4 +15,4 @@ time = { version = "0.3.34", features = ["parsing"] }
[build-dependencies]
anyhow = "1.0.80"
vergen-gitcl = "1.0.0-beta.2"
vergen-git2 = "1.0.0-beta.2"

View File

@@ -8,7 +8,7 @@ fn emit_git_variables() -> anyhow::Result<()> {
// Note: any code that needs VERGEN_ environment variables should take care to define them manually in the Dockerfile and pass them
// in the corresponding GitHub workflow (publish_docker.yml).
// This is due to the Dockerfile building the binary outside of the git directory.
let mut builder = vergen_gitcl::GitclBuilder::default();
let mut builder = vergen_git2::Git2Builder::default();
builder.branch(true);
builder.commit_timestamp(true);
@@ -16,6 +16,7 @@ fn emit_git_variables() -> anyhow::Result<()> {
builder.describe(true, true, None);
builder.sha(false);
let gitcl = builder.build()?;
vergen_gitcl::Emitter::default().fail_on_error().add_instructions(&gitcl)?.emit()
let git2 = builder.build()?;
vergen_git2::Emitter::default().fail_on_error().add_instructions(&git2)?.emit()
}

View File

@@ -197,6 +197,140 @@ pub(crate) mod test {
use super::*;
use crate::reader::v6::RuntimeTogglableFeatures;
#[test]
fn import_dump_v6_with_vectors() {
// dump containing two indexes
//
// "vector", configured with an embedder
// contains:
// - one document with an overriden vector,
// - one document with a natural vector
// - one document with a _vectors map containing one additional embedder name and a natural vector
// - one document with a _vectors map containing one additional embedder name and an overriden vector
//
// "novector", no embedder
// contains:
// - a document without vector
// - a document with a random _vectors field
let dump = File::open("tests/assets/v6-with-vectors.dump").unwrap();
let mut dump = DumpReader::open(dump).unwrap();
// top level infos
insta::assert_display_snapshot!(dump.date().unwrap(), @"2024-05-16 15:51:34.151044 +00:00:00");
insta::assert_debug_snapshot!(dump.instance_uid().unwrap(), @"None");
// tasks
let tasks = dump.tasks().unwrap().collect::<Result<Vec<_>>>().unwrap();
let (tasks, update_files): (Vec<_>, Vec<_>) = tasks.into_iter().unzip();
meili_snap::snapshot_hash!(meili_snap::json_string!(tasks), @"278f63325ef06ca04d01df98d8207b94");
assert_eq!(update_files.len(), 10);
assert!(update_files[0].is_none()); // the dump creation
assert!(update_files[1].is_none());
assert!(update_files[2].is_none());
assert!(update_files[3].is_none());
assert!(update_files[4].is_none());
assert!(update_files[5].is_none());
assert!(update_files[6].is_none());
assert!(update_files[7].is_none());
assert!(update_files[8].is_none());
assert!(update_files[9].is_none());
// indexes
let mut indexes = dump.indexes().unwrap().collect::<Result<Vec<_>>>().unwrap();
// the index are not ordered in any way by default
indexes.sort_by_key(|index| index.metadata().uid.to_string());
let mut vector_index = indexes.pop().unwrap();
let mut novector_index = indexes.pop().unwrap();
assert!(indexes.is_empty());
// vector
insta::assert_json_snapshot!(vector_index.metadata(), @r###"
{
"uid": "vector",
"primaryKey": "id",
"createdAt": "2024-05-16T15:33:17.240962Z",
"updatedAt": "2024-05-16T15:40:55.723052Z"
}
"###);
{
let documents: Result<Vec<_>> = vector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();
assert_eq!(documents.len(), 4);
documents.sort_by_key(|doc| doc.get("id").unwrap().to_string());
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
}
// novector
insta::assert_json_snapshot!(novector_index.metadata(), @r###"
{
"uid": "novector",
"primaryKey": "id",
"createdAt": "2024-05-16T15:33:03.568055Z",
"updatedAt": "2024-05-16T15:33:07.530217Z"
}
"###);
insta::assert_json_snapshot!(novector_index.settings().unwrap().embedders, @"null");
{
let documents: Result<Vec<_>> = novector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();
assert_eq!(documents.len(), 2);
documents.sort_by_key(|doc| doc.get("id").unwrap().to_string());
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document, @r###"
{
"id": "e1",
"other": "random1",
"_vectors": "toto"
}
"###);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document, @r###"
{
"id": "e0",
"other": "random0"
}
"###);
}
}
assert_eq!(
dump.features().unwrap().unwrap(),
RuntimeTogglableFeatures { vector_store: true, ..Default::default() }
);
}
#[test]
fn import_dump_v6_experimental() {
let dump = File::open("tests/assets/v6-with-experimental.dump").unwrap();

View File

@@ -0,0 +1,783 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e3",
"desc": "overriden vector + map",
"_vectors": {
"default": [
0.2,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
],
"toto": [
0.1
]
}
}

View File

@@ -0,0 +1,786 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e2",
"desc": "natural vector + map",
"_vectors": {
"toto": [],
"default": {
"embeddings": [
[
-0.05189208313822746,
-0.9273212552070618,
0.1443813145160675,
0.0932632014155388,
0.2665371894836426,
0.36266782879829407,
0.6402910947799683,
0.32014018297195435,
0.030915971845388412,
-0.9312191605567932,
-0.3718109726905823,
-0.2700554132461548,
-1.1014580726623535,
0.9154956936836244,
-0.3406888246536255,
1.0077725648880005,
0.6577560901641846,
-0.3955195546150207,
-0.4148270785808563,
0.1855088472366333,
0.5062315464019775,
-0.3632686734199524,
-0.2277890294790268,
0.2560805082321167,
-0.3853609561920166,
-0.1604762226343155,
-0.13947471976280212,
-0.20147813856601715,
-0.4466346800327301,
-0.3761846721172333,
0.1443382054567337,
0.18205296993255615,
0.49359792470932007,
-0.22538000345230105,
-0.4996317625045776,
-0.22734887897968292,
-0.6034309267997742,
-0.7857939600944519,
-0.34923747181892395,
-0.3466345965862274,
0.21176661550998688,
-0.5101462006568909,
-0.3403083384037018,
0.000315118464641273,
0.236465722322464,
-0.10246097296476364,
-1.3013339042663574,
0.3419138789176941,
-0.32963496446609497,
-0.0901619717478752,
-0.5426247119903564,
0.22656650841236117,
-0.44758284091949463,
0.14151698350906372,
-0.1089438870549202,
0.5500766634941101,
-0.670711100101471,
-0.6227269768714905,
0.3894464075565338,
-0.27609574794769287,
0.7028202414512634,
-0.19697771966457367,
0.328511506319046,
0.5063360929489136,
0.4065195322036743,
0.2614171802997589,
-0.30274391174316406,
1.0393824577331543,
-0.7742937207221985,
-0.7874112129211426,
-0.6749666929244995,
0.5190866589546204,
0.004123548045754433,
-0.28312963247299194,
-0.038731709122657776,
-1.0142987966537476,
-0.09519586712121964,
0.8755272626876831,
0.4876938760280609,
0.7811151742935181,
0.85174959897995,
0.11826585978269576,
0.5373436808586121,
0.3649002015590668,
0.19064077734947205,
-0.00287026260048151,
-0.7305403351783752,
-0.015206154435873032,
-0.7899249196052551,
0.19407285749912265,
0.08596625179052353,
-0.28976231813430786,
-0.1525907665491104,
0.3798313438892365,
0.050306469202041626,
-0.5697937607765198,
0.4219021201133728,
0.276252806186676,
0.1559903472661972,
0.10030482709407806,
-0.4043720066547394,
-0.1969818025827408,
0.5739826560020447,
0.2116064727306366,
-1.4620544910430908,
-0.7802462577819824,
-0.24739810824394223,
-0.09791352599859238,
-0.4413802027702331,
0.21549351513385773,
-0.9520436525344848,
-0.08762510865926743,
0.08154498040676117,
-0.6154940724372864,
-1.01079523563385,
0.885427713394165,
0.6967288851737976,
0.27186504006385803,
-0.43194177746772766,
-0.11248451471328735,
0.7576630711555481,
0.4998855590820313,
0.0264343973249197,
0.9872855544090272,
0.5634694695472717,
0.053698331117630005,
0.19410227239131927,
0.3570743501186371,
-0.23670297861099243,
-0.9114483594894408,
0.07884842902421951,
0.7318344116210938,
0.44630110263824463,
0.08745364099740982,
-0.347101628780365,
-0.4314247667789459,
-0.5060274004936218,
0.003706763498485088,
0.44320008158683777,
-0.00788921769708395,
-0.1368623524904251,
-0.17391923069953918,
0.14473655819892883,
0.10927865654230118,
0.6974599361419678,
0.005052129738032818,
-0.016953065991401672,
-0.1256176233291626,
-0.036742497235536575,
0.5591985583305359,
-0.37619709968566895,
0.22429119050502777,
0.5403043031692505,
-0.8603790998458862,
-0.3456307053565979,
0.9292937517166138,
0.5074859261512756,
0.6310645937919617,
-0.3091641068458557,
0.46902573108673096,
0.7891915440559387,
0.4499550759792328,
0.2744995653629303,
0.2712305784225464,
-0.04349074140191078,
-0.3638863265514374,
0.7839881777763367,
0.7352104783058167,
-0.19457511603832245,
-0.5957832932472229,
-0.43704694509506226,
-1.084769368171692,
0.4904985725879669,
0.5385226011276245,
0.1891629993915558,
0.12338479608297348,
0.8315675258636475,
-0.07830192148685455,
1.0916285514831543,
-0.28066861629486084,
-1.3585069179534912,
0.5203898549079895,
0.08678033947944641,
-0.2566044330596924,
0.09484415501356123,
-0.0180208683013916,
1.0264745950698853,
-0.023572135716676712,
0.5864979028701782,
0.7625196576118469,
-0.2543414533138275,
-0.8877770900726318,
0.7611982822418213,
-0.06220436468720436,
0.937336564064026,
0.2704363465309143,
-0.37733694911003113,
0.5076137781143188,
-0.30641937255859375,
0.6252772808074951,
-0.0823579877614975,
-0.03736555948853493,
0.4131673276424408,
-0.6514252424240112,
0.12918265163898468,
-0.4483584463596344,
0.6750786304473877,
-0.37008383870124817,
-0.02324833907186985,
0.38027650117874146,
-0.26374951004981995,
0.4346931278705597,
0.42882832884788513,
-0.48798441886901855,
1.1882442235946655,
0.5132288336753845,
0.5284568667411804,
-0.03538886830210686,
0.29620853066444397,
-1.0683696269989014,
0.25936177372932434,
0.10404160618782043,
-0.25796034932136536,
0.027896970510482788,
-0.09225251525640488,
1.4811025857925415,
0.641173779964447,
-0.13838383555412292,
-0.3437179923057556,
0.5667019486427307,
-0.5400741696357727,
0.31090837717056274,
0.6470608115196228,
-0.3747067153453827,
-0.7364534735679626,
-0.07431528717279434,
0.5173454880714417,
-0.6578747034072876,
0.7107478976249695,
-0.7918999791145325,
-0.0648345872759819,
0.609937846660614,
-0.7329513430595398,
0.9741371870040894,
0.17912346124649048,
-0.02658769302070141,
0.5162150859832764,
-0.3978803157806397,
-0.7833885550498962,
-0.6497276425361633,
-0.3898126780986786,
-0.0952848568558693,
0.2663288116455078,
-0.1604052186012268,
0.373076468706131,
-0.8357769250869751,
-0.05217683315277099,
-0.2680160701274872,
0.8389158248901367,
0.6833611130714417,
-0.6712407469749451,
0.7406917214393616,
-0.44522786140441895,
-0.34645363688468933,
-0.27384576201438904,
-0.9878405928611756,
-0.8166060447692871,
0.06268279999494553,
0.38567957282066345,
-0.3274703919887543,
0.5296315550804138,
-0.11810623109340668,
0.23029841482639313,
0.08616159111261368,
-0.2195747196674347,
0.09430307894945145,
0.4057176411151886,
0.4892159104347229,
-0.1636916548013687,
-0.6071445345878601,
0.41256585717201233,
0.622254490852356,
-0.41223976016044617,
-0.6686707139015198,
-0.7474371790885925,
-0.8509522080421448,
-0.16754287481307983,
-0.9078601002693176,
-0.29653599858283997,
-0.5020652413368225,
0.4692700505256653,
0.01281109917908907,
-0.16071580350399017,
0.03388889133930206,
-0.020511148497462273,
0.5027827024459839,
-0.20729811489582065,
0.48107290267944336,
0.33669769763946533,
-0.5275911688804626,
0.48271527886390686,
0.2738940715789795,
-0.033152539283037186,
-0.13629786670207977,
-0.05965912342071533,
-0.26200807094573975,
0.04002794995903969,
-0.34095603227615356,
-3.986898899078369,
-0.46819332242012024,
-0.422744482755661,
-0.169097900390625,
0.6008929014205933,
0.058016058057546616,
-0.11401277780532836,
-0.3077819049358368,
-0.09595538675785063,
0.6723822355270386,
0.19367831945419312,
0.28304359316825867,
0.1609862744808197,
0.7567598819732666,
0.6889985799789429,
0.06907720118761063,
-0.04188092052936554,
-0.7434936165809631,
0.13321782648563385,
0.8456063270568848,
-0.10364038497209548,
-0.45084846019744873,
-0.4758241474628449,
0.43882066011428833,
-0.6432598829269409,
0.7217311859130859,
-0.24189773201942444,
0.12737572193145752,
-1.1008601188659668,
-0.3305315673351288,
0.14614742994308472,
-0.7819333076477051,
0.5287120342254639,
-0.055538054555654526,
0.1877404749393463,
-0.6907662153244019,
0.5616975426673889,
-0.4611121714115143,
-0.26109233498573303,
-0.12898315489292145,
-0.3724522292613983,
-0.7191406488418579,
-0.4425233602523804,
-0.644108235836029,
0.8424481153488159,
0.17532426118850708,
-0.5121750235557556,
-0.6467239260673523,
-0.0008507720194756985,
0.7866212129592896,
-0.02644744887948036,
-0.005045140627771616,
0.015782782807946205,
0.16334445774555206,
-0.1913367658853531,
-0.13697923719882965,
-0.6684983372688293,
0.18346354365348816,
-0.341105580329895,
0.5427411198616028,
0.3779832422733307,
-0.6778115034103394,
-0.2931850254535675,
-0.8805161714553833,
-0.4212774932384491,
-0.5368952751159668,
-1.3937891721725464,
-1.225494146347046,
0.4276703894138336,
1.1205668449401855,
-0.6005299687385559,
0.15732505917549133,
-0.3914784789085388,
-1.357046604156494,
-0.4707142114639282,
-0.1497287154197693,
-0.25035548210144043,
-0.34328439831733704,
0.39083412289619446,
0.1623048633337021,
-0.9275814294815063,
-0.6430015563964844,
0.2973862886428833,
0.5580436587333679,
-0.6232585310935974,
-0.6611042022705078,
0.4015969038009643,
-1.0232892036437988,
-0.2585645020008087,
-0.5431421399116516,
0.5021264553070068,
-0.48601630330085754,
-0.010242084041237833,
0.5862035155296326,
0.7316920161247253,
0.4036808013916016,
0.4269520044326782,
-0.705938458442688,
0.7747307419776917,
0.10164368897676468,
0.7887958884239197,
-0.9612497091293336,
0.12755516171455383,
0.06812842190265656,
-0.022603651508688927,
0.14722754061222076,
-0.5588505268096924,
-0.20689940452575684,
0.3557641804218292,
-0.6812759637832642,
0.2860803008079529,
-0.38954633474349976,
0.1759403496980667,
-0.5678874850273132,
-0.1692986786365509,
-0.14578519761562347,
0.5711379051208496,
1.0208125114440918,
0.7759483456611633,
-0.372348427772522,
-0.5460885763168335,
0.7190321683883667,
-0.6914990544319153,
0.13365162909030914,
-0.4854792356491089,
0.4054908752441406,
0.4502798914909363,
-0.3041122555732727,
-0.06726965308189392,
-0.05570871382951737,
-0.0455719493329525,
0.4785125255584717,
0.8867972493171692,
0.4107886850833893,
0.6121342182159424,
-0.20477132499217987,
-0.5598517656326294,
-0.6443566679954529,
-0.5905212759971619,
-0.5571200251579285,
0.17573799192905426,
-0.28621870279312134,
0.1685224026441574,
0.09719007462263109,
-0.04223639518022537,
-0.28623101115226746,
-0.1449810117483139,
-0.3789580464363098,
-0.5227636098861694,
-0.049728814512491226,
0.7849089503288269,
0.16792525351047516,
0.9849340915679932,
-0.6559549570083618,
0.35723909735679626,
-0.6822739243507385,
1.2873116731643677,
0.19993330538272855,
0.03512010723352432,
-0.6972134113311768,
0.18453484773635864,
-0.2437680810689926,
0.2156416028738022,
0.5230382680892944,
0.22020135819911957,
0.8314080238342285,
0.15627102553844452,
-0.7330264449119568,
0.3888184726238251,
-0.22034703195095065,
0.5457669496536255,
-0.48084837198257446,
-0.45576658844947815,
-0.09287727624177931,
-0.06968110054731369,
0.35125672817230225,
-0.4278119504451752,
0.2038476765155792,
0.11392722278833388,
0.9433983564376832,
-0.4097744226455689,
0.035297419875860214,
-0.4274404048919678,
-0.25100165605545044,
1.0943366289138794,
-0.07634022831916809,
-0.2925529479980469,
-0.7512530088424683,
0.2649727463722229,
-0.4078235328197479,
-0.3372223973274231,
0.05190162733197212,
0.005654910113662481,
-0.0001571219472680241,
-0.35445958375930786,
-0.7837416529655457,
0.1500556766986847,
0.4383024573326111,
0.6099548935890198,
0.05951934307813645,
-0.21325334906578064,
0.0199207104742527,
-0.22704418003559113,
-0.6481077671051025,
0.37442275881767273,
-1.015955924987793,
0.38637226819992065,
-0.06489371508359909,
-0.494120329618454,
0.3469836115837097,
0.15402406454086304,
-0.7660972476005554,
-0.7053225040435791,
-0.25964751839637756,
0.014004424214363098,
-0.2860170006752014,
-0.17565494775772095,
-0.45117494463920593,
-0.0031954257283359766,
0.09676837921142578,
-0.514464259147644,
0.41698193550109863,
-0.21642713248729703,
-0.5398141145706177,
-0.3647628426551819,
0.37005379796028137,
0.239425927400589,
-0.08833975344896317,
0.934946596622467,
-0.48340797424316406,
0.6241437792778015,
-0.7253676652908325,
-0.04303571209311485,
1.1125205755233765,
-0.15692919492721558,
-0.2914651036262512,
-0.5117168426513672,
0.21365483105182648,
0.4924402534961701,
0.5269662141799927,
0.0352792888879776,
-0.149167999625206,
-0.6019760370254517,
0.08245442807674408,
0.4900692105293274,
0.518824577331543,
-0.00005570516441366635,
-0.553304135799408,
0.22217543423175812,
0.5047767758369446,
0.135724738240242,
1.1511540412902832,
-0.3541218340396881,
-0.9712511897087096,
0.8353699445724487,
-0.39227569103240967,
-0.9117669463157654,
-0.26349931955337524,
0.05597023293375969,
0.20695461332798004,
0.3178807199001312,
1.0663238763809204,
0.5062212347984314,
0.7288597822189331,
0.09899299591779707,
0.553720235824585,
0.675009548664093,
-0.20067055523395536,
0.3138423264026642,
-0.6886593103408813,
-0.2910398542881012,
-1.3186300992965698,
-0.4684459865093231,
-0.095743365585804,
-0.1257995069026947,
-0.4858281314373016,
-0.4935407340526581,
-0.3266896903514862,
-0.3928797245025635,
-0.40803104639053345,
-0.9975396394729614,
0.4229583740234375,
0.37309643626213074,
0.4431034922599793,
0.30364808440208435,
-0.3765178918838501,
0.5616499185562134,
0.16904796659946442,
-0.7343707084655762,
0.2560209631919861,
0.6166825294494629,
0.3200829327106476,
-0.4483652710914612,
0.16224201023578644,
-0.31495288014411926,
-0.42713335156440735,
0.7270734906196594,
0.7049484848976135,
-0.0571461021900177,
0.04477125033736229,
-0.6647796034812927,
1.183672308921814,
0.36199676990509033,
0.046881116926670074,
0.4515796303749085,
0.9278061985969543,
0.31471705436706543,
-0.7073333859443665,
-0.3443860113620758,
0.5440067052841187,
-0.15020819008350372,
-0.541202962398529,
0.5203295946121216,
1.2192286252975464,
-0.9983593225479126,
-0.18758884072303772,
0.2758221924304962,
-0.6511523723602295,
-0.1584404855966568,
-0.236241415143013,
0.2692437767982483,
-0.4941152036190033,
0.4987454116344452,
-0.3331359028816223,
0.3163745701313019,
0.745529294013977,
-0.2905873656272888,
0.13602906465530396,
0.4679684340953827,
1.0555986166000366,
1.075700044631958,
0.5368486046791077,
-0.5118206739425659,
0.8668332099914551,
-0.5726966857910156,
-0.7811751961708069,
0.1938626915216446,
-0.1929349899291992,
0.1757766306400299,
0.6384295225143433,
0.26462844014167786,
0.9542630314826964,
0.19313029944896695,
1.264248013496399,
-0.6304428577423096,
0.0487106591463089,
-0.16211535036563873,
-0.7894763350486755,
0.3582514822483063,
-0.04153040423989296,
0.635784387588501,
0.6554391980171204,
-0.47010496258735657,
-0.8302040696144104,
-0.1350124627351761,
0.2568812072277069,
0.13614831864833832,
-0.2563649117946625,
-1.0434694290161133,
0.3232482671737671,
0.47882452607154846,
0.4298652410507202,
1.0563770532608032,
-0.28917592763900757,
-0.8533256649971008,
0.10648339986801147,
0.6376127004623413,
-0.20832888782024384,
0.2370245456695557,
0.0018312990432605147,
-0.2034837007522583,
0.01051164511591196,
-1.105310082435608,
0.29724350571632385,
0.15604574978351593,
0.1973688006401062,
0.44394731521606445,
0.3974513411521912,
-0.13625948131084442,
0.9571986198425292,
0.2257384955883026,
0.2323588728904724,
-0.5583669543266296,
-0.7854922413825989,
0.1647188365459442,
-1.6098142862319946,
0.318587988615036,
-0.13399995863437653,
-0.2172701060771942,
-0.767514705657959,
-0.5813586711883545,
-0.3195130527019501,
-0.04894036799669266,
0.2929930090904236,
-0.8213384747505188,
0.07181350141763687,
0.7469993829727173,
0.6407455801963806,
0.16365697979927063,
0.7870153188705444,
0.6524736881256104,
0.6399973630905151,
-0.04992736503481865,
-0.03959266096353531,
-0.2512352466583252,
0.8448855876922607,
-0.1422702670097351,
0.1216789186000824,
-1.2647287845611572,
0.5931149125099182,
0.7186052203178406,
-0.06118432432413101,
-1.1942816972732544,
-0.17677085101604462,
0.31543800234794617,
-0.32252824306488037,
0.8255583047866821,
-0.14529970288276672,
-0.2695446312427521,
-0.33378756046295166,
-0.1653425395488739,
0.1454019844532013,
-0.3920115828514099,
0.912214994430542,
-0.7279734015464783,
0.7374742031097412,
0.933980405330658,
0.13429680466651917,
-0.514870285987854,
0.3989711999893189,
-0.11613689363002776,
0.4022413492202759,
-0.9990655779838562,
-0.33749932050704956,
-0.4334589838981629,
-1.376373291015625,
-0.2993924915790558,
-0.09454808384180068,
-0.01314175222069025,
-0.001090060803107917,
0.2137461006641388,
0.2938512861728668,
0.17508235573768616,
0.8260607123374939,
-0.7218498587608337,
0.2414487451314926,
-0.47296759486198425,
-0.3002610504627228,
-1.238540768623352,
0.08663805574178696,
0.6805586218833923,
0.5909030437469482,
-0.42807504534721375,
-0.22887496650218964,
0.47537800669670105,
-1.0474627017974854,
0.6338009238243103,
0.06548397243022919,
0.4971011281013489,
1.3484878540039063
]
],
"userProvided": false
}
}
}

View File

@@ -0,0 +1,785 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e1",
"desc": "natural vector",
"_vectors": {
"default": {
"embeddings": [
[
-0.2979458272457123,
-0.5288640856742859,
-0.019957859069108963,
-0.18495318293571472,
0.7429973483085632,
0.5238497257232666,
0.432366281747818,
0.32744166254997253,
0.0020762972999364138,
-0.9507834911346436,
-0.35097137093544006,
0.08469701558351517,
-1.4176613092422483,
0.4647577106952667,
-0.69340580701828,
1.0372896194458008,
0.3716741800308227,
0.06031008064746857,
-0.6152024269104004,
0.007914665155112743,
0.7954924702644348,
-0.20773003995418549,
0.09376765787601472,
0.04508133605122566,
-0.2084471583366394,
-0.1518009901046753,
0.018195509910583496,
-0.07044368237257004,
-0.18119366466999057,
-0.4480230510234833,
0.3822529911994934,
0.1911812424659729,
0.4674372375011444,
0.06963984668254852,
-0.09341949224472046,
0.005675444379448891,
-0.6774799227714539,
-0.7066726684570313,
-0.39256376028060913,
0.04005039855837822,
0.2084812968969345,
-0.7872875928878784,
-0.8205880522727966,
0.2919981777667999,
-0.06004738807678223,
-0.4907574355602264,
-1.5937862396240234,
0.24249385297298431,
-0.14709846675395966,
-0.11860740929841997,
-0.8299489617347717,
0.472964346408844,
-0.497518390417099,
-0.22205302119255063,
-0.4196169078350067,
0.32697558403015137,
-0.360930860042572,
-0.9789686799049376,
0.1887447088956833,
-0.403737336397171,
0.18524253368377688,
0.3768732249736786,
0.3666233420372009,
0.3511938452720642,
0.6985810995101929,
0.41721710562705994,
0.09754953533411026,
0.6204307079315186,
-1.0762996673583984,
-0.06263761967420578,
-0.7376511693000793,
0.6849768161773682,
-0.1745152473449707,
-0.40449759364128113,
0.20757411420345304,
-0.8424443006515503,
0.330015629529953,
0.3489064872264862,
1.0954371690750122,
0.8487558960914612,
1.1076823472976685,
0.61430823802948,
0.4155903458595276,
0.4111340939998626,
0.05753209814429283,
-0.06429877132177353,
-0.765606164932251,
-0.41703930497169495,
-0.508820652961731,
0.19859947264194489,
-0.16607828438282013,
-0.28112146258354187,
0.11032675206661224,
0.38809511065483093,
-0.36498191952705383,
-0.48671194911003113,
0.6755134463310242,
0.03958442434668541,
0.4478721618652344,
-0.10335399955511092,
-0.9546685814857484,
-0.6087718605995178,
0.17498846352100372,
0.08320838958024979,
-1.4478336572647097,
-0.605027437210083,
-0.5867993235588074,
-0.14711688458919525,
-0.5447602272033691,
-0.026259321719408035,
-0.6997418403625488,
-0.07349082082509995,
0.10638900846242905,
-0.7133527398109436,
-0.9396815299987792,
1.087092399597168,
1.1885089874267578,
0.4011896848678589,
-0.4089202582836151,
-0.10938972979784012,
0.6726722121238708,
0.24576938152313232,
-0.24247920513153076,
1.1499971151351929,
0.47813335061073303,
-0.05331678315997124,
0.32338133454322815,
0.4870913326740265,
-0.23144258558750153,
-1.2023426294326782,
0.2349330335855484,
1.080536961555481,
0.29334118962287903,
0.391574501991272,
-0.15818795561790466,
-0.2948290705680847,
-0.024689948186278343,
0.06602869182825089,
0.5937030911445618,
-0.047901444137096405,
-0.512734591960907,
-0.35780075192451477,
0.28751692175865173,
0.4298716187477112,
0.9242428541183472,
-0.17208744585514069,
0.11515070497989656,
-0.0335976779460907,
-0.3422986567020416,
0.5344581604003906,
0.19895796477794647,
0.33001241087913513,
0.6390730142593384,
-0.6074934005737305,
-0.2553696632385254,
0.9644920229911804,
0.2699219584465027,
0.6403993368148804,
-0.6380003690719604,
-0.027310986071825027,
0.638815701007843,
0.27719101309776306,
-0.13553589582443237,
0.750195324420929,
0.1224869191646576,
-0.20613941550254825,
0.8444448709487915,
0.16200250387191772,
-0.24750925600528717,
-0.739950954914093,
-0.28443849086761475,
-1.176282525062561,
0.516107976436615,
0.3774825632572174,
0.10906043648719788,
0.07962015271186829,
0.7384604215621948,
-0.051241904497146606,
1.1730090379714966,
-0.4828610122203827,
-1.404372215270996,
0.8811132311820984,
-0.3839482367038727,
0.022516896948218346,
-0.0491158664226532,
-0.43027013540267944,
1.2049334049224854,
-0.27309560775756836,
0.6883630752563477,
0.8264574408531189,
-0.5020735263824463,
-0.4874092042446137,
0.6007202863693237,
-0.4965405762195587,
1.1302915811538696,
0.032572727650403976,
-0.3731859028339386,
0.658271849155426,
-0.9023059010505676,
0.7400162220001221,
0.014550759457051754,
-0.19699542224407196,
0.2319706380367279,
-0.789058268070221,
-0.14905710518360138,
-0.5826214551925659,
0.207652747631073,
-0.4507439732551574,
-0.3163885474205017,
0.3604124188423157,
-0.45119962096214294,
0.3428427278995514,
0.3005594313144684,
-0.36026081442832947,
1.1014249324798584,
0.40884315967559814,
0.34991952776908875,
-0.1806638240814209,
0.27440476417541504,
-0.7118373513221741,
0.4645499587059021,
0.214790478348732,
-0.2343102991580963,
0.10500429570674896,
-0.28034430742263794,
1.2267805337905884,
1.0561333894729614,
-0.497364342212677,
-0.6143305897712708,
0.24963727593421936,
-0.33136463165283203,
-0.01473914459347725,
0.495918869972229,
-0.6985538005828857,
-1.0033197402954102,
0.35937801003456116,
0.6325868368148804,
-0.6808838844299316,
1.0354058742523191,
-0.7214401960372925,
-0.33318862318992615,
0.874398410320282,
-0.6594992280006409,
0.6830640435218811,
-0.18534131348133087,
0.024834271520376205,
0.19901277124881744,
-0.5992477536201477,
-1.2126628160476685,
-0.9245557188987732,
-0.3898217976093292,
-0.1286519467830658,
0.4217943847179413,
-0.1143646091222763,
0.5630772709846497,
-0.5240639448165894,
0.21152715384960177,
-0.3792001008987427,
0.8266305327415466,
1.170984387397766,
-0.8072142004966736,
0.11382893472909927,
-0.17953898012638092,
-0.1789460331201553,
-0.15078622102737427,
-1.2082908153533936,
-0.7812382578849792,
-0.10903695970773696,
0.7303897142410278,
-0.39054441452026367,
0.19511254131793976,
-0.09121843427419662,
0.22400228679180145,
0.30143046379089355,
0.1141919493675232,
0.48112115263938904,
0.7307931780815125,
0.09701362252235413,
-0.2795647978782654,
-0.3997688889503479,
0.5540812611579895,
0.564578115940094,
-0.40065160393714905,
-0.3629159033298493,
-0.3789091110229492,
-0.7298538088798523,
-0.6996853351593018,
-0.4477842152118683,
-0.289089560508728,
-0.6430277824401855,
0.2344944179058075,
0.3742927014827728,
-0.5079357028007507,
0.28841453790664673,
0.06515737622976303,
0.707315981388092,
0.09498685598373412,
0.8365515470504761,
0.10002726316452026,
-0.7695478200912476,
0.6264724135398865,
0.7562043070793152,
-0.23112858831882477,
-0.2871039807796478,
-0.25010058283805847,
0.2783474028110504,
-0.03224996477365494,
-0.9119359850883484,
-3.6940200328826904,
-0.5099936127662659,
-0.1604711413383484,
0.17453284561634064,
0.41759559512138367,
0.1419190913438797,
-0.11362407356500626,
-0.33312007784843445,
0.11511333286762238,
0.4667884409427643,
-0.0031647447030991316,
0.15879854559898376,
0.3042248487472534,
0.5404849052429199,
0.8515422344207764,
0.06286454200744629,
0.43790125846862793,
-0.8682025074958801,
-0.06363756954669952,
0.5547921657562256,
-0.01483887154608965,
-0.07361344993114471,
-0.929947018623352,
0.3502565622329712,
-0.5080993175506592,
1.0380364656448364,
-0.2017953395843506,
0.21319580078125,
-1.0763001441955566,
-0.556368887424469,
0.1949922740459442,
-0.6445739269256592,
0.6791343688964844,
0.21188358962535855,
0.3736183941364288,
-0.21800459921360016,
0.7597446441650391,
-0.3732394874095917,
-0.4710160195827484,
0.025146087631583217,
0.05341297015547752,
-0.9522109627723694,
-0.6000866889953613,
-0.08469046652317047,
0.5966026186943054,
0.3444081246852875,
-0.461188405752182,
-0.5279349088668823,
0.10296865552663804,
0.5175143480300903,
-0.20671147108078003,
0.13392412662506104,
0.4812754988670349,
0.2993808686733246,
-0.3005635440349579,
0.5141698122024536,
-0.6239235401153564,
0.2877119481563568,
-0.4452739953994751,
0.5621107816696167,
0.5047508478164673,
-0.4226335883140564,
-0.18578553199768064,
-1.1967322826385498,
0.28178197145462036,
-0.8692031502723694,
-1.1812998056411743,
-1.4526212215423584,
0.4645712077617645,
0.9327932000160216,
-0.6560136675834656,
0.461549699306488,
-0.5621527433395386,
-1.328449010848999,
-0.08676894754171371,
0.00021918353741057217,
-0.18864136934280396,
0.1259666532278061,
0.18240638077259064,
-0.14919660985469818,
-0.8965857625007629,
-0.7539900541305542,
0.013973715715110302,
0.504276692867279,
-0.704748272895813,
-0.6428424119949341,
0.6303996443748474,
-0.5404738187789917,
-0.31176653504371643,
-0.21262824535369873,
0.18736739456653595,
-0.7998970746994019,
0.039946746081113815,
0.7390344738960266,
0.4283199906349182,
0.3795057237148285,
0.07204607129096985,
-0.9230587482452391,
0.9440426230430604,
0.26272690296173096,
0.5598306655883789,
-1.0520871877670288,
-0.2677186131477356,
-0.1888762265443802,
0.30426350235939026,
0.4746131896972656,
-0.5746733546257019,
-0.4197768568992615,
0.8565112948417664,
-0.6767723560333252,
0.23448683321475983,
-0.2010004222393036,
0.4112907350063324,
-0.6497949957847595,
-0.418667733669281,
-0.4950824975967407,
0.44438859820365906,
1.026281714439392,
0.482397586107254,
-0.26220494508743286,
-0.3640787005424499,
0.5907743573188782,
-0.8771642446517944,
0.09708411991596222,
-0.3671700060367584,
0.4331349730491638,
0.619417667388916,
-0.2684665620326996,
-0.5123821496963501,
-0.1502324342727661,
-0.012190685607492924,
0.3580845892429352,
0.8617186546325684,
0.3493645489215851,
1.0270192623138428,
0.18297909200191495,
-0.5881339311599731,
-0.1733516901731491,
-0.5040576457977295,
-0.340370237827301,
-0.26767754554748535,
-0.28570041060447693,
-0.032928116619586945,
0.6029254794120789,
0.17397655546665192,
0.09346921741962431,
0.27815181016921997,
-0.46699589490890503,
-0.8148876428604126,
-0.3964351713657379,
0.3812595009803772,
0.13547226786613464,
0.7126688361167908,
-0.3473474085330963,
-0.06573959439992905,
-0.6483767032623291,
1.4808889627456665,
0.30924928188323975,
-0.5085946917533875,
-0.8613000512123108,
0.3048902451992035,
-0.4241599142551422,
0.15909206867218018,
0.5764641761779785,
-0.07879110425710678,
1.015336513519287,
0.07599356025457382,
-0.7025855779647827,
0.30047643184661865,
-0.35094937682151794,
0.2522146999835968,
-0.2338722199201584,
-0.8326804637908936,
-0.13695412874221802,
-0.03452421352267265,
0.47974953055381775,
-0.18385636806488037,
0.32438594102859497,
0.1797013282775879,
0.787494957447052,
-0.12579888105392456,
-0.07507286965847015,
-0.4389670491218567,
0.2720070779323578,
0.8138866424560547,
0.01974171027541161,
-0.3057698905467987,
-0.6709924936294556,
0.0885881632566452,
-0.2862754464149475,
0.03475658595561981,
-0.1285519152879715,
0.3838353455066681,
-0.2944154739379883,
-0.4204859137535095,
-0.4416137933731079,
0.13426260650157928,
0.36733248829841614,
0.573428750038147,
-0.14928072690963745,
-0.026076916605234143,
0.33286052942276,
-0.5340145826339722,
-0.17279052734375,
-0.01154550164937973,
-0.6620771884918213,
0.18390542268753052,
-0.08265615254640579,
-0.2489682286977768,
0.2429984211921692,
-0.044153645634651184,
-0.986578404903412,
-0.33574509620666504,
-0.5387663841247559,
0.19767941534519196,
0.12540718913078308,
-0.3403128981590271,
-0.4154576361179352,
0.17275673151016235,
0.09407442808151244,
-0.5414086580276489,
0.4393929839134216,
0.1725579798221588,
-0.4998118281364441,
-0.6926208138465881,
0.16552448272705078,
0.6659538149833679,
-0.10949844866991044,
0.986426830291748,
0.01748848147690296,
0.4003709554672241,
-0.5430638194084167,
0.35347291827201843,
0.6887399554252625,
0.08274628221988678,
0.13407137989997864,
-0.591465950012207,
0.3446292281150818,
0.6069018244743347,
0.1935492902994156,
-0.0989871397614479,
0.07008486241102219,
-0.8503749370574951,
-0.09507356584072112,
0.6259510517120361,
0.13934025168418884,
0.06392545253038406,
-0.4112265408039093,
-0.08475656062364578,
0.4974113404750824,
-0.30606114864349365,
1.111435890197754,
-0.018766529858112335,
-0.8422622680664063,
0.4325508773326874,
-0.2832120656967163,
-0.4859798848628998,
-0.41498348116874695,
0.015977520495653152,
0.5292825698852539,
0.4538311660289765,
1.1328668594360352,
0.22632671892642975,
0.7918671369552612,
0.33401933312416077,
0.7306135296821594,
0.3548600673675537,
0.12506209313869476,
0.8573207855224609,
-0.5818327069282532,
-0.6953738927841187,
-1.6171947717666626,
-0.1699674427509308,
0.6318262815475464,
-0.05671752244234085,
-0.28145185112953186,
-0.3976689279079437,
-0.2041076272726059,
-0.5495951175689697,
-0.5152917504310608,
-0.9309796094894408,
0.101932130753994,
0.1367802917957306,
0.1490798443555832,
0.5304336547851563,
-0.5082434415817261,
0.06688683480024338,
0.14657628536224365,
-0.782435953617096,
0.2962816655635834,
0.6965363621711731,
0.8496337532997131,
-0.3042965829372406,
0.04343798756599426,
0.0330701619386673,
-0.5662598013877869,
1.1086925268173218,
0.756072998046875,
-0.204134538769722,
0.2404300570487976,
-0.47848284244537354,
1.3659011125564575,
0.5645433068275452,
-0.15836156904697418,
0.43395575881004333,
0.5944653749465942,
1.0043466091156006,
-0.49446743726730347,
-0.5954391360282898,
0.5341240763664246,
0.020598189905285835,
-0.4036853015422821,
0.4473709762096405,
1.1998231410980225,
-0.9317775368690492,
-0.23321466147899628,
0.2052552700042725,
-0.7423108816146851,
-0.19917210936546328,
-0.1722569614648819,
-0.034072667360305786,
-0.00671181408688426,
0.46396249532699585,
-0.1372445821762085,
0.053376372903585434,
0.7392690777778625,
-0.38447609543800354,
0.07497968524694443,
0.5197252631187439,
1.3746477365493774,
0.9060075879096984,
0.20000585913658145,
-0.4053704142570496,
0.7497360110282898,
-0.34087055921554565,
-1.101803183555603,
0.273650586605072,
-0.5125769376754761,
0.22472351789474487,
0.480757474899292,
-0.19845178723335263,
0.8857700824737549,
0.30752456188201904,
1.1109285354614258,
-0.6768012642860413,
0.524367094039917,
-0.22495046257972717,
-0.4224412739276886,
0.40753406286239624,
-0.23133376240730288,
0.3297771215438843,
0.4905449151992798,
-0.6813114285469055,
-0.7543983459472656,
-0.5599071383476257,
0.14351597428321838,
-0.029278717935085297,
-0.3970443606376648,
-0.303079217672348,
0.24161772429943085,
0.008353390730917454,
-0.0062365154735744,
1.0824860334396362,
-0.3704061508178711,
-1.0337258577346802,
0.04638749733567238,
1.163011074066162,
-0.31737643480300903,
0.013986887410283089,
0.19223114848136905,
-0.2260770797729492,
-0.210910826921463,
-1.0191949605941772,
0.22356095910072327,
0.09353553503751756,
0.18096882104873657,
0.14867214858531952,
0.43408671021461487,
-0.33312076330184937,
0.8173948526382446,
0.6428242921829224,
0.20215003192424777,
-0.6634518504142761,
-0.4132290482521057,
0.29815030097961426,
-1.579406976699829,
-0.0981958732008934,
-0.03941014781594277,
0.1709178239107132,
-0.5481140613555908,
-0.5338194966316223,
-0.3528362512588501,
-0.11561278253793716,
-0.21793591976165771,
-1.1570470333099363,
0.2157980799674988,
0.42083489894866943,
0.9639263153076172,
0.09747201204299928,
0.15671424567699432,
0.4034591615200043,
0.6728067994117737,
-0.5216875672340393,
0.09657668322324751,
-0.2416689097881317,
0.747975766658783,
0.1021689772605896,
0.11652665585279463,
-1.0484966039657593,
0.8489304780960083,
0.7169828414916992,
-0.09012343734502792,
-1.3173753023147583,
0.057890523225069046,
-0.006231260951608419,
-0.1018214002251625,
0.936040461063385,
-0.0502331368625164,
-0.4284322261810303,
-0.38209280371665955,
-0.22668412327766416,
0.0782942995429039,
-0.4881664514541626,
0.9268959760665894,
0.001867273123934865,
0.42261114716529846,
0.8283362984657288,
0.4256294071674347,
-0.7965338826179504,
0.4840078353881836,
-0.19861412048339844,
0.33977967500686646,
-0.4604192078113556,
-0.3107339143753052,
-0.2839638590812683,
-1.5734281539916992,
0.005220232997089624,
0.09239906817674635,
-0.7828494906425476,
-0.1397123783826828,
0.2576255202293396,
0.21372435986995697,
-0.23169949650764465,
0.4016408920288086,
-0.462497353553772,
-0.2186472862958908,
-0.5617868900299072,
-0.3649831712245941,
-1.1585862636566162,
-0.08222806453704834,
0.931126832962036,
0.4327389597892761,
-0.46451422572135925,
-0.5430706143379211,
-0.27434298396110535,
-0.9479129314422609,
0.1845661848783493,
0.3972720205783844,
0.4883299469947815,
1.04031240940094
]
],
"userProvided": false
}
}
}

View File

@@ -0,0 +1,780 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e0",
"desc": "overriden vector",
"_vectors": {
"default": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
]
}
}

Binary file not shown.

View File

@@ -22,7 +22,6 @@ flate2 = "1.0.28"
meilisearch-auth = { path = "../meilisearch-auth" }
meilisearch-types = { path = "../meilisearch-types" }
page_size = "0.5.0"
puffin = { version = "0.16.0", features = ["serialization"] }
rayon = "1.8.1"
roaring = { version = "0.10.2", features = ["serde"] }
serde = { version = "1.0.195", features = ["derive"] }

View File

@@ -31,6 +31,9 @@ use meilisearch_types::milli::heed::CompactionOption;
use meilisearch_types::milli::update::{
IndexDocumentsConfig, IndexDocumentsMethod, IndexerConfig, Settings as MilliSettings,
};
use meilisearch_types::milli::vector::parsed_vectors::{
ExplicitVectors, VectorOrArrayOfVectors, RESERVED_VECTORS_FIELD_NAME,
};
use meilisearch_types::milli::{self, Filter};
use meilisearch_types::settings::{apply_settings_to_builder, Settings, Unchecked};
use meilisearch_types::tasks::{Details, IndexSwap, Kind, KindWithContent, Status, Task};
@@ -526,8 +529,6 @@ impl IndexScheduler {
#[cfg(test)]
self.maybe_fail(crate::tests::FailureLocation::InsideCreateBatch)?;
puffin::profile_function!();
let enqueued = &self.get_status(rtxn, Status::Enqueued)?;
let to_cancel = self.get_kind(rtxn, Kind::TaskCancelation)? & enqueued;
@@ -636,8 +637,6 @@ impl IndexScheduler {
self.breakpoint(crate::Breakpoint::InsideProcessBatch);
}
puffin::profile_function!(batch.to_string());
match batch {
Batch::TaskCancelation { mut task, previous_started_at, previous_processing_tasks } => {
// 1. Retrieve the tasks that matched the query at enqueue-time.
@@ -916,8 +915,55 @@ impl IndexScheduler {
if self.must_stop_processing.get() {
return Err(Error::AbortedTask);
}
let (_id, doc) = ret?;
let document = milli::obkv_to_json(&all_fields, &fields_ids_map, doc)?;
let (id, doc) = ret?;
let mut document = milli::obkv_to_json(&all_fields, &fields_ids_map, doc)?;
'inject_vectors: {
let embeddings = index.embeddings(&rtxn, id)?;
if embeddings.is_empty() {
break 'inject_vectors;
}
let vectors = document
.entry(RESERVED_VECTORS_FIELD_NAME.to_owned())
.or_insert(serde_json::Value::Object(Default::default()));
let serde_json::Value::Object(vectors) = vectors else {
return Err(milli::Error::UserError(
milli::UserError::InvalidVectorsMapType {
document_id: {
if let Ok(Some(Ok(index))) = index
.external_id_of(&rtxn, std::iter::once(id))
.map(|it| it.into_iter().next())
{
index
} else {
format!("internal docid={id}")
}
},
value: vectors.clone(),
},
)
.into());
};
for (embedder_name, embeddings) in embeddings {
// don't change the entry if it already exists, because it was user-provided
vectors.entry(embedder_name).or_insert_with(|| {
let embeddings = ExplicitVectors {
embeddings: VectorOrArrayOfVectors::from_array_of_vectors(
embeddings,
),
user_provided: false,
};
serde_json::to_value(embeddings).unwrap()
});
}
}
index_dumper.push_document(&document)?;
}
@@ -1176,8 +1222,6 @@ impl IndexScheduler {
index: &'i Index,
operation: IndexOperation,
) -> Result<Vec<Task>> {
puffin::profile_function!();
match operation {
IndexOperation::DocumentClear { mut tasks, .. } => {
let count = milli::update::ClearDocuments::new(index_wtxn, index).execute()?;

View File

@@ -68,19 +68,6 @@ impl RoFeatures {
.into())
}
}
pub fn check_puffin(&self) -> Result<()> {
if self.runtime.export_puffin_reports {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Outputting Puffin reports to disk",
feature: "export puffin reports",
issue_link: "https://github.com/meilisearch/product/discussions/693",
}
.into())
}
}
}
impl FeatureData {

View File

@@ -32,7 +32,6 @@ pub fn snapshot_index_scheduler(scheduler: &IndexScheduler) -> String {
features: _,
max_number_of_tasks: _,
max_number_of_batched_tasks: _,
puffin_frame: _,
wake_up: _,
dumps_path: _,
snapshots_path: _,

View File

@@ -33,7 +33,6 @@ pub type Result<T> = std::result::Result<T, Error>;
pub type TaskId = u32;
use std::collections::{BTreeMap, HashMap};
use std::fs::File;
use std::io::{self, BufReader, Read};
use std::ops::{Bound, RangeBounds};
use std::path::{Path, PathBuf};
@@ -59,7 +58,6 @@ use meilisearch_types::milli::vector::{Embedder, EmbedderOptions, EmbeddingConfi
use meilisearch_types::milli::{self, CboRoaringBitmapCodec, Index, RoaringBitmapCodec, BEU32};
use meilisearch_types::task_view::TaskView;
use meilisearch_types::tasks::{Kind, KindWithContent, Status, Task};
use puffin::FrameView;
use rayon::current_num_threads;
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
use roaring::RoaringBitmap;
@@ -344,9 +342,6 @@ pub struct IndexScheduler {
/// The Authorization header to send to the webhook URL.
pub(crate) webhook_authorization_header: Option<String>,
/// A frame to output the indexation profiling files to disk.
pub(crate) puffin_frame: Arc<puffin::GlobalFrameView>,
/// The path used to create the dumps.
pub(crate) dumps_path: PathBuf,
@@ -401,7 +396,6 @@ impl IndexScheduler {
cleanup_enabled: self.cleanup_enabled,
max_number_of_tasks: self.max_number_of_tasks,
max_number_of_batched_tasks: self.max_number_of_batched_tasks,
puffin_frame: self.puffin_frame.clone(),
snapshots_path: self.snapshots_path.clone(),
dumps_path: self.dumps_path.clone(),
auth_path: self.auth_path.clone(),
@@ -500,7 +494,6 @@ impl IndexScheduler {
env,
// we want to start the loop right away in case meilisearch was ctrl+Ced while processing things
wake_up: Arc::new(SignalEvent::auto(true)),
puffin_frame: Arc::new(puffin::GlobalFrameView::default()),
autobatching_enabled: options.autobatching_enabled,
cleanup_enabled: options.cleanup_enabled,
max_number_of_tasks: options.max_number_of_tasks,
@@ -621,10 +614,6 @@ impl IndexScheduler {
run.wake_up.wait();
loop {
let puffin_enabled = run.features().check_puffin().is_ok();
puffin::set_scopes_on(puffin_enabled);
puffin::GlobalProfiler::lock().new_frame();
match run.tick() {
Ok(TickOutcome::TickAgain(_)) => (),
Ok(TickOutcome::WaitForSignal) => run.wake_up.wait(),
@@ -636,31 +625,6 @@ impl IndexScheduler {
}
}
}
// Let's write the previous frame to disk but only if
// the user wanted to profile with puffin.
if puffin_enabled {
let mut frame_view = run.puffin_frame.lock();
if !frame_view.is_empty() {
let now = OffsetDateTime::now_utc();
let mut file = match File::create(format!("{}.puffin", now)) {
Ok(file) => file,
Err(e) => {
tracing::error!("{e}");
continue;
}
};
if let Err(e) = frame_view.save_to_writer(&mut file) {
tracing::error!("{e}");
}
if let Err(e) = file.sync_all() {
tracing::error!("{e}");
}
// We erase this frame view as it is no more useful. We want to
// measure the new frames now that we exported the previous ones.
*frame_view = FrameView::default();
}
}
}
})
.unwrap();
@@ -1774,6 +1738,7 @@ mod tests {
use big_s::S;
use crossbeam::channel::RecvTimeoutError;
use file_store::File;
use insta::assert_json_snapshot;
use meili_snap::{json_string, snapshot};
use meilisearch_auth::AuthFilter;
use meilisearch_types::document_formats::DocumentFormatError;
@@ -1851,7 +1816,7 @@ mod tests {
// To be 100% consistent between all test we're going to start the scheduler right now
// and ensure it's in the expected starting state.
let breakpoint = match receiver.recv_timeout(std::time::Duration::from_secs(1)) {
let breakpoint = match receiver.recv_timeout(std::time::Duration::from_secs(10)) {
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
panic!("The scheduler seems to be waiting for a new task while your test is waiting for a breakpoint.")
@@ -1962,7 +1927,7 @@ mod tests {
fn advance(&mut self) -> Breakpoint {
let (breakpoint_1, b) = match self
.test_breakpoint_rcv
.recv_timeout(std::time::Duration::from_secs(5))
.recv_timeout(std::time::Duration::from_secs(50))
{
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
@@ -1983,7 +1948,7 @@ mod tests {
let (breakpoint_2, b) = match self
.test_breakpoint_rcv
.recv_timeout(std::time::Duration::from_secs(5))
.recv_timeout(std::time::Duration::from_secs(50))
{
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
@@ -4982,4 +4947,233 @@ mod tests {
----------------------------------------------------------------------
"###);
}
#[test]
fn import_vectors() {
use meilisearch_types::settings::{Settings, Unchecked};
use milli::update::Setting;
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
let mut new_settings: Box<Settings<Unchecked>> = Box::default();
let mut embedders = BTreeMap::default();
let embedding_settings = milli::vector::settings::EmbeddingSettings {
source: Setting::Set(milli::vector::settings::EmbedderSource::Rest),
api_key: Setting::Set(S("My super secret")),
url: Setting::Set(S("http://localhost:7777")),
dimensions: Setting::Set(384),
..Default::default()
};
embedders.insert(S("A_fakerest"), Setting::Set(embedding_settings));
let embedding_settings = milli::vector::settings::EmbeddingSettings {
source: Setting::Set(milli::vector::settings::EmbedderSource::HuggingFace),
model: Setting::Set(S("sentence-transformers/all-MiniLM-L6-v2")),
revision: Setting::Set(S("e4ce9877abf3edfe10b0d82785e83bdcb973e22e")),
document_template: Setting::Set(S("{{doc.doggo}} the {{doc.breed}} best doggo")),
..Default::default()
};
embedders.insert(S("B_small_hf"), Setting::Set(embedding_settings));
new_settings.embedders = Setting::Set(embedders);
index_scheduler
.register(
KindWithContent::SettingsUpdate {
index_uid: S("doggos"),
new_settings,
is_deletion: false,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_registering_settings_task_vectors");
{
let rtxn = index_scheduler.read_txn().unwrap();
let task = index_scheduler.get_task(&rtxn, 0).unwrap().unwrap();
let task = meilisearch_types::task_view::TaskView::from_task(&task);
insta::assert_json_snapshot!(task.details);
}
handle.advance_n_successful_batches(1);
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "settings_update_processed_vectors");
{
let rtxn = index_scheduler.read_txn().unwrap();
let task = index_scheduler.get_task(&rtxn, 0).unwrap().unwrap();
let task = meilisearch_types::task_view::TaskView::from_task(&task);
insta::assert_json_snapshot!(task.details);
}
let (fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed) = {
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let configs = index.embedding_configs(&rtxn).unwrap();
// for consistency with the below
#[allow(clippy::get_first)]
let (name, fakerest_config) = configs.get(0).unwrap();
insta::assert_json_snapshot!(name, @r###""A_fakerest""###);
insta::assert_json_snapshot!(fakerest_config.embedder_options);
let fakerest_name = name.clone();
let (name, simple_hf_config) = configs.get(1).unwrap();
insta::assert_json_snapshot!(name, @r###""B_small_hf""###);
insta::assert_json_snapshot!(simple_hf_config.embedder_options);
let simple_hf_name = name.clone();
let configs = index_scheduler.embedders(configs).unwrap();
let (hf_embedder, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
};
// add one doc, specifying vectors
let doc = serde_json::json!(
{
"id": 0,
"doggo": "Intel",
"breed": "beagle",
"_vectors": {
&fakerest_name: {
// this will never trigger regeneration, which is good because we can't actually generate with
// this embedder
"userProvided": true,
"embeddings": beagle_embed,
},
&simple_hf_name: {
// this will be regenerated on updates
"userProvided": false,
"embeddings": lab_embed,
},
"noise": [0.1, 0.2, 0.3]
}
}
);
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0u128).unwrap();
let documents_count = read_json(doc.to_string().as_bytes(), &mut file).unwrap();
assert_eq!(documents_count, 1);
file.persist().unwrap();
index_scheduler
.register(
KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: UpdateDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after adding Intel");
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "adding Intel succeeds");
// check embeddings
{
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let embeddings = index.embeddings(&rtxn, 0).unwrap();
assert_json_snapshot!(embeddings[&simple_hf_name][0] == lab_embed, @"true");
assert_json_snapshot!(embeddings[&fakerest_name][0] == beagle_embed, @"true");
let doc = index.documents(&rtxn, std::iter::once(0)).unwrap()[0].1;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let doc = obkv_to_json(
&[
fields_ids_map.id("doggo").unwrap(),
fields_ids_map.id("breed").unwrap(),
fields_ids_map.id("_vectors").unwrap(),
],
&fields_ids_map,
doc,
)
.unwrap();
assert_json_snapshot!(doc, {"._vectors.A_fakerest.embeddings" => "[vector]"});
}
// update the doc, specifying vectors
let doc = serde_json::json!(
{
"id": 0,
"doggo": "kefir",
"breed": "patou",
}
);
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(1u128).unwrap();
let documents_count = read_json(doc.to_string().as_bytes(), &mut file).unwrap();
assert_eq!(documents_count, 1);
file.persist().unwrap();
index_scheduler
.register(
KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: None,
method: UpdateDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "Intel to kefir");
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "Intel to kefir succeeds");
{
// check embeddings
{
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let embeddings = index.embeddings(&rtxn, 0).unwrap();
// automatically changed to patou
assert_json_snapshot!(embeddings[&simple_hf_name][0] == patou_embed, @"true");
// remained beagle because set to userProvided
assert_json_snapshot!(embeddings[&fakerest_name][0] == beagle_embed, @"true");
let doc = index.documents(&rtxn, std::iter::once(0)).unwrap()[0].1;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let doc = obkv_to_json(
&[
fields_ids_map.id("doggo").unwrap(),
fields_ids_map.id("breed").unwrap(),
fields_ids_map.id("_vectors").unwrap(),
],
&fields_ids_map,
doc,
)
.unwrap();
assert_json_snapshot!(doc, {"._vectors.A_fakerest.embeddings" => "[vector]"});
}
}
}
}

View File

@@ -0,0 +1,19 @@
---
source: index-scheduler/src/lib.rs
expression: doc
---
{
"doggo": "kefir",
"breed": "patou",
"_vectors": {
"A_fakerest": {
"embeddings": "[vector]",
"userProvided": true
},
"noise": [
0.1,
0.2,
0.3
]
}
}

View File

@@ -0,0 +1,20 @@
---
source: index-scheduler/src/lib.rs
expression: task.details
---
{
"embedders": {
"A_fakerest": {
"source": "rest",
"apiKey": "MyXXXX...",
"dimensions": 384,
"url": "http://localhost:7777"
},
"B_small_hf": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}} the {{doc.breed}} best doggo"
}
}
}

View File

@@ -0,0 +1,23 @@
---
source: index-scheduler/src/lib.rs
expression: fakerest_config.embedder_options
---
{
"Rest": {
"api_key": "My super secret",
"distribution": null,
"dimensions": 384,
"url": "http://localhost:7777",
"query": null,
"input_field": [
"input"
],
"path_to_embeddings": [
"data"
],
"embedding_object": [
"embedding"
],
"input_type": "text"
}
}

View File

@@ -0,0 +1,11 @@
---
source: index-scheduler/src/lib.rs
expression: simple_hf_config.embedder_options
---
{
"HuggingFace": {
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"distribution": null
}
}

View File

@@ -0,0 +1,19 @@
---
source: index-scheduler/src/lib.rs
expression: doc
---
{
"doggo": "Intel",
"breed": "beagle",
"_vectors": {
"A_fakerest": {
"embeddings": "[vector]",
"userProvided": true
},
"noise": [
0.1,
0.2,
0.3
]
}
}

View File

@@ -0,0 +1,20 @@
---
source: index-scheduler/src/lib.rs
expression: task.details
---
{
"embedders": {
"A_fakerest": {
"source": "rest",
"apiKey": "MyXXXX...",
"dimensions": 384,
"url": "http://localhost:7777"
},
"B_small_hf": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}} the {{doc.breed}} best doggo"
}
}
}

View File

@@ -0,0 +1,49 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,2,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,2,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,2,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -0,0 +1,48 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [2,]
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,2,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,2,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000001
----------------------------------------------------------------------

View File

@@ -0,0 +1,45 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -0,0 +1,44 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [1,]
succeeded [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 0, field_distribution: {} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -0,0 +1,36 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -0,0 +1,40 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,]
----------------------------------------------------------------------
### Kind:
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 0, field_distribution: {} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -11,7 +11,7 @@ edition.workspace = true
license.workspace = true
[dependencies]
actix-web = { version = "4.5.1", default-features = false }
actix-web = { version = "4.6.0", default-features = false }
anyhow = "1.0.79"
convert_case = "0.6.0"
csv = "1.3.0"
@@ -30,7 +30,12 @@ serde_json = "1.0.111"
tar = "0.4.40"
tempfile = "3.9.0"
thiserror = "1.0.56"
time = { version = "0.3.31", features = ["serde-well-known", "formatting", "parsing", "macros"] }
time = { version = "0.3.31", features = [
"serde-well-known",
"formatting",
"parsing",
"macros",
] }
tokio = "1.35"
uuid = { version = "1.6.1", features = ["serde", "v4"] }

View File

@@ -189,3 +189,6 @@ merge_with_error_impl_take_error_message!(ParseTaskKindError);
merge_with_error_impl_take_error_message!(ParseTaskStatusError);
merge_with_error_impl_take_error_message!(IndexUidFormatError);
merge_with_error_impl_take_error_message!(InvalidSearchSemanticRatio);
merge_with_error_impl_take_error_message!(InvalidSearchRankingScoreThreshold);
merge_with_error_impl_take_error_message!(InvalidSimilarRankingScoreThreshold);
merge_with_error_impl_take_error_message!(InvalidSimilarId);

View File

@@ -239,18 +239,25 @@ InvalidIndexUid , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToSearchOn , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToCrop , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToHighlight , InvalidRequest , BAD_REQUEST ;
InvalidSimilarAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchRankingScoreThreshold , InvalidRequest , BAD_REQUEST ;
InvalidSimilarRankingScoreThreshold , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidSearchSemanticRatio , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
InvalidSimilarId , InvalidRequest , BAD_REQUEST ;
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
InvalidSimilarFilter , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPreTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHitsPerPage , InvalidRequest , BAD_REQUEST ;
InvalidSimilarLimit , InvalidRequest , BAD_REQUEST ;
InvalidSearchLimit , InvalidRequest , BAD_REQUEST ;
InvalidSearchMatchingStrategy , InvalidRequest , BAD_REQUEST ;
InvalidSimilarOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
@@ -259,7 +266,9 @@ InvalidFacetSearchName , InvalidRequest , BAD_REQUEST ;
InvalidSearchVector , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSimilarShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSimilarShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;
@@ -322,7 +331,8 @@ UnretrievableErrorCode , InvalidRequest , BAD_REQUEST ;
UnsupportedMediaType , InvalidRequest , UNSUPPORTED_MEDIA_TYPE ;
// Experimental features
VectorEmbeddingError , InvalidRequest , BAD_REQUEST
VectorEmbeddingError , InvalidRequest , BAD_REQUEST ;
NotFoundSimilarId , InvalidRequest , BAD_REQUEST
}
impl ErrorCode for JoinError {
@@ -384,7 +394,6 @@ impl ErrorCode for milli::Error {
UserError::InvalidGeoField { .. } => Code::InvalidDocumentGeoField,
UserError::InvalidVectorDimensions { .. } => Code::InvalidVectorDimensions,
UserError::InvalidVectorsMapType { .. } => Code::InvalidVectorsType,
UserError::InvalidVectorsType { .. } => Code::InvalidVectorsType,
UserError::TooManyVectors(_, _) => Code::TooManyVectors,
UserError::SortError(_) => Code::InvalidSearchSort,
UserError::InvalidMinTypoWordLenSetting(_, _) => {
@@ -487,6 +496,32 @@ impl fmt::Display for deserr_codes::InvalidSearchSemanticRatio {
}
}
impl fmt::Display for deserr_codes::InvalidSimilarId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"the value of `id` is invalid. \
A document identifier can be of type integer or string, \
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_)."
)
}
}
impl fmt::Display for deserr_codes::InvalidSearchRankingScoreThreshold {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"the value of `rankingScoreThreshold` is invalid, expected a float between `0.0` and `1.0`."
)
}
}
impl fmt::Display for deserr_codes::InvalidSimilarRankingScoreThreshold {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
deserr_codes::InvalidSearchRankingScoreThreshold.fmt(f)
}
}
#[macro_export]
macro_rules! internal_error {
($target:ty : $($other:path), *) => {

View File

@@ -6,7 +6,6 @@ pub struct RuntimeTogglableFeatures {
pub vector_store: bool,
pub metrics: bool,
pub logs_route: bool,
pub export_puffin_reports: bool,
}
#[derive(Default, Debug, Clone, Copy)]

View File

@@ -14,20 +14,20 @@ default-run = "meilisearch"
[dependencies]
actix-cors = "0.7.0"
actix-http = { version = "3.6.0", default-features = false, features = [
actix-http = { version = "3.7.0", default-features = false, features = [
"compress-brotli",
"compress-gzip",
"rustls-0_21",
] }
actix-utils = "3.0.1"
actix-web = { version = "4.5.1", default-features = false, features = [
actix-web = { version = "4.6.0", default-features = false, features = [
"macros",
"compress-brotli",
"compress-gzip",
"cookies",
"rustls-0_21",
] }
actix-web-static-files = { git = "https://github.com/kilork/actix-web-static-files.git", rev = "2d3b6160", optional = true }
actix-web-static-files = { version = "4.0.1", optional = true }
anyhow = { version = "1.0.79", features = ["backtrace"] }
async-stream = "0.3.5"
async-trait = "0.1.77"
@@ -67,7 +67,6 @@ permissive-json-pointer = { path = "../permissive-json-pointer" }
pin-project-lite = "0.2.13"
platform-dirs = "0.3.0"
prometheus = { version = "0.13.3", features = ["process"] }
puffin = { version = "0.16.0", features = ["serialization"] }
rand = "0.8.5"
rayon = "1.8.0"
regex = "1.10.2"
@@ -106,13 +105,13 @@ url = { version = "2.5.0", features = ["serde"] }
tracing = "0.1.40"
tracing-subscriber = { version = "0.3.18", features = ["json"] }
tracing-trace = { version = "0.1.0", path = "../tracing-trace" }
tracing-actix-web = "0.7.9"
tracing-actix-web = "0.7.10"
build-info = { version = "1.7.0", path = "../build-info" }
[dev-dependencies]
actix-rt = "2.9.0"
assert-json-diff = "2.0.2"
brotli = "3.4.0"
brotli = "6.0.0"
insta = "1.34.0"
manifest-dir-macros = "0.1.18"
maplit = "1.0.2"
@@ -132,7 +131,7 @@ reqwest = { version = "0.11.23", features = [
sha-1 = { version = "0.10.1", optional = true }
static-files = { version = "0.2.3", optional = true }
tempfile = { version = "3.9.0", optional = true }
zip = { version = "1.3.1", features = ["deflate"], default-features = false, optional = true }
zip = { version = "0.6.6", optional = true }
[features]
default = ["analytics", "meilisearch-types/all-tokenizations", "mini-dashboard"]

View File

@@ -25,6 +25,18 @@ impl SearchAggregator {
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct SimilarAggregator;
#[allow(dead_code)]
impl SimilarAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct MultiSearchAggregator;
@@ -66,6 +78,8 @@ impl Analytics for MockAnalytics {
fn publish(&self, _event_name: String, _send: Value, _request: Option<&HttpRequest>) {}
fn get_search(&self, _aggregate: super::SearchAggregator) {}
fn post_search(&self, _aggregate: super::SearchAggregator) {}
fn get_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_multi_search(&self, _aggregate: super::MultiSearchAggregator) {}
fn post_facet_search(&self, _aggregate: super::FacetSearchAggregator) {}
fn add_documents(

View File

@@ -22,6 +22,8 @@ pub type SegmentAnalytics = mock_analytics::MockAnalytics;
#[cfg(not(feature = "analytics"))]
pub type SearchAggregator = mock_analytics::SearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type SimilarAggregator = mock_analytics::SimilarAggregator;
#[cfg(not(feature = "analytics"))]
pub type MultiSearchAggregator = mock_analytics::MultiSearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type FacetSearchAggregator = mock_analytics::FacetSearchAggregator;
@@ -32,6 +34,8 @@ pub type SegmentAnalytics = segment_analytics::SegmentAnalytics;
#[cfg(feature = "analytics")]
pub type SearchAggregator = segment_analytics::SearchAggregator;
#[cfg(feature = "analytics")]
pub type SimilarAggregator = segment_analytics::SimilarAggregator;
#[cfg(feature = "analytics")]
pub type MultiSearchAggregator = segment_analytics::MultiSearchAggregator;
#[cfg(feature = "analytics")]
pub type FacetSearchAggregator = segment_analytics::FacetSearchAggregator;
@@ -86,6 +90,12 @@ pub trait Analytics: Sync + Send {
/// This method should be called to aggregate a post search
fn post_search(&self, aggregate: SearchAggregator);
/// This method should be called to aggregate a get similar request
fn get_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post similar request
fn post_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post array of searches
fn post_multi_search(&self, aggregate: MultiSearchAggregator);

View File

@@ -36,8 +36,9 @@ use crate::routes::indexes::facet_search::FacetSearchQuery;
use crate::routes::{create_all_stats, Stats};
use crate::search::{
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEMANTIC_RATIO,
SimilarQuery, SimilarResult, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEMANTIC_RATIO,
};
use crate::Opt;
@@ -73,6 +74,8 @@ pub enum AnalyticsMsg {
BatchMessage(Track),
AggregateGetSearch(SearchAggregator),
AggregatePostSearch(SearchAggregator),
AggregateGetSimilar(SimilarAggregator),
AggregatePostSimilar(SimilarAggregator),
AggregatePostMultiSearch(MultiSearchAggregator),
AggregatePostFacetSearch(FacetSearchAggregator),
AggregateAddDocuments(DocumentsAggregator),
@@ -149,6 +152,8 @@ impl SegmentAnalytics {
update_documents_aggregator: DocumentsAggregator::default(),
get_fetch_documents_aggregator: DocumentsFetchAggregator::default(),
post_fetch_documents_aggregator: DocumentsFetchAggregator::default(),
get_similar_aggregator: SimilarAggregator::default(),
post_similar_aggregator: SimilarAggregator::default(),
});
tokio::spawn(segment.run(index_scheduler.clone(), auth_controller.clone()));
@@ -184,6 +189,14 @@ impl super::Analytics for SegmentAnalytics {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostSearch(aggregate));
}
fn get_similar(&self, aggregate: SimilarAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregateGetSimilar(aggregate));
}
fn post_similar(&self, aggregate: SimilarAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostSimilar(aggregate));
}
fn post_facet_search(&self, aggregate: FacetSearchAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostFacetSearch(aggregate));
}
@@ -379,6 +392,8 @@ pub struct Segment {
update_documents_aggregator: DocumentsAggregator,
get_fetch_documents_aggregator: DocumentsFetchAggregator,
post_fetch_documents_aggregator: DocumentsFetchAggregator,
get_similar_aggregator: SimilarAggregator,
post_similar_aggregator: SimilarAggregator,
}
impl Segment {
@@ -441,6 +456,8 @@ impl Segment {
Some(AnalyticsMsg::AggregateUpdateDocuments(agreg)) => self.update_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateGetFetchDocuments(agreg)) => self.get_fetch_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostFetchDocuments(agreg)) => self.post_fetch_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateGetSimilar(agreg)) => self.get_similar_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostSimilar(agreg)) => self.post_similar_aggregator.aggregate(agreg),
None => (),
}
}
@@ -494,6 +511,8 @@ impl Segment {
update_documents_aggregator,
get_fetch_documents_aggregator,
post_fetch_documents_aggregator,
get_similar_aggregator,
post_similar_aggregator,
} = self;
if let Some(get_search) =
@@ -541,6 +560,18 @@ impl Segment {
{
let _ = self.batcher.push(post_fetch_documents).await;
}
if let Some(get_similar_documents) =
take(get_similar_aggregator).into_event(user, "Similar GET")
{
let _ = self.batcher.push(get_similar_documents).await;
}
if let Some(post_similar_documents) =
take(post_similar_aggregator).into_event(user, "Similar POST")
{
let _ = self.batcher.push(post_similar_documents).await;
}
let _ = self.batcher.flush().await;
}
}
@@ -617,6 +648,7 @@ pub struct SearchAggregator {
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
ranking_score_threshold: bool,
}
impl SearchAggregator {
@@ -645,6 +677,7 @@ impl SearchAggregator {
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
} = query;
let mut ret = Self::default();
@@ -717,6 +750,7 @@ impl SearchAggregator {
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
ret.ranking_score_threshold = ranking_score_threshold.is_some();
if let Some(hybrid) = hybrid {
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
@@ -790,6 +824,7 @@ impl SearchAggregator {
hybrid,
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
} = other;
if self.timestamp.is_none() {
@@ -873,6 +908,7 @@ impl SearchAggregator {
// scoring
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
self.ranking_score_threshold |= ranking_score_threshold;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
@@ -914,6 +950,7 @@ impl SearchAggregator {
hybrid,
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
} = self;
if total_received == 0 {
@@ -984,6 +1021,7 @@ impl SearchAggregator {
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
"ranking_score_threshold": ranking_score_threshold,
},
});
@@ -1056,6 +1094,7 @@ impl MultiSearchAggregator {
matching_strategy: _,
attributes_to_search_on: _,
hybrid: _,
ranking_score_threshold: _,
} = query;
index_uid.as_str()
@@ -1203,6 +1242,7 @@ impl FacetSearchAggregator {
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
} = query;
let mut ret = Self::default();
@@ -1217,7 +1257,8 @@ impl FacetSearchAggregator {
|| filter.is_some()
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some()
|| hybrid.is_some();
|| hybrid.is_some()
|| ranking_score_threshold.is_some();
ret
}
@@ -1558,3 +1599,242 @@ impl DocumentsFetchAggregator {
})
}
}
#[derive(Default)]
pub struct SimilarAggregator {
timestamp: Option<OffsetDateTime>,
// context
user_agents: HashSet<String>,
// requests
total_received: usize,
total_succeeded: usize,
time_spent: BinaryHeap<usize>,
// filter
filter_with_geo_radius: bool,
filter_with_geo_bounding_box: bool,
// every time a request has a filter, this field must be incremented by the number of terms it contains
filter_sum_of_criteria_terms: usize,
// every time a request has a filter, this field must be incremented by one
filter_total_number_of_criteria: usize,
used_syntax: HashMap<String, usize>,
// Whether a non-default embedder was specified
embedder: bool,
// pagination
max_limit: usize,
max_offset: usize,
// formatting
max_attributes_to_retrieve: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
ranking_score_threshold: bool,
}
impl SimilarAggregator {
#[allow(clippy::field_reassign_with_default)]
pub fn from_query(query: &SimilarQuery, request: &HttpRequest) -> Self {
let SimilarQuery {
id: _,
embedder,
offset,
limit,
attributes_to_retrieve: _,
show_ranking_score,
show_ranking_score_details,
filter,
ranking_score_threshold,
} = query;
let mut ret = Self::default();
ret.timestamp = Some(OffsetDateTime::now_utc());
ret.total_received = 1;
ret.user_agents = extract_user_agents(request).into_iter().collect();
if let Some(ref filter) = filter {
static RE: Lazy<Regex> = Lazy::new(|| Regex::new("AND | OR").unwrap());
ret.filter_total_number_of_criteria = 1;
let syntax = match filter {
Value::String(_) => "string".to_string(),
Value::Array(values) => {
if values.iter().map(|v| v.to_string()).any(|s| RE.is_match(&s)) {
"mixed".to_string()
} else {
"array".to_string()
}
}
_ => "none".to_string(),
};
// convert the string to a HashMap
ret.used_syntax.insert(syntax, 1);
let stringified_filters = filter.to_string();
ret.filter_with_geo_radius = stringified_filters.contains("_geoRadius(");
ret.filter_with_geo_bounding_box = stringified_filters.contains("_geoBoundingBox(");
ret.filter_sum_of_criteria_terms = RE.split(&stringified_filters).count();
}
ret.max_limit = *limit;
ret.max_offset = *offset;
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
ret.ranking_score_threshold = ranking_score_threshold.is_some();
ret.embedder = embedder.is_some();
ret
}
pub fn succeed(&mut self, result: &SimilarResult) {
let SimilarResult { id: _, hits: _, processing_time_ms, hits_info: _ } = result;
self.total_succeeded = self.total_succeeded.saturating_add(1);
self.time_spent.push(*processing_time_ms as usize);
}
/// Aggregate one [SimilarAggregator] into another.
pub fn aggregate(&mut self, mut other: Self) {
let Self {
timestamp,
user_agents,
total_received,
total_succeeded,
ref mut time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
ranking_score_threshold,
} = other;
if self.timestamp.is_none() {
self.timestamp = timestamp;
}
// context
for user_agent in user_agents.into_iter() {
self.user_agents.insert(user_agent);
}
// request
self.total_received = self.total_received.saturating_add(total_received);
self.total_succeeded = self.total_succeeded.saturating_add(total_succeeded);
self.time_spent.append(time_spent);
// filter
self.filter_with_geo_radius |= filter_with_geo_radius;
self.filter_with_geo_bounding_box |= filter_with_geo_bounding_box;
self.filter_sum_of_criteria_terms =
self.filter_sum_of_criteria_terms.saturating_add(filter_sum_of_criteria_terms);
self.filter_total_number_of_criteria =
self.filter_total_number_of_criteria.saturating_add(filter_total_number_of_criteria);
for (key, value) in used_syntax.into_iter() {
let used_syntax = self.used_syntax.entry(key).or_insert(0);
*used_syntax = used_syntax.saturating_add(value);
}
self.embedder |= embedder;
// pagination
self.max_limit = self.max_limit.max(max_limit);
self.max_offset = self.max_offset.max(max_offset);
// formatting
self.max_attributes_to_retrieve =
self.max_attributes_to_retrieve.max(max_attributes_to_retrieve);
// scoring
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
self.ranking_score_threshold |= ranking_score_threshold;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
let Self {
timestamp,
user_agents,
total_received,
total_succeeded,
time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
ranking_score_threshold,
} = self;
if total_received == 0 {
None
} else {
// we get all the values in a sorted manner
let time_spent = time_spent.into_sorted_vec();
// the index of the 99th percentage of value
let percentile_99th = time_spent.len() * 99 / 100;
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th);
let properties = json!({
"user-agent": user_agents,
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
},
"filter": {
"with_geoRadius": filter_with_geo_radius,
"with_geoBoundingBox": filter_with_geo_bounding_box,
"avg_criteria_number": format!("{:.2}", filter_sum_of_criteria_terms as f64 / filter_total_number_of_criteria as f64),
"most_used_syntax": used_syntax.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"hybrid": {
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
},
"formatting": {
"max_attributes_to_retrieve": max_attributes_to_retrieve,
},
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
"ranking_score_threshold": ranking_score_threshold,
},
});
Some(Track {
timestamp,
user: user.clone(),
event: event_name.to_string(),
properties,
..Default::default()
})
}
}
}

View File

@@ -47,8 +47,6 @@ pub struct RuntimeTogglableFeatures {
pub metrics: Option<bool>,
#[deserr(default)]
pub logs_route: Option<bool>,
#[deserr(default)]
pub export_puffin_reports: Option<bool>,
}
async fn patch_features(
@@ -68,21 +66,13 @@ async fn patch_features(
vector_store: new_features.0.vector_store.unwrap_or(old_features.vector_store),
metrics: new_features.0.metrics.unwrap_or(old_features.metrics),
logs_route: new_features.0.logs_route.unwrap_or(old_features.logs_route),
export_puffin_reports: new_features
.0
.export_puffin_reports
.unwrap_or(old_features.export_puffin_reports),
};
// explicitly destructure for analytics rather than using the `Serialize` implementation, because
// the it renames to camelCase, which we don't want for analytics.
// **Do not** ignore fields with `..` or `_` here, because we want to add them in the future.
let meilisearch_types::features::RuntimeTogglableFeatures {
vector_store,
metrics,
logs_route,
export_puffin_reports,
} = new_features;
let meilisearch_types::features::RuntimeTogglableFeatures { vector_store, metrics, logs_route } =
new_features;
analytics.publish(
"Experimental features Updated".to_string(),
@@ -90,7 +80,6 @@ async fn patch_features(
"vector_store": vector_store,
"metrics": metrics,
"logs_route": logs_route,
"export_puffin_reports": export_puffin_reports,
}),
Some(&req),
);

View File

@@ -14,8 +14,8 @@ use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::routes::indexes::search::search_kind;
use crate::search::{
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, RankingScoreThreshold,
SearchQuery, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
use crate::search_queue::SearchQueue;
@@ -46,6 +46,8 @@ pub struct FacetSearchQuery {
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
}
pub async fn search(
@@ -69,7 +71,7 @@ pub async fn search(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut search_query, search_rules);
add_search_rules(&mut search_query.filter, search_rules);
}
let index = index_scheduler.index(&index_uid)?;
@@ -103,6 +105,7 @@ impl From<FacetSearchQuery> for SearchQuery {
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
} = value;
SearchQuery {
@@ -128,6 +131,7 @@ impl From<FacetSearchQuery> for SearchQuery {
vector,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
}
}
}

View File

@@ -29,6 +29,7 @@ pub mod documents;
pub mod facet_search;
pub mod search;
pub mod settings;
pub mod similar;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
@@ -48,6 +49,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
.service(web::scope("/documents").configure(documents::configure))
.service(web::scope("/search").configure(search::configure))
.service(web::scope("/facet-search").configure(facet_search::configure))
.service(web::scope("/similar").configure(similar::configure))
.service(web::scope("/settings").configure(settings::configure)),
);
}

View File

@@ -19,9 +19,10 @@ use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
use crate::search::{
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchKind, SearchQuery,
SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
add_search_rules, perform_search, HybridQuery, MatchingStrategy, RankingScoreThreshold,
SearchKind, SearchQuery, SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
};
use crate::search_queue::SearchQueue;
@@ -82,6 +83,21 @@ pub struct SearchQueryGet {
pub hybrid_embedder: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchSemanticRatio>)]
pub hybrid_semantic_ratio: Option<SemanticRatioGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchRankingScoreThreshold>)]
pub ranking_score_threshold: Option<RankingScoreThresholdGet>,
}
#[derive(Debug, Clone, Copy, PartialEq, deserr::Deserr)]
#[deserr(try_from(String) = TryFrom::try_from -> InvalidSearchRankingScoreThreshold)]
pub struct RankingScoreThresholdGet(RankingScoreThreshold);
impl std::convert::TryFrom<String> for RankingScoreThresholdGet {
type Error = InvalidSearchRankingScoreThreshold;
fn try_from(s: String) -> Result<Self, Self::Error> {
let f: f64 = s.parse().map_err(|_| InvalidSearchRankingScoreThreshold)?;
Ok(RankingScoreThresholdGet(RankingScoreThreshold::try_from(f)?))
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, deserr::Deserr)]
@@ -152,6 +168,7 @@ impl From<SearchQueryGet> for SearchQuery {
matching_strategy: other.matching_strategy,
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
hybrid,
ranking_score_threshold: other.ranking_score_threshold.map(|o| o.0),
}
}
}
@@ -196,7 +213,7 @@ pub async fn search_with_url_query(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query, search_rules);
add_search_rules(&mut query.filter, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);
@@ -235,7 +252,7 @@ pub async fn search_with_post(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query, search_rules);
add_search_rules(&mut query.filter, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);

View File

@@ -0,0 +1,188 @@
use actix_web::web::{self, Data};
use actix_web::{HttpRequest, HttpResponse};
use deserr::actix_web::{AwebJson, AwebQueryParameter};
use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::query_params::Param;
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::{
InvalidEmbedder, InvalidSimilarAttributesToRetrieve, InvalidSimilarFilter, InvalidSimilarId,
InvalidSimilarLimit, InvalidSimilarOffset, InvalidSimilarRankingScoreThreshold,
InvalidSimilarShowRankingScore, InvalidSimilarShowRankingScoreDetails,
};
use meilisearch_types::error::{ErrorCode as _, ResponseError};
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::keys::actions;
use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
use tracing::debug;
use super::ActionPolicy;
use crate::analytics::{Analytics, SimilarAggregator};
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_similar, RankingScoreThresholdSimilar, SearchKind, SimilarQuery,
SimilarResult, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
web::resource("")
.route(web::get().to(SeqHandler(similar_get)))
.route(web::post().to(SeqHandler(similar_post))),
);
}
pub async fn similar_get(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebQueryParameter<SimilarQueryGet, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.0.try_into()?;
let mut aggregate = SimilarAggregator::from_query(&query, &req);
debug!(parameters = ?query, "Similar get");
let similar = similar(index_scheduler, index_uid, query).await;
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.get_similar(aggregate);
let similar = similar?;
debug!(returns = ?similar, "Similar get");
Ok(HttpResponse::Ok().json(similar))
}
pub async fn similar_post(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebJson<SimilarQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.into_inner();
debug!(parameters = ?query, "Similar post");
let mut aggregate = SimilarAggregator::from_query(&query, &req);
let similar = similar(index_scheduler, index_uid, query).await;
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.post_similar(aggregate);
let similar = similar?;
debug!(returns = ?similar, "Similar post");
Ok(HttpResponse::Ok().json(similar))
}
async fn similar(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: IndexUid,
mut query: SimilarQuery,
) -> Result<SimilarResult, ResponseError> {
let features = index_scheduler.features();
features.check_vector("Using the similar API")?;
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
}
let index = index_scheduler.index(&index_uid)?;
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
tokio::task::spawn_blocking(move || perform_similar(&index, query, embedder_name, embedder))
.await?
}
#[derive(Debug, deserr::Deserr)]
#[deserr(error = DeserrQueryParamError, rename_all = camelCase, deny_unknown_fields)]
pub struct SimilarQueryGet {
#[deserr(error = DeserrQueryParamError<InvalidSimilarId>)]
id: Param<String>,
#[deserr(default = Param(DEFAULT_SEARCH_OFFSET()), error = DeserrQueryParamError<InvalidSimilarOffset>)]
offset: Param<usize>,
#[deserr(default = Param(DEFAULT_SEARCH_LIMIT()), error = DeserrQueryParamError<InvalidSimilarLimit>)]
limit: Param<usize>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarAttributesToRetrieve>)]
attributes_to_retrieve: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarFilter>)]
filter: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThresholdGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: Option<String>,
}
#[derive(Debug, Clone, Copy, PartialEq, deserr::Deserr)]
#[deserr(try_from(String) = TryFrom::try_from -> InvalidSimilarRankingScoreThreshold)]
pub struct RankingScoreThresholdGet(RankingScoreThresholdSimilar);
impl std::convert::TryFrom<String> for RankingScoreThresholdGet {
type Error = InvalidSimilarRankingScoreThreshold;
fn try_from(s: String) -> Result<Self, Self::Error> {
let f: f64 = s.parse().map_err(|_| InvalidSimilarRankingScoreThreshold)?;
Ok(RankingScoreThresholdGet(RankingScoreThresholdSimilar::try_from(f)?))
}
}
impl TryFrom<SimilarQueryGet> for SimilarQuery {
type Error = ResponseError;
fn try_from(
SimilarQueryGet {
id,
offset,
limit,
attributes_to_retrieve,
filter,
show_ranking_score,
show_ranking_score_details,
embedder,
ranking_score_threshold,
}: SimilarQueryGet,
) -> Result<Self, Self::Error> {
let filter = match filter {
Some(f) => match serde_json::from_str(&f) {
Ok(v) => Some(v),
_ => Some(Value::String(f)),
},
None => None,
};
Ok(SimilarQuery {
id: id.0.try_into().map_err(|code: InvalidSimilarId| {
ResponseError::from_msg(code.to_string(), code.error_code())
})?,
offset: offset.0,
limit: limit.0,
filter,
embedder,
attributes_to_retrieve: attributes_to_retrieve.map(|o| o.into_iter().collect()),
show_ranking_score: show_ranking_score.0,
show_ranking_score_details: show_ranking_score_details.0,
ranking_score_threshold: ranking_score_threshold.map(|x| x.0),
})
}
}

View File

@@ -67,7 +67,7 @@ pub async fn multi_search_with_post(
// Apply search rules from tenant token
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid)
{
add_search_rules(&mut query, search_rules);
add_search_rules(&mut query.filter, search_rules);
}
let index = index_scheduler

View File

@@ -11,7 +11,7 @@ use indexmap::IndexMap;
use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::error::{Code, ResponseError};
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
@@ -87,6 +87,44 @@ pub struct SearchQuery {
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
}
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
#[deserr(try_from(f64) = TryFrom::try_from -> InvalidSearchRankingScoreThreshold)]
pub struct RankingScoreThreshold(f64);
impl std::convert::TryFrom<f64> for RankingScoreThreshold {
type Error = InvalidSearchRankingScoreThreshold;
fn try_from(f: f64) -> Result<Self, Self::Error> {
// the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable
#[allow(clippy::manual_range_contains)]
if f > 1.0 || f < 0.0 {
Err(InvalidSearchRankingScoreThreshold)
} else {
Ok(RankingScoreThreshold(f))
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
#[deserr(try_from(f64) = TryFrom::try_from -> InvalidSimilarRankingScoreThreshold)]
pub struct RankingScoreThresholdSimilar(f64);
impl std::convert::TryFrom<f64> for RankingScoreThresholdSimilar {
type Error = InvalidSimilarRankingScoreThreshold;
fn try_from(f: f64) -> Result<Self, Self::Error> {
// the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable
#[allow(clippy::manual_range_contains)]
if f > 1.0 || f < 0.0 {
Err(InvalidSimilarRankingScoreThreshold)
} else {
Ok(Self(f))
}
}
}
// Since this structure is logged A LOT we're going to reduce the number of things it logs to the bare minimum.
@@ -117,6 +155,7 @@ impl fmt::Debug for SearchQuery {
crop_marker,
matching_strategy,
attributes_to_search_on,
ranking_score_threshold,
} = self;
let mut debug = f.debug_struct("SearchQuery");
@@ -188,6 +227,9 @@ impl fmt::Debug for SearchQuery {
debug.field("highlight_pre_tag", &highlight_pre_tag);
debug.field("highlight_post_tag", &highlight_post_tag);
debug.field("crop_marker", &crop_marker);
if let Some(ranking_score_threshold) = ranking_score_threshold {
debug.field("ranking_score_threshold", &ranking_score_threshold);
}
debug.finish()
}
@@ -231,7 +273,7 @@ impl SearchKind {
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
}
fn embedder(
pub(crate) fn embedder(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
@@ -356,6 +398,8 @@ pub struct SearchQueryWithIndex {
pub matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToSearchOn>, default)]
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
}
impl SearchQueryWithIndex {
@@ -384,6 +428,7 @@ impl SearchQueryWithIndex {
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
} = self;
(
index_uid,
@@ -410,6 +455,7 @@ impl SearchQueryWithIndex {
matching_strategy,
attributes_to_search_on,
hybrid,
ranking_score_threshold,
// do not use ..Default::default() here,
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
},
@@ -417,6 +463,61 @@ impl SearchQueryWithIndex {
}
}
#[derive(Debug, Clone, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct SimilarQuery {
#[deserr(error = DeserrJsonError<InvalidSimilarId>)]
pub id: ExternalDocumentId,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSimilarOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSimilarLimit>)]
pub limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidSimilarFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSimilarRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThresholdSimilar>,
}
#[derive(Debug, Clone, PartialEq, Deserr)]
#[deserr(try_from(Value) = TryFrom::try_from -> InvalidSimilarId)]
pub struct ExternalDocumentId(String);
impl AsRef<str> for ExternalDocumentId {
fn as_ref(&self) -> &str {
&self.0
}
}
impl ExternalDocumentId {
pub fn into_inner(self) -> String {
self.0
}
}
impl TryFrom<String> for ExternalDocumentId {
type Error = InvalidSimilarId;
fn try_from(value: String) -> Result<Self, Self::Error> {
serde_json::Value::String(value).try_into()
}
}
impl TryFrom<Value> for ExternalDocumentId {
type Error = InvalidSimilarId;
fn try_from(value: Value) -> Result<Self, Self::Error> {
Ok(Self(milli::documents::validate_document_id_value(value).map_err(|_| InvalidSimilarId)?))
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum MatchingStrategy {
@@ -424,6 +525,8 @@ pub enum MatchingStrategy {
Last,
/// All query words are mandatory
All,
/// Remove query words from the most frequent to the least
Frequency,
}
impl Default for MatchingStrategy {
@@ -437,6 +540,7 @@ impl From<MatchingStrategy> for TermsMatchingStrategy {
match other {
MatchingStrategy::Last => Self::Last,
MatchingStrategy::All => Self::All,
MatchingStrategy::Frequency => Self::Frequency,
}
}
}
@@ -538,6 +642,16 @@ impl fmt::Debug for SearchResult {
}
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct SimilarResult {
pub hits: Vec<SearchHit>,
pub id: String,
pub processing_time_ms: u128,
#[serde(flatten)]
pub hits_info: HitsInfo,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct SearchResultWithIndex {
@@ -570,8 +684,8 @@ pub struct FacetSearchResult {
}
/// Incorporate search rules in search query
pub fn add_search_rules(query: &mut SearchQuery, rules: IndexSearchRules) {
query.filter = match (query.filter.take(), rules.filter) {
pub fn add_search_rules(filter: &mut Option<Value>, rules: IndexSearchRules) {
*filter = match (filter.take(), rules.filter) {
(None, rules_filter) => rules_filter,
(filter, None) => filter,
(Some(filter), Some(rules_filter)) => {
@@ -598,6 +712,9 @@ fn prepare_search<'t>(
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
let mut search = index.search(rtxn);
search.time_budget(time_budget);
if let Some(ranking_score_threshold) = query.ranking_score_threshold {
search.ranking_score_threshold(ranking_score_threshold.0);
}
match search_kind {
SearchKind::KeywordOnly => {
@@ -639,11 +756,16 @@ fn prepare_search<'t>(
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
search.exhaustive_number_hits(is_finite_pagination);
search.scoring_strategy(if query.show_ranking_score || query.show_ranking_score_details {
ScoringStrategy::Detailed
} else {
ScoringStrategy::Skip
});
search.scoring_strategy(
if query.show_ranking_score
|| query.show_ranking_score_details
|| query.ranking_score_threshold.is_some()
{
ScoringStrategy::Detailed
} else {
ScoringStrategy::Skip
},
);
// compute the offset on the limit depending on the pagination mode.
let (offset, limit) = if is_finite_pagination {
@@ -719,131 +841,53 @@ pub fn perform_search(
SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?,
};
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let SearchQuery {
q,
limit,
page,
hits_per_page,
attributes_to_retrieve,
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_matches_position,
show_ranking_score,
show_ranking_score_details,
sort,
facets,
highlight_pre_tag,
highlight_post_tag,
crop_marker,
// already used in prepare_search
vector: _,
hybrid: _,
offset: _,
ranking_score_threshold: _,
matching_strategy: _,
attributes_to_search_on: _,
filter: _,
} = query;
let displayed_ids = index
.displayed_fields_ids(&rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
if attr == "*" {
ids.clone_from(&displayed_ids);
break;
}
if let Some(id) = fields_ids_map.id(attr) {
ids.insert(id);
}
}
ids
let format = AttributesFormat {
attributes_to_retrieve,
attributes_to_highlight,
attributes_to_crop,
crop_length,
crop_marker,
highlight_pre_tag,
highlight_post_tag,
show_matches_position,
sort,
show_ranking_score,
show_ranking_score_details,
};
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
// but these attributes must be also be present
// - in the fields_ids_map
// - in the displayed attributes
let to_retrieve_ids: BTreeSet<_> = query
.attributes_to_retrieve
.as_ref()
.map(fids)
.unwrap_or_else(|| displayed_ids.clone())
.intersection(&displayed_ids)
.cloned()
.collect();
let attr_to_highlight = query.attributes_to_highlight.unwrap_or_default();
let attr_to_crop = query.attributes_to_crop.unwrap_or_default();
// Attributes in `formatted_options` correspond to the attributes that will be in `_formatted`
// These attributes are:
// - the attributes asked to be highlighted or cropped (with `attributesToCrop` or `attributesToHighlight`)
// - the attributes asked to be retrieved: these attributes will not be highlighted/cropped
// But these attributes must be also present in displayed attributes
let formatted_options = compute_formatted_options(
&attr_to_highlight,
&attr_to_crop,
query.crop_length,
&to_retrieve_ids,
&fields_ids_map,
&displayed_ids,
);
let mut tokenizer_builder = TokenizerBuilder::default();
tokenizer_builder.create_char_map(true);
let script_lang_map = index.script_language(&rtxn)?;
if !script_lang_map.is_empty() {
tokenizer_builder.allow_list(&script_lang_map);
}
let separators = index.allowed_separators(&rtxn)?;
let separators: Option<Vec<_>> =
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref separators) = separators {
tokenizer_builder.separators(separators);
}
let dictionary = index.dictionary(&rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref dictionary) = dictionary {
tokenizer_builder.words_dict(dictionary);
}
let mut formatter_builder = MatcherBuilder::new(matching_words, tokenizer_builder.build());
formatter_builder.crop_marker(query.crop_marker);
formatter_builder.highlight_prefix(query.highlight_pre_tag);
formatter_builder.highlight_suffix(query.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let mut document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
let (matches_position, formatted) = format_fields(
&displayed_document,
&fields_ids_map,
&formatter_builder,
&formatted_options,
query.show_matches_position,
&displayed_ids,
)?;
if let Some(sort) = query.sort.as_ref() {
insert_geo_distance(sort, &mut document);
}
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}
let documents =
make_hits(index, &rtxn, format, matching_words, documents_ids, document_scores)?;
let number_of_hits = min(candidates.len() as usize, max_total_hits);
let hits_info = if is_finite_pagination {
let hits_per_page = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
let hits_per_page = hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
// If hit_per_page is 0, then pages can't be computed and so we respond 0.
let total_pages = (number_of_hits + hits_per_page.saturating_sub(1))
.checked_div(hits_per_page)
@@ -851,15 +895,15 @@ pub fn perform_search(
HitsInfo::Pagination {
hits_per_page,
page: query.page.unwrap_or(1),
page: page.unwrap_or(1),
total_pages,
total_hits: number_of_hits,
}
} else {
HitsInfo::OffsetLimit { limit: query.limit, offset, estimated_total_hits: number_of_hits }
HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits }
};
let (facet_distribution, facet_stats) = match query.facets {
let (facet_distribution, facet_stats) = match facets {
Some(ref fields) => {
let mut facet_distribution = index.facets_distribution(&rtxn);
@@ -896,7 +940,7 @@ pub fn perform_search(
let result = SearchResult {
hits: documents,
hits_info,
query: query.q.unwrap_or_default(),
query: q.unwrap_or_default(),
processing_time_ms: before_search.elapsed().as_millis(),
facet_distribution,
facet_stats,
@@ -907,6 +951,130 @@ pub fn perform_search(
Ok(result)
}
struct AttributesFormat {
attributes_to_retrieve: Option<BTreeSet<String>>,
attributes_to_highlight: Option<HashSet<String>>,
attributes_to_crop: Option<Vec<String>>,
crop_length: usize,
crop_marker: String,
highlight_pre_tag: String,
highlight_post_tag: String,
show_matches_position: bool,
sort: Option<Vec<String>>,
show_ranking_score: bool,
show_ranking_score_details: bool,
}
fn make_hits(
index: &Index,
rtxn: &RoTxn<'_>,
format: AttributesFormat,
matching_words: milli::MatchingWords,
documents_ids: Vec<u32>,
document_scores: Vec<Vec<ScoreDetails>>,
) -> Result<Vec<SearchHit>, MeilisearchHttpError> {
let fields_ids_map = index.fields_ids_map(rtxn).unwrap();
let displayed_ids = index
.displayed_fields_ids(rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
if attr == "*" {
ids.clone_from(&displayed_ids);
break;
}
if let Some(id) = fields_ids_map.id(attr) {
ids.insert(id);
}
}
ids
};
let to_retrieve_ids: BTreeSet<_> = format
.attributes_to_retrieve
.as_ref()
.map(fids)
.unwrap_or_else(|| displayed_ids.clone())
.intersection(&displayed_ids)
.cloned()
.collect();
let attr_to_highlight = format.attributes_to_highlight.unwrap_or_default();
let attr_to_crop = format.attributes_to_crop.unwrap_or_default();
let formatted_options = compute_formatted_options(
&attr_to_highlight,
&attr_to_crop,
format.crop_length,
&to_retrieve_ids,
&fields_ids_map,
&displayed_ids,
);
let mut tokenizer_builder = TokenizerBuilder::default();
tokenizer_builder.create_char_map(true);
let script_lang_map = index.script_language(rtxn)?;
if !script_lang_map.is_empty() {
tokenizer_builder.allow_list(&script_lang_map);
}
let separators = index.allowed_separators(rtxn)?;
let separators: Option<Vec<_>> =
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref separators) = separators {
tokenizer_builder.separators(separators);
}
let dictionary = index.dictionary(rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref dictionary) = dictionary {
tokenizer_builder.words_dict(dictionary);
}
let mut formatter_builder = MatcherBuilder::new(matching_words, tokenizer_builder.build());
formatter_builder.crop_marker(format.crop_marker);
formatter_builder.highlight_prefix(format.highlight_pre_tag);
formatter_builder.highlight_suffix(format.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let mut document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
let (matches_position, formatted) = format_fields(
&displayed_document,
&fields_ids_map,
&formatter_builder,
&formatted_options,
format.show_matches_position,
&displayed_ids,
)?;
if let Some(sort) = format.sort.as_ref() {
insert_geo_distance(sort, &mut document);
}
let ranking_score =
format.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
format.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}
Ok(documents)
}
pub fn perform_facet_search(
index: &Index,
search_query: SearchQuery,
@@ -941,6 +1109,100 @@ pub fn perform_facet_search(
})
}
pub fn perform_similar(
index: &Index,
query: SimilarQuery,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Result<SimilarResult, ResponseError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let SimilarQuery {
id,
offset,
limit,
filter: _,
embedder: _,
attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
ranking_score_threshold,
} = query;
// using let-else rather than `?` so that the borrow checker identifies we're always returning here,
// preventing a use-after-move
let Some(internal_id) = index.external_documents_ids().get(&rtxn, &id)? else {
return Err(ResponseError::from_msg(
MeilisearchHttpError::DocumentNotFound(id.into_inner()).to_string(),
Code::NotFoundSimilarId,
));
};
let mut similar =
milli::Similar::new(internal_id, offset, limit, index, &rtxn, embedder_name, embedder);
if let Some(ref filter) = query.filter {
if let Some(facets) = parse_filter(filter)
// inject InvalidSimilarFilter code
.map_err(|e| ResponseError::from_msg(e.to_string(), Code::InvalidSimilarFilter))?
{
similar.filter(facets);
}
}
if let Some(ranking_score_threshold) = ranking_score_threshold {
similar.ranking_score_threshold(ranking_score_threshold.0);
}
let milli::SearchResult {
documents_ids,
matching_words: _,
candidates,
document_scores,
degraded: _,
used_negative_operator: _,
} = similar.execute().map_err(|err| match err {
milli::Error::UserError(milli::UserError::InvalidFilter(_)) => {
ResponseError::from_msg(err.to_string(), Code::InvalidSimilarFilter)
}
err => err.into(),
})?;
let format = AttributesFormat {
attributes_to_retrieve,
attributes_to_highlight: None,
attributes_to_crop: None,
crop_length: DEFAULT_CROP_LENGTH(),
crop_marker: DEFAULT_CROP_MARKER(),
highlight_pre_tag: DEFAULT_HIGHLIGHT_PRE_TAG(),
highlight_post_tag: DEFAULT_HIGHLIGHT_POST_TAG(),
show_matches_position: false,
sort: None,
show_ranking_score,
show_ranking_score_details,
};
let hits = make_hits(index, &rtxn, format, Default::default(), documents_ids, document_scores)?;
let max_total_hits = index
.pagination_max_total_hits(&rtxn)
.map_err(milli::Error::from)?
.map(|x| x as usize)
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
let number_of_hits = min(candidates.len() as usize, max_total_hits);
let hits_info = HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits };
let result = SimilarResult {
hits,
hits_info,
id: id.into_inner(),
processing_time_ms: before_search.elapsed().as_millis(),
};
Ok(result)
}
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
lazy_static::lazy_static! {
static ref GEO_REGEX: Regex =

View File

@@ -40,8 +40,9 @@ pub struct Permit {
impl Drop for Permit {
fn drop(&mut self) {
let sender = self.sender.clone();
// if the channel is closed then the whole instance is down
let _ = futures::executor::block_on(self.sender.send(()));
std::mem::drop(tokio::spawn(async move { sender.send(()).await }));
}
}

View File

@@ -380,6 +380,43 @@ impl Index<'_> {
self.service.get(url).await
}
/// Performs both GET and POST similar queries
pub async fn similar(
&self,
query: Value,
test: impl Fn(Value, StatusCode) + UnwindSafe + Clone,
) {
let post = self.similar_post(query.clone()).await;
let query = yaup::to_string(&query).unwrap();
let get = self.similar_get(&query).await;
insta::allow_duplicates! {
let (response, code) = post;
let t = test.clone();
if let Err(e) = catch_unwind(move || t(response, code)) {
eprintln!("Error with post search");
resume_unwind(e);
}
let (response, code) = get;
if let Err(e) = catch_unwind(move || test(response, code)) {
eprintln!("Error with get search");
resume_unwind(e);
}
}
}
pub async fn similar_post(&self, query: Value) -> (Value, StatusCode) {
let url = format!("/indexes/{}/similar", urlencode(self.uid.as_ref()));
self.service.post_encoded(url, query, self.encoder).await
}
pub async fn similar_get(&self, query: &str) -> (Value, StatusCode) {
let url = format!("/indexes/{}/similar?{}", urlencode(self.uid.as_ref()), query);
self.service.get(url).await
}
pub async fn facet_search(&self, query: Value) -> (Value, StatusCode) {
let url = format!("/indexes/{}/facet-search", urlencode(self.uid.as_ref()));
self.service.post_encoded(url, query, self.encoder).await

View File

@@ -1859,8 +1859,7 @@ async fn import_dump_v6_containing_experimental_features() {
{
"vectorStore": false,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);

View File

@@ -20,8 +20,7 @@ async fn experimental_features() {
{
"vectorStore": false,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -32,8 +31,7 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -44,8 +42,7 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -57,8 +54,7 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -70,8 +66,7 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
}
@@ -90,8 +85,7 @@ async fn experimental_feature_metrics() {
{
"vectorStore": false,
"metrics": true,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -146,7 +140,7 @@ async fn errors() {
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Unknown field `NotAFeature`: expected one of `vectorStore`, `metrics`, `logsRoute`, `exportPuffinReports`",
"message": "Unknown field `NotAFeature`: expected one of `vectorStore`, `metrics`, `logsRoute`",
"code": "bad_request",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#bad_request"

View File

@@ -8,6 +8,7 @@ mod index;
mod logs;
mod search;
mod settings;
mod similar;
mod snapshot;
mod stats;
mod swap_indexes;

View File

@@ -321,6 +321,40 @@ async fn search_bad_facets() {
// Can't make the `attributes_to_highlight` fail with a get search since it'll accept anything as an array of strings.
}
#[actix_rt::test]
async fn search_bad_threshold() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.search_post(json!({"rankingScoreThreshold": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.rankingScoreThreshold`: expected a number, but found a string: `\"doggo\"`",
"code": "invalid_search_ranking_score_threshold",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_ranking_score_threshold"
}
"###);
}
#[actix_rt::test]
async fn search_invalid_threshold() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.search_post(json!({"rankingScoreThreshold": 42})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.rankingScoreThreshold`: the value of `rankingScoreThreshold` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_search_ranking_score_threshold",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_ranking_score_threshold"
}
"###);
}
#[actix_rt::test]
async fn search_non_filterable_facets() {
let server = Server::new().await;
@@ -505,7 +539,7 @@ async fn search_bad_matching_strategy() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Unknown value `doggo` at `.matchingStrategy`: expected one of `last`, `all`",
"message": "Unknown value `doggo` at `.matchingStrategy`: expected one of `last`, `all`, `frequency`",
"code": "invalid_search_matching_strategy",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_matching_strategy"
@@ -527,7 +561,7 @@ async fn search_bad_matching_strategy() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Unknown value `doggo` for parameter `matchingStrategy`: expected one of `last`, `all`",
"message": "Unknown value `doggo` for parameter `matchingStrategy`: expected one of `last`, `all`, `frequency`",
"code": "invalid_search_matching_strategy",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_matching_strategy"

View File

@@ -117,3 +117,69 @@ async fn geo_bounding_box_with_string_and_number() {
)
.await;
}
#[actix_rt::test]
async fn bug_4640() {
// https://github.com/meilisearch/meilisearch/issues/4640
let server = Server::new().await;
let index = server.index("test");
let documents = DOCUMENTS.clone();
index.add_documents(documents, None).await;
index.update_settings_filterable_attributes(json!(["_geo"])).await;
let (ret, _code) = index.update_settings_sortable_attributes(json!(["_geo"])).await;
index.wait_task(ret.uid()).await;
// Sort the document with the second one first
index
.search(
json!({
"sort": ["_geoPoint(45.4777599, 9.1967508):asc"],
}),
|response, code| {
assert_eq!(code, 200, "{}", response);
snapshot!(json_string!(response, { ".processingTimeMs" => "[time]" }), @r###"
{
"hits": [
{
"id": 2,
"name": "La Bella Italia",
"address": "456 Elm Street, Townsville",
"type": "Italian",
"rating": 9,
"_geo": {
"lat": "45.4777599",
"lng": "9.1967508"
}
},
{
"id": 1,
"name": "Taco Truck",
"address": "444 Salsa Street, Burritoville",
"type": "Mexican",
"rating": 9,
"_geo": {
"lat": 34.0522,
"lng": -118.2437
},
"_geoDistance": 9714063
},
{
"id": 3,
"name": "Crêpe Truck",
"address": "2 Billig Avenue, Rouenville",
"type": "French",
"rating": 10
}
],
"query": "",
"processingTimeMs": "[time]",
"limit": 20,
"offset": 0,
"estimatedTotalHits": 3
}
"###);
},
)
.await;
}

View File

@@ -5,7 +5,10 @@ use crate::common::index::Index;
use crate::common::{Server, Value};
use crate::json;
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
async fn index_with_documents_user_provided<'a>(
server: &'a Server,
documents: &Value,
) -> Index<'a> {
let index = server.index("test");
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
@@ -15,8 +18,7 @@ async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Inde
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);
@@ -34,7 +36,38 @@ async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Inde
index
}
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
async fn index_with_documents_hf<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({ "embedders": {"default": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.title}}, {{doc.desc}}"
}}} ))
.await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
let (response, code) = index.add_documents(documents.clone(), None).await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
index
}
static SIMPLE_SEARCH_DOCUMENTS_VEC: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
@@ -56,7 +89,7 @@ static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
}])
});
static SINGLE_DOCUMENT: Lazy<Value> = Lazy::new(|| {
static SINGLE_DOCUMENT_VEC: Lazy<Value> = Lazy::new(|| {
json!([{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
@@ -65,10 +98,29 @@ static SINGLE_DOCUMENT: Lazy<Value> = Lazy::new(|| {
}])
});
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
},
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
}])
});
#[actix_rt::test]
async fn simple_search() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let (response, code) = index
.search_post(
@@ -98,10 +150,59 @@ async fn simple_search() {
snapshot!(response["semanticHitCount"], @"3");
}
#[actix_rt::test]
async fn simple_search_hf() {
let server = Server::new().await;
let index = index_with_documents_hf(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) =
index.search_post(json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}})).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index
.search_post(
// disable ranking score as the vectors between architectures are not equal
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.55}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"1");
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.8}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"}]"###);
snapshot!(response["semanticHitCount"], @"3");
let (response, code) = index
.search_post(
json!({"q": "Movie World", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"}]"###);
snapshot!(response["semanticHitCount"], @"3");
let (response, code) = index
.search_post(
json!({"q": "Wonder replacement", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"}]"###);
snapshot!(response["semanticHitCount"], @"3");
}
#[actix_rt::test]
async fn distribution_shift() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}});
let (response, code) = index.search_post(search.clone()).await;
@@ -133,7 +234,7 @@ async fn distribution_shift() {
#[actix_rt::test]
async fn highlighter() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
@@ -184,7 +285,7 @@ async fn highlighter() {
#[actix_rt::test]
async fn invalid_semantic_ratio() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let (response, code) = index
.search_post(
@@ -256,7 +357,7 @@ async fn invalid_semantic_ratio() {
#[actix_rt::test]
async fn single_document() {
let server = Server::new().await;
let index = index_with_documents(&server, &SINGLE_DOCUMENT).await;
let index = index_with_documents_user_provided(&server, &SINGLE_DOCUMENT_VEC).await;
let (response, code) = index
.search_post(
@@ -272,7 +373,7 @@ async fn single_document() {
#[actix_rt::test]
async fn query_combination() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index

View File

@@ -0,0 +1,128 @@
use meili_snap::snapshot;
use once_cell::sync::Lazy;
use crate::common::index::Index;
use crate::common::{Server, Value};
use crate::json;
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
index.add_documents(documents.clone(), None).await;
index.wait_task(0).await;
index
}
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"id": "1",
},
{
"title": "Captain Planet",
"id": "2",
},
{
"title": "Captain Marvel",
"id": "3",
},
{
"title": "a Captain Marvel ersatz",
"id": "4"
},
{
"title": "He's not part of the Marvel Cinematic Universe",
"id": "5"
},
{
"title": "a Shazam ersatz, but better than Captain Planet",
"id": "6"
},
{
"title": "Capitain CAAAAAVEEERNE!!!!",
"id": "7"
}
])
});
#[actix_rt::test]
async fn simple_search() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
index
.search(json!({"q": "Captain Marvel", "matchingStrategy": "last", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"},{"id":"2"},{"id":"6"},{"id":"7"}]"###);
})
.await;
index
.search(json!({"q": "Captain Marvel", "matchingStrategy": "all", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"}]"###);
})
.await;
index
.search(json!({"q": "Captain Marvel", "matchingStrategy": "frequency", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"},{"id":"5"}]"###);
})
.await;
}
#[actix_rt::test]
async fn search_with_typo() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
index
.search(json!({"q": "Capitain Marvel", "matchingStrategy": "last", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"},{"id":"7"},{"id":"2"},{"id":"6"}]"###);
})
.await;
index
.search(json!({"q": "Capitain Marvel", "matchingStrategy": "all", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"}]"###);
})
.await;
index
.search(json!({"q": "Capitain Marvel", "matchingStrategy": "frequency", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"},{"id":"5"}]"###);
})
.await;
}
#[actix_rt::test]
async fn search_with_unknown_word() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
index
.search(json!({"q": "Captain Supercopter Marvel", "matchingStrategy": "last", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"2"},{"id":"3"},{"id":"4"},{"id":"6"},{"id":"7"}]"###);
})
.await;
index
.search(json!({"q": "Captain Supercopter Marvel", "matchingStrategy": "all", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @"[]");
})
.await;
index
.search(json!({"q": "Captain Supercopter Marvel", "matchingStrategy": "frequency", "attributesToRetrieve": ["id"]}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":"3"},{"id":"4"},{"id":"5"}]"###);
})
.await;
}

View File

@@ -7,6 +7,7 @@ mod facet_search;
mod formatted;
mod geo;
mod hybrid;
mod matching_strategy;
mod multi;
mod pagination;
mod restrict_searchable;
@@ -47,6 +48,31 @@ static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
])
});
static SCORE_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
},
{
"title": "Batman the dark knight returns: Part 2",
"id": "B",
},
{
"title": "Batman Returns",
"id": "C",
},
{
"title": "Batman",
"id": "D",
},
{
"title": "Badman",
"id": "E",
}
])
});
static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
@@ -680,6 +706,26 @@ async fn search_facet_distribution() {
},
)
.await;
index.update_settings(json!({"filterableAttributes": ["doggos.name"]})).await;
index.wait_task(5).await;
index
.search(
json!({
"facets": ["doggos.name"]
}),
|response, code| {
assert_eq!(code, 200, "{}", response);
let dist = response["facetDistribution"].as_object().unwrap();
assert_eq!(dist.len(), 1);
assert_eq!(
dist["doggos.name"],
json!({ "bobby": 1, "buddy": 1, "gros bill": 1, "turbo": 1, "fast": 1})
);
},
)
.await;
}
#[actix_rt::test]
@@ -895,9 +941,9 @@ async fn test_score_details() {
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
-100.0,
231.0,
32.0
]
},
"_rankingScoreDetails": {
@@ -939,6 +985,213 @@ async fn test_score_details() {
.await;
}
#[actix_rt::test]
async fn test_score() {
let server = Server::new().await;
let index = server.index("test");
let documents = SCORE_DOCUMENTS.clone();
let res = index.add_documents(json!(documents), None).await;
index.wait_task(res.0.uid()).await;
index
.search(
json!({
"q": "Badman the dark knight returns 1",
"showRankingScore": true,
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
"_rankingScore": 0.9746605609456898
},
{
"title": "Batman the dark knight returns: Part 2",
"id": "B",
"_rankingScore": 0.8055252965383685
},
{
"title": "Badman",
"id": "E",
"_rankingScore": 0.16666666666666666
},
{
"title": "Batman Returns",
"id": "C",
"_rankingScore": 0.07702020202020202
},
{
"title": "Batman",
"id": "D",
"_rankingScore": 0.07702020202020202
}
]
"###);
},
)
.await;
}
#[actix_rt::test]
async fn test_score_threshold() {
let query = "Badman dark returns 1";
let server = Server::new().await;
let index = server.index("test");
let documents = SCORE_DOCUMENTS.clone();
let res = index.add_documents(json!(documents), None).await;
index.wait_task(res.0.uid()).await;
index
.search(
json!({
"q": query,
"showRankingScore": true,
"rankingScoreThreshold": 0.0
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"5");
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
"_rankingScore": 0.93430081300813
},
{
"title": "Batman the dark knight returns: Part 2",
"id": "B",
"_rankingScore": 0.6685627880184332
},
{
"title": "Badman",
"id": "E",
"_rankingScore": 0.25
},
{
"title": "Batman Returns",
"id": "C",
"_rankingScore": 0.11553030303030302
},
{
"title": "Batman",
"id": "D",
"_rankingScore": 0.11553030303030302
}
]
"###);
},
)
.await;
index
.search(
json!({
"q": query,
"showRankingScore": true,
"rankingScoreThreshold": 0.2
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @r###"3"###);
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
"_rankingScore": 0.93430081300813
},
{
"title": "Batman the dark knight returns: Part 2",
"id": "B",
"_rankingScore": 0.6685627880184332
},
{
"title": "Badman",
"id": "E",
"_rankingScore": 0.25
}
]
"###);
},
)
.await;
index
.search(
json!({
"q": query,
"showRankingScore": true,
"rankingScoreThreshold": 0.5
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @r###"2"###);
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
"_rankingScore": 0.93430081300813
},
{
"title": "Batman the dark knight returns: Part 2",
"id": "B",
"_rankingScore": 0.6685627880184332
}
]
"###);
},
)
.await;
index
.search(
json!({
"q": query,
"showRankingScore": true,
"rankingScoreThreshold": 0.8
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @r###"1"###);
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Batman the dark knight returns: Part 1",
"id": "A",
"_rankingScore": 0.93430081300813
}
]
"###);
},
)
.await;
index
.search(
json!({
"q": query,
"showRankingScore": true,
"rankingScoreThreshold": 1.0
}),
|response, code| {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @r###"0"###);
// nobody is perfect
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @"[]");
},
)
.await;
}
#[actix_rt::test]
async fn test_degraded_score_details() {
let server = Server::new().await;
@@ -1096,9 +1349,9 @@ async fn experimental_feature_vector_store() {
"id": "287947",
"_vectors": {
"manual": [
1,
2,
3
1.0,
2.0,
3.0
]
},
"_rankingScore": 1.0
@@ -1108,9 +1361,9 @@ async fn experimental_feature_vector_store() {
"id": "299537",
"_vectors": {
"manual": [
1,
2,
54
1.0,
2.0,
54.0
]
},
"_rankingScore": 0.9129111766815186
@@ -1120,9 +1373,9 @@ async fn experimental_feature_vector_store() {
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
-100.0,
340.0,
90.0
]
},
"_rankingScore": 0.8106412887573242
@@ -1132,9 +1385,9 @@ async fn experimental_feature_vector_store() {
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
-100.0,
231.0,
32.0
]
},
"_rankingScore": 0.7412010431289673
@@ -1144,9 +1397,9 @@ async fn experimental_feature_vector_store() {
"id": "522681",
"_vectors": {
"manual": [
10,
-23,
32
10.0,
-23.0,
32.0
]
},
"_rankingScore": 0.6972063183784485
@@ -1405,9 +1658,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
-100.0,
231.0,
32.0
]
}
}
@@ -1426,9 +1679,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
-100.0,
231.0,
32.0
]
}
}
@@ -1447,9 +1700,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
-100.0,
231.0,
32.0
]
}
}

View File

@@ -75,9 +75,9 @@ async fn simple_search_single_index() {
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
-100.0,
340.0,
90.0
]
}
}
@@ -96,9 +96,9 @@ async fn simple_search_single_index() {
"id": "299537",
"_vectors": {
"manual": [
1,
2,
54
1.0,
2.0,
54.0
]
}
}
@@ -194,9 +194,9 @@ async fn simple_search_two_indexes() {
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
-100.0,
340.0,
90.0
]
}
}
@@ -227,9 +227,9 @@ async fn simple_search_two_indexes() {
"cattos": "pésti",
"_vectors": {
"manual": [
1,
2,
3
1.0,
2.0,
3.0
]
}
},
@@ -249,9 +249,9 @@ async fn simple_search_two_indexes() {
],
"_vectors": {
"manual": [
1,
2,
54
1.0,
2.0,
54.0
]
}
}

View File

@@ -98,8 +98,7 @@ async fn secrets_are_hidden_in_settings() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"exportPuffinReports": false
"logsRoute": false
}
"###);

View File

@@ -0,0 +1,758 @@
use meili_snap::*;
use super::DOCUMENTS;
use crate::common::Server;
use crate::json;
#[actix_rt::test]
async fn similar_unexisting_index() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let expected_response = json!({
"message": "Index `test` not found.",
"code": "index_not_found",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#index_not_found"
});
index
.similar(json!({"id": 287947}), |response, code| {
assert_eq!(code, 404);
assert_eq!(response, expected_response);
})
.await;
}
#[actix_rt::test]
async fn similar_unexisting_parameter() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
index
.similar(json!({"id": 287947, "marin": "hello"}), |response, code| {
assert_eq!(code, 400, "{}", response);
assert_eq!(response["code"], "bad_request");
})
.await;
}
#[actix_rt::test]
async fn similar_feature_not_enabled() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"id": 287947})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using the similar API requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": ["doggo"]})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_ranking_score_threshold() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"rankingScoreThreshold": ["doggo"]})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.rankingScoreThreshold`: expected a number, but found an array: `[\"doggo\"]`",
"code": "invalid_similar_ranking_score_threshold",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_ranking_score_threshold"
}
"###);
}
#[actix_rt::test]
async fn similar_invalid_ranking_score_threshold() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"rankingScoreThreshold": 42})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.rankingScoreThreshold`: the value of `rankingScoreThreshold` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_similar_ranking_score_threshold",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_ranking_score_threshold"
}
"###);
}
#[actix_rt::test]
async fn similar_invalid_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "http://invalid-docid/"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_not_found_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "definitely-doesnt-exist"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Document `definitely-doesnt-exist` not found.",
"code": "not_found_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#not_found_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_offset() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "offset": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.offset`: expected a positive integer, but found a string: `\"doggo\"`",
"code": "invalid_similar_offset",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_offset"
}
"###);
let (response, code) = index.similar_get("id=287947&offset=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `offset`: could not parse `doggo` as a positive integer",
"code": "invalid_similar_offset",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_offset"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_limit() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "limit": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.limit`: expected a positive integer, but found a string: `\"doggo\"`",
"code": "invalid_similar_limit",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_limit"
}
"###);
let (response, code) = index.similar_get("id=287946&limit=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `limit`: could not parse `doggo` as a positive integer",
"code": "invalid_similar_limit",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_limit"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_filter() {
// Since a filter is deserialized as a json Value it will never fail to deserialize.
// Thus the error message is not generated by deserr but written by us.
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
snapshot!(code, @"202 Accepted");
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (response, code) = index.similar_post(json!({ "id": 287947, "filter": true })).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid syntax for the filter parameter: `expected String, Array, found: true`.",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
}
"###);
// Can't make the `filter` fail with a get search since it'll accept anything as a strings.
}
#[actix_rt::test]
async fn filter_invalid_syntax_object() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "title & Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_syntax_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["title & Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_syntax_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Found unexpected characters at the end of the filter: `XOR title = Glass`. You probably forgot an `OR` or an `AND` rule.\n15:32 title = Glass XOR title = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(
json!({"id": 287947, "filter": "title = Glass XOR title = Glass"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
#[actix_rt::test]
async fn filter_invalid_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Attribute `many` is not filterable. Available filterable attributes are: `title`.\n1:5 many = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["many = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Attribute `many` is not filterable. Available filterable attributes are: `title`.\n1:5 many = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "many = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geo` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:13 _geo = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geo = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geo` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:13 _geo = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geo = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoDistance` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:21 _geoDistance = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoDistance = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoDistance` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:21 _geoDistance = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoDistance = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_point_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoPoint` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:18 _geoPoint = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoPoint = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_point_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoPoint` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:18 _geoPoint = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoPoint = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}

View File

@@ -0,0 +1,602 @@
mod errors;
use meili_snap::{json_string, snapshot};
use once_cell::sync::Lazy;
use crate::common::{Server, Value};
use crate::json;
static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
// Three semantic properties:
// 1. magic, anything that reminds you of magic
// 2. authority, anything that inspires command
// 3. horror, anything that inspires fear or dread
"_vectors": { "manual": [0.8, 0.4, -0.5]},
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": { "manual": [0.6, 0.8, -0.2] },
},
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": { "manual": [0.1, 0.6, 0.8] },
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": { "manual": [0.7, 0.7, -0.4] },
},
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": { "manual": [-0.5, 0.3, 0.85] },
}
])
});
#[actix_rt::test]
async fn basic() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": "299537"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
},
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
},
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
}
}
]
"###);
})
.await;
}
#[actix_rt::test]
async fn ranking_score_threshold() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"4");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
},
"_rankingScore": 0.890957772731781
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
},
"_rankingScore": 0.39060014486312866
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
},
"_rankingScore": 0.2819308042526245
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
},
"_rankingScore": 0.1662663221359253
}
]
"###);
},
)
.await;
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"3");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
},
"_rankingScore": 0.890957772731781
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
},
"_rankingScore": 0.39060014486312866
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
},
"_rankingScore": 0.2819308042526245
}
]
"###);
},
)
.await;
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"2");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
},
"_rankingScore": 0.890957772731781
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
},
"_rankingScore": 0.39060014486312866
}
]
"###);
},
)
.await;
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"1");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
},
"_rankingScore": 0.890957772731781
}
]
"###);
},
)
.await;
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @"[]");
},
)
.await;
}
#[actix_rt::test]
async fn filter() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title", "release_year"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 522681, "filter": "release_year = 2019"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": 522681, "filter": "release_year < 2000"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
}
}
]
"###);
})
.await;
}
#[actix_rt::test]
async fn limit_and_offset() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "limit": 1}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": 143, "limit": 1, "offset": 1}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
}
]
"###);
})
.await;
}

View File

@@ -31,6 +31,7 @@ macro_rules! verify_snapshot {
}
#[actix_rt::test]
#[cfg_attr(target_os = "windows", ignore)]
async fn perform_snapshot() {
let temp = tempfile::tempdir().unwrap();
let snapshot_dir = tempfile::tempdir().unwrap();

View File

@@ -17,7 +17,7 @@ bincode = "1.3.3"
bstr = "1.9.0"
bytemuck = { version = "1.14.0", features = ["extern_crate_alloc"] }
byteorder = "1.5.0"
charabia = { version = "0.8.10", default-features = false }
charabia = { version = "0.8.11", default-features = false }
concat-arrays = "0.1.2"
crossbeam-channel = "0.5.11"
deserr = "0.6.1"
@@ -67,9 +67,6 @@ filter-parser = { path = "../filter-parser" }
# documents words self-join
itertools = "0.11.0"
# profiling
puffin = "0.16.0"
csv = "1.3.0"
candle-core = { version = "0.4.1" }
candle-transformers = { version = "0.4.1" }

View File

@@ -49,7 +49,7 @@ fn main() -> Result<(), Box<dyn Error>> {
let start = Instant::now();
let mut ctx = SearchContext::new(&index, &txn)?;
let universe = filtered_universe(&ctx, &None)?;
let universe = filtered_universe(ctx.index, ctx.txn, &None)?;
let docs = execute_search(
&mut ctx,
@@ -66,6 +66,7 @@ fn main() -> Result<(), Box<dyn Error>> {
&mut DefaultSearchLogger,
logger,
TimeBudget::max(),
None,
)?;
if let Some((logger, dir)) = detailed_logger {
logger.finish(&mut ctx, Path::new(dir))?;

View File

@@ -12,7 +12,10 @@ use bimap::BiHashMap;
pub use builder::DocumentsBatchBuilder;
pub use enriched::{EnrichedDocument, EnrichedDocumentsBatchCursor, EnrichedDocumentsBatchReader};
use obkv::KvReader;
pub use primary_key::{DocumentIdExtractionError, FieldIdMapper, PrimaryKey, DEFAULT_PRIMARY_KEY};
pub use primary_key::{
validate_document_id_value, DocumentIdExtractionError, FieldIdMapper, PrimaryKey,
DEFAULT_PRIMARY_KEY,
};
pub use reader::{DocumentsBatchCursor, DocumentsBatchCursorError, DocumentsBatchReader};
use serde::{Deserialize, Serialize};

View File

@@ -60,7 +60,7 @@ impl<'a> PrimaryKey<'a> {
Some(document_id_bytes) => {
let document_id = serde_json::from_slice(document_id_bytes)
.map_err(InternalError::SerdeJson)?;
match validate_document_id_value(document_id)? {
match validate_document_id_value(document_id) {
Ok(document_id) => Ok(Ok(document_id)),
Err(user_error) => {
Ok(Err(DocumentIdExtractionError::InvalidDocumentId(user_error)))
@@ -88,7 +88,7 @@ impl<'a> PrimaryKey<'a> {
}
match matching_documents_ids.pop() {
Some(document_id) => match validate_document_id_value(document_id)? {
Some(document_id) => match validate_document_id_value(document_id) {
Ok(document_id) => Ok(Ok(document_id)),
Err(user_error) => {
Ok(Err(DocumentIdExtractionError::InvalidDocumentId(user_error)))
@@ -159,14 +159,14 @@ fn validate_document_id(document_id: &str) -> Option<&str> {
}
}
pub fn validate_document_id_value(document_id: Value) -> Result<StdResult<String, UserError>> {
pub fn validate_document_id_value(document_id: Value) -> StdResult<String, UserError> {
match document_id {
Value::String(string) => match validate_document_id(&string) {
Some(s) if s.len() == string.len() => Ok(Ok(string)),
Some(s) => Ok(Ok(s.to_string())),
None => Ok(Err(UserError::InvalidDocumentId { document_id: Value::String(string) })),
Some(s) if s.len() == string.len() => Ok(string),
Some(s) => Ok(s.to_string()),
None => Err(UserError::InvalidDocumentId { document_id: Value::String(string) }),
},
Value::Number(number) if number.is_i64() => Ok(Ok(number.to_string())),
content => Ok(Err(UserError::InvalidDocumentId { document_id: content })),
Value::Number(number) if number.is_i64() => Ok(number.to_string()),
content => Err(UserError::InvalidDocumentId { document_id: content }),
}
}

View File

@@ -117,10 +117,8 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
InvalidGeoField(#[from] GeoError),
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
InvalidVectorDimensions { expected: usize, found: usize },
#[error("The `_vectors.{subfield}` field in the document with id: `{document_id}` is not an array. Was expecting an array of floats or an array of arrays of floats but instead got `{value}`.")]
InvalidVectorsType { document_id: Value, value: Value, subfield: String },
#[error("The `_vectors` field in the document with id: `{document_id}` is not an object. Was expecting an object with a key for each embedder with manually provided vectors, but instead got `{value}`")]
InvalidVectorsMapType { document_id: Value, value: Value },
InvalidVectorsMapType { document_id: String, value: Value },
#[error("{0}")]
InvalidFilter(String),
#[error("Invalid type for filter subexpression: expected: {}, found: {1}.", .0.join(", "))]

View File

@@ -47,6 +47,12 @@ pub struct FacetGroupValue {
pub bitmap: RoaringBitmap,
}
#[derive(Debug)]
pub struct FacetGroupLazyValue<'b> {
pub size: u8,
pub bitmap_bytes: &'b [u8],
}
pub struct FacetGroupKeyCodec<T> {
_phantom: PhantomData<T>,
}
@@ -69,6 +75,7 @@ where
Ok(Cow::Owned(v))
}
}
impl<'a, T> heed::BytesDecode<'a> for FacetGroupKeyCodec<T>
where
T: BytesDecode<'a>,
@@ -84,6 +91,7 @@ where
}
pub struct FacetGroupValueCodec;
impl<'a> heed::BytesEncode<'a> for FacetGroupValueCodec {
type EItem = FacetGroupValue;
@@ -93,11 +101,23 @@ impl<'a> heed::BytesEncode<'a> for FacetGroupValueCodec {
Ok(Cow::Owned(v))
}
}
impl<'a> heed::BytesDecode<'a> for FacetGroupValueCodec {
type DItem = FacetGroupValue;
fn bytes_decode(bytes: &'a [u8]) -> Result<Self::DItem, BoxedError> {
let size = bytes[0];
let bitmap = CboRoaringBitmapCodec::deserialize_from(&bytes[1..])?;
Ok(FacetGroupValue { size, bitmap })
}
}
pub struct FacetGroupLazyValueCodec;
impl<'a> heed::BytesDecode<'a> for FacetGroupLazyValueCodec {
type DItem = FacetGroupLazyValue<'a>;
fn bytes_decode(bytes: &'a [u8]) -> Result<Self::DItem, BoxedError> {
Ok(FacetGroupLazyValue { size: bytes[0], bitmap_bytes: &bytes[1..] })
}
}

View File

@@ -1,5 +1,5 @@
use std::borrow::Cow;
use std::io;
use std::io::{self, Cursor};
use std::mem::size_of;
use byteorder::{NativeEndian, ReadBytesExt, WriteBytesExt};
@@ -57,6 +57,24 @@ impl CboRoaringBitmapCodec {
}
}
pub fn intersection_with_serialized(
mut bytes: &[u8],
other: &RoaringBitmap,
) -> io::Result<RoaringBitmap> {
// See above `deserialize_from` method for implementation details.
if bytes.len() <= THRESHOLD * size_of::<u32>() {
let mut bitmap = RoaringBitmap::new();
while let Ok(integer) = bytes.read_u32::<NativeEndian>() {
if other.contains(integer) {
bitmap.insert(integer);
}
}
Ok(bitmap)
} else {
other.intersection_with_serialized_unchecked(Cursor::new(bytes))
}
}
/// Merge serialized CboRoaringBitmaps in a buffer.
///
/// if the merged values length is under the threshold, values are directly
@@ -195,7 +213,7 @@ mod tests {
fn merge_cbo_roaring_bitmaps() {
let mut buffer = Vec::new();
let small_data = vec![
let small_data = [
RoaringBitmap::from_sorted_iter(1..4).unwrap(),
RoaringBitmap::from_sorted_iter(2..5).unwrap(),
RoaringBitmap::from_sorted_iter(4..6).unwrap(),
@@ -209,7 +227,7 @@ mod tests {
let expected = RoaringBitmap::from_sorted_iter(1..6).unwrap();
assert_eq!(bitmap, expected);
let medium_data = vec![
let medium_data = [
RoaringBitmap::from_sorted_iter(1..4).unwrap(),
RoaringBitmap::from_sorted_iter(2..5).unwrap(),
RoaringBitmap::from_sorted_iter(4..8).unwrap(),

View File

@@ -23,7 +23,7 @@ use crate::heed_codec::{
};
use crate::order_by_map::OrderByMap;
use crate::proximity::ProximityPrecision;
use crate::vector::EmbeddingConfig;
use crate::vector::{Embedding, EmbeddingConfig};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldIdWordCountCodec,
@@ -1595,6 +1595,22 @@ impl Index {
.unwrap_or_default())
}
pub fn arroy_readers<'a>(
&'a self,
rtxn: &'a RoTxn<'a>,
embedder_id: u8,
) -> impl Iterator<Item = Result<arroy::Reader<arroy::distances::Angular>>> + 'a {
crate::vector::arroy_db_range_for_embedder(embedder_id).map_while(move |k| {
arroy::Reader::open(rtxn, k, self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e.into()),
})
.transpose()
})
}
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
}
@@ -1606,6 +1622,44 @@ impl Index {
pub(crate) fn delete_search_cutoff(&self, wtxn: &mut RwTxn<'_>) -> heed::Result<bool> {
self.main.remap_key_type::<Str>().delete(wtxn, main_key::SEARCH_CUTOFF)
}
pub fn embeddings(
&self,
rtxn: &RoTxn<'_>,
docid: DocumentId,
) -> Result<BTreeMap<String, Vec<Embedding>>> {
let mut res = BTreeMap::new();
for row in self.embedder_category_id.iter(rtxn)? {
let (embedder_name, embedder_id) = row?;
let embedder_id = (embedder_id as u16) << 8;
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(rtxn, embedder_id | (i as u16), self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader?.item_vector(rtxn, docid)?;
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
if !embeddings.is_empty() {
res.insert(embedder_name.to_owned(), embeddings);
}
}
Ok(res)
}
}
#[cfg(test)]

View File

@@ -63,6 +63,7 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
pub use self::search::similar::Similar;
pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
@@ -354,43 +355,13 @@ pub fn is_faceted(field: &str, faceted_fields: impl IntoIterator<Item = impl AsR
/// assert!(!is_faceted_by("animaux.chien", "animaux.chie"));
/// ```
pub fn is_faceted_by(field: &str, facet: &str) -> bool {
field.starts_with(facet)
&& field[facet.len()..].chars().next().map(|c| c == '.').unwrap_or(true)
field.starts_with(facet) && field[facet.len()..].chars().next().map_or(true, |c| c == '.')
}
pub fn normalize_facet(original: &str) -> String {
CompatibilityDecompositionNormalizer.normalize_str(original.trim()).to_lowercase()
}
/// Represents either a vector or an array of multiple vectors.
#[derive(serde::Serialize, serde::Deserialize, Debug)]
#[serde(transparent)]
pub struct VectorOrArrayOfVectors {
#[serde(with = "either::serde_untagged_optional")]
inner: Option<either::Either<Vec<f32>, Vec<Vec<f32>>>>,
}
impl VectorOrArrayOfVectors {
pub fn into_array_of_vectors(self) -> Option<Vec<Vec<f32>>> {
match self.inner? {
either::Either::Left(vector) => Some(vec![vector]),
either::Either::Right(vectors) => Some(vectors),
}
}
}
/// Normalize a vector by dividing the dimensions by the length of it.
pub fn normalize_vector(mut vector: Vec<f32>) -> Vec<f32> {
let squared: f32 = vector.iter().map(|x| x * x).sum();
let length = squared.sqrt();
if length <= f32::EPSILON {
vector
} else {
vector.iter_mut().for_each(|x| *x /= length);
vector
}
}
#[cfg(test)]
mod tests {
use serde_json::json;

View File

@@ -38,7 +38,7 @@ where
field_id,
)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec>(rtxn, db, field_id)? {
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
fd.iterate(candidates, highest_level, first_bound, usize::MAX)?;
Ok(())
} else {
@@ -81,7 +81,7 @@ where
field_id,
)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec>(rtxn, db, field_id)? {
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
// We first fill the heap with values from the highest level
let starting_key =
FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };

View File

@@ -4,9 +4,11 @@ use heed::BytesEncode;
use roaring::RoaringBitmap;
use super::{get_first_facet_value, get_highest_level, get_last_facet_value};
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupKeyCodec, FacetGroupValueCodec};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupLazyValueCodec, FacetGroupValueCodec,
};
use crate::heed_codec::BytesRefCodec;
use crate::Result;
use crate::{CboRoaringBitmapCodec, Result};
/// Find all the document ids for which the given field contains a value contained within
/// the two bounds.
@@ -16,6 +18,7 @@ pub fn find_docids_of_facet_within_bounds<'t, BoundCodec>(
field_id: u16,
left: &'t Bound<<BoundCodec as BytesEncode<'t>>::EItem>,
right: &'t Bound<<BoundCodec as BytesEncode<'t>>::EItem>,
universe: Option<&RoaringBitmap>,
docids: &mut RoaringBitmap,
) -> Result<()>
where
@@ -46,13 +49,15 @@ where
}
Bound::Unbounded => Bound::Unbounded,
};
let db = db.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let mut f = FacetRangeSearch { rtxn, db, field_id, left, right, docids };
let db = db.remap_types::<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupLazyValueCodec>();
let mut f = FacetRangeSearch { rtxn, db, field_id, left, right, universe, docids };
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(starting_left_bound) = get_first_facet_value::<BytesRefCodec>(rtxn, db, field_id)? {
if let Some(starting_left_bound) =
get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?
{
let rightmost_bound =
Bound::Included(get_last_facet_value::<BytesRefCodec>(rtxn, db, field_id)?.unwrap()); // will not fail because get_first_facet_value succeeded
Bound::Included(get_last_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?.unwrap()); // will not fail because get_first_facet_value succeeded
let group_size = usize::MAX;
f.run(highest_level, starting_left_bound, rightmost_bound, group_size)?;
Ok(())
@@ -64,12 +69,16 @@ where
/// Fetch the document ids that have a facet with a value between the two given bounds
struct FacetRangeSearch<'t, 'b, 'bitmap> {
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupLazyValueCodec>,
field_id: u16,
left: Bound<&'b [u8]>,
right: Bound<&'b [u8]>,
/// The subset of documents ids that are useful for this search.
/// Great performance optimizations can be achieved by only fetching values matching this subset.
universe: Option<&'bitmap RoaringBitmap>,
docids: &'bitmap mut RoaringBitmap,
}
impl<'t, 'b, 'bitmap> FacetRangeSearch<'t, 'b, 'bitmap> {
fn run_level_0(&mut self, starting_left_bound: &'t [u8], group_size: usize) -> Result<()> {
let left_key =
@@ -104,7 +113,13 @@ impl<'t, 'b, 'bitmap> FacetRangeSearch<'t, 'b, 'bitmap> {
}
if RangeBounds::<&[u8]>::contains(&(self.left, self.right), &key.left_bound) {
*self.docids |= value.bitmap;
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(value.bitmap_bytes)?,
};
}
}
Ok(())
@@ -195,7 +210,13 @@ impl<'t, 'b, 'bitmap> FacetRangeSearch<'t, 'b, 'bitmap> {
left_condition && right_condition
};
if should_take_whole_group {
*self.docids |= &previous_value.bitmap;
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
previous_value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(previous_value.bitmap_bytes)?,
};
previous_key = next_key;
previous_value = next_value;
continue;
@@ -291,7 +312,13 @@ impl<'t, 'b, 'bitmap> FacetRangeSearch<'t, 'b, 'bitmap> {
left_condition && right_condition
};
if should_take_whole_group {
*self.docids |= &previous_value.bitmap;
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
previous_value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(previous_value.bitmap_bytes)?,
};
} else {
let level = level - 1;
let starting_left_bound = previous_key.left_bound;
@@ -365,6 +392,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -384,6 +412,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -418,6 +447,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -439,6 +469,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -474,6 +505,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -499,6 +531,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -537,6 +570,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -556,6 +590,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -571,6 +606,7 @@ mod tests {
0,
&Bound::Unbounded,
&Bound::Unbounded,
None,
&mut docids,
)
.unwrap();
@@ -586,6 +622,7 @@ mod tests {
1,
&Bound::Unbounded,
&Bound::Unbounded,
None,
&mut docids,
)
.unwrap();
@@ -621,6 +658,7 @@ mod tests {
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
@@ -634,6 +672,7 @@ mod tests {
1,
&start,
&end,
None,
&mut docids,
)
.unwrap();

View File

@@ -36,7 +36,7 @@ pub fn ascending_facet_sort<'t>(
candidates: RoaringBitmap,
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec>(rtxn, db, field_id)? {
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
let iter = db.range(rtxn, &(first_key..)).unwrap().take(usize::MAX);

View File

@@ -19,9 +19,9 @@ pub fn descending_facet_sort<'t>(
candidates: RoaringBitmap,
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec>(rtxn, db, field_id)? {
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
let last_bound = get_last_facet_value::<BytesRefCodec>(rtxn, db, field_id)?.unwrap();
let last_bound = get_last_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?.unwrap();
let last_key = FacetGroupKey { field_id, level: highest_level, left_bound: last_bound };
let iter = db.rev_range(rtxn, &(first_key..=last_key))?.take(usize::MAX);
Ok(itertools::Either::Left(DescendingFacetSort {

View File

@@ -4,7 +4,7 @@ use std::ops::Bound::{self, Excluded, Included};
use either::Either;
pub use filter_parser::{Condition, Error as FPError, FilterCondition, Token};
use roaring::RoaringBitmap;
use roaring::{MultiOps, RoaringBitmap};
use serde_json::Value;
use super::facet_range_search;
@@ -224,14 +224,14 @@ impl<'a> Filter<'a> {
pub fn evaluate(&self, rtxn: &heed::RoTxn, index: &Index) -> Result<RoaringBitmap> {
// to avoid doing this for each recursive call we're going to do it ONCE ahead of time
let filterable_fields = index.filterable_fields(rtxn)?;
self.inner_evaluate(rtxn, index, &filterable_fields)
self.inner_evaluate(rtxn, index, &filterable_fields, None)
}
fn evaluate_operator(
rtxn: &heed::RoTxn,
index: &Index,
field_id: FieldId,
universe: Option<&RoaringBitmap>,
operator: &Condition<'a>,
) -> Result<RoaringBitmap> {
let numbers_db = index.facet_id_f64_docids;
@@ -291,14 +291,22 @@ impl<'a> Filter<'a> {
}
Condition::NotEqual(val) => {
let operator = Condition::Equal(val.clone());
let docids = Self::evaluate_operator(rtxn, index, field_id, &operator)?;
let docids = Self::evaluate_operator(rtxn, index, field_id, None, &operator)?;
let all_ids = index.documents_ids(rtxn)?;
return Ok(all_ids - docids);
}
};
let mut output = RoaringBitmap::new();
Self::explore_facet_number_levels(rtxn, numbers_db, field_id, left, right, &mut output)?;
Self::explore_facet_number_levels(
rtxn,
numbers_db,
field_id,
left,
right,
universe,
&mut output,
)?;
Ok(output)
}
@@ -310,6 +318,7 @@ impl<'a> Filter<'a> {
field_id: FieldId,
left: Bound<f64>,
right: Bound<f64>,
universe: Option<&RoaringBitmap>,
output: &mut RoaringBitmap,
) -> Result<()> {
match (left, right) {
@@ -321,7 +330,7 @@ impl<'a> Filter<'a> {
(_, _) => (),
}
facet_range_search::find_docids_of_facet_within_bounds::<OrderedF64Codec>(
rtxn, db, field_id, &left, &right, output,
rtxn, db, field_id, &left, &right, universe, output,
)?;
Ok(())
@@ -332,31 +341,37 @@ impl<'a> Filter<'a> {
rtxn: &heed::RoTxn,
index: &Index,
filterable_fields: &HashSet<String>,
universe: Option<&RoaringBitmap>,
) -> Result<RoaringBitmap> {
if universe.map_or(false, |u| u.is_empty()) {
return Ok(RoaringBitmap::new());
}
match &self.condition {
FilterCondition::Not(f) => {
let all_ids = index.documents_ids(rtxn)?;
let selected = Self::inner_evaluate(
&(f.as_ref().clone()).into(),
rtxn,
index,
filterable_fields,
universe,
)?;
Ok(all_ids - selected)
match universe {
Some(universe) => Ok(universe - selected),
None => {
let all_ids = index.documents_ids(rtxn)?;
Ok(all_ids - selected)
}
}
}
FilterCondition::In { fid, els } => {
if crate::is_faceted(fid.value(), filterable_fields) {
let field_ids_map = index.fields_ids_map(rtxn)?;
if let Some(fid) = field_ids_map.id(fid.value()) {
let mut bitmap = RoaringBitmap::new();
for el in els {
let op = Condition::Equal(el.clone());
let el_bitmap = Self::evaluate_operator(rtxn, index, fid, &op)?;
bitmap |= el_bitmap;
}
Ok(bitmap)
els.iter()
.map(|el| Condition::Equal(el.clone()))
.map(|op| Self::evaluate_operator(rtxn, index, fid, universe, &op))
.union()
} else {
Ok(RoaringBitmap::new())
}
@@ -371,7 +386,7 @@ impl<'a> Filter<'a> {
if crate::is_faceted(fid.value(), filterable_fields) {
let field_ids_map = index.fields_ids_map(rtxn)?;
if let Some(fid) = field_ids_map.id(fid.value()) {
Self::evaluate_operator(rtxn, index, fid, op)
Self::evaluate_operator(rtxn, index, fid, universe, op)
} else {
Ok(RoaringBitmap::new())
}
@@ -382,14 +397,11 @@ impl<'a> Filter<'a> {
}))?
}
}
FilterCondition::Or(subfilters) => {
let mut bitmap = RoaringBitmap::new();
for f in subfilters {
bitmap |=
Self::inner_evaluate(&(f.clone()).into(), rtxn, index, filterable_fields)?;
}
Ok(bitmap)
}
FilterCondition::Or(subfilters) => subfilters
.iter()
.cloned()
.map(|f| Self::inner_evaluate(&f.into(), rtxn, index, filterable_fields, universe))
.union(),
FilterCondition::And(subfilters) => {
let mut subfilters_iter = subfilters.iter();
if let Some(first_subfilter) = subfilters_iter.next() {
@@ -398,16 +410,21 @@ impl<'a> Filter<'a> {
rtxn,
index,
filterable_fields,
universe,
)?;
for f in subfilters_iter {
if bitmap.is_empty() {
return Ok(bitmap);
}
// TODO We are doing the intersections two times,
// it could be more efficient
// Can't I just replace this `&=` by an `=`?
bitmap &= Self::inner_evaluate(
&(f.clone()).into(),
rtxn,
index,
filterable_fields,
Some(&bitmap),
)?;
}
Ok(bitmap)
@@ -507,6 +524,7 @@ impl<'a> Filter<'a> {
rtxn,
index,
filterable_fields,
universe,
)?;
let geo_lng_token = Token::new(
@@ -539,6 +557,7 @@ impl<'a> Filter<'a> {
rtxn,
index,
filterable_fields,
universe,
)?;
let condition_right = FilterCondition::Condition {
@@ -552,6 +571,7 @@ impl<'a> Filter<'a> {
rtxn,
index,
filterable_fields,
universe,
)?;
left | right
@@ -567,6 +587,7 @@ impl<'a> Filter<'a> {
rtxn,
index,
filterable_fields,
universe,
)?
};

View File

@@ -7,7 +7,7 @@ use roaring::RoaringBitmap;
pub use self::facet_distribution::{FacetDistribution, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::filter::{BadGeoError, Filter};
pub use self::search::{FacetValueHit, SearchForFacetValues};
use crate::heed_codec::facet::{FacetGroupKeyCodec, FacetGroupValueCodec, OrderedF64Codec};
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::heed_codec::BytesRefCodec;
use crate::{Index, Result};
@@ -54,9 +54,9 @@ pub fn facet_max_value<'t>(
}
/// Get the first facet value in the facet database
pub(crate) fn get_first_facet_value<'t, BoundCodec>(
pub(crate) fn get_first_facet_value<'t, BoundCodec, DC>(
txn: &'t RoTxn,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<Option<BoundCodec::DItem>>
where
@@ -78,9 +78,9 @@ where
}
/// Get the last facet value in the facet database
pub(crate) fn get_last_facet_value<'t, BoundCodec>(
pub(crate) fn get_last_facet_value<'t, BoundCodec, DC>(
txn: &'t RoTxn,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<Option<BoundCodec::DItem>>
where
@@ -102,9 +102,9 @@ where
}
/// Get the height of the highest level in the facet database
pub(crate) fn get_highest_level<'t>(
pub(crate) fn get_highest_level<'t, DC>(
txn: &'t RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<u8> {
let field_id_prefix = &field_id.to_be_bytes();

View File

@@ -169,6 +169,7 @@ impl<'a> Search<'a> {
index: self.index,
semantic: self.semantic.clone(),
time_budget: self.time_budget.clone(),
ranking_score_threshold: self.ranking_score_threshold,
};
let semantic = search.semantic.take();

View File

@@ -24,6 +24,7 @@ pub mod facet;
mod fst_utils;
pub mod hybrid;
pub mod new;
pub mod similar;
#[derive(Debug, Clone)]
pub struct SemanticSearch {
@@ -49,6 +50,7 @@ pub struct Search<'a> {
index: &'a Index,
semantic: Option<SemanticSearch>,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
}
impl<'a> Search<'a> {
@@ -69,6 +71,7 @@ impl<'a> Search<'a> {
index,
semantic: None,
time_budget: TimeBudget::max(),
ranking_score_threshold: None,
}
}
@@ -145,10 +148,15 @@ impl<'a> Search<'a> {
self
}
pub fn ranking_score_threshold(&mut self, ranking_score_threshold: f64) -> &mut Search<'a> {
self.ranking_score_threshold = Some(ranking_score_threshold);
self
}
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
if has_vector_search {
let ctx = SearchContext::new(self.index, self.rtxn)?;
filtered_universe(&ctx, &self.filter)
filtered_universe(ctx.index, ctx.txn, &self.filter)
} else {
Ok(self.execute()?.candidates)
}
@@ -161,7 +169,7 @@ impl<'a> Search<'a> {
ctx.attributes_to_search_on(searchable_attributes)?;
}
let universe = filtered_universe(&ctx, &self.filter)?;
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
let PartialSearchResult {
located_query_terms,
candidates,
@@ -183,6 +191,7 @@ impl<'a> Search<'a> {
embedder_name,
embedder,
self.time_budget.clone(),
self.ranking_score_threshold,
)?
}
_ => execute_search(
@@ -200,6 +209,7 @@ impl<'a> Search<'a> {
&mut DefaultSearchLogger,
&mut DefaultSearchLogger,
self.time_budget.clone(),
self.ranking_score_threshold,
)?,
};
@@ -238,6 +248,7 @@ impl fmt::Debug for Search<'_> {
index: _,
semantic,
time_budget,
ranking_score_threshold,
} = self;
f.debug_struct("Search")
.field("query", query)
@@ -256,6 +267,7 @@ impl fmt::Debug for Search<'_> {
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
)
.field("time_budget", time_budget)
.field("ranking_score_threshold", ranking_score_threshold)
.finish()
}
}
@@ -276,6 +288,8 @@ pub enum TermsMatchingStrategy {
Last,
// all words are mandatory
All,
// remove more frequent word first
Frequency,
}
impl Default for TermsMatchingStrategy {

View File

@@ -28,6 +28,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
scoring_strategy: ScoringStrategy,
logger: &mut dyn SearchLogger<Q>,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
) -> Result<BucketSortOutput> {
logger.initial_query(query);
logger.ranking_rules(&ranking_rules);
@@ -164,7 +165,19 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
loop {
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
ranking_rule_scores.push(ScoreDetails::Skipped);
// remove candidates from the universe without adding them to result if their score is below the threshold
if let Some(ranking_score_threshold) = ranking_score_threshold {
let current_score = ScoreDetails::global_score(ranking_rule_scores.iter());
if current_score < ranking_score_threshold {
all_candidates -= bucket | &ranking_rule_universes[cur_ranking_rule_index];
back!();
continue;
}
}
maybe_add_to_results!(bucket);
ranking_rule_scores.pop();
if cur_ranking_rule_index == 0 {
@@ -220,6 +233,18 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
debug_assert!(
ranking_rule_universes[cur_ranking_rule_index].is_superset(&next_bucket.candidates)
);
// remove candidates from the universe without adding them to result if their score is below the threshold
if let Some(ranking_score_threshold) = ranking_score_threshold {
let current_score = ScoreDetails::global_score(ranking_rule_scores.iter());
if current_score < ranking_score_threshold {
all_candidates -=
next_bucket.candidates | &ranking_rule_universes[cur_ranking_rule_index];
back!();
continue;
}
}
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1

View File

@@ -164,6 +164,21 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
}
costs
}
TermsMatchingStrategy::Frequency => {
let removal_order =
query_graph.removal_order_for_terms_matching_strategy_frequency(ctx)?;
let mut forbidden_nodes =
SmallBitmap::for_interned_values_in(&query_graph.nodes);
let mut costs = query_graph.nodes.map(|_| None);
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
for ns in removal_order {
for n in ns.iter() {
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
}
forbidden_nodes.union(&ns);
}
costs
}
TermsMatchingStrategy::All => query_graph.nodes.map(|_| None),
}
} else {

View File

@@ -507,7 +507,7 @@ mod tests {
impl<'a> MatcherBuilder<'a> {
fn new_test(rtxn: &'a heed::RoTxn, index: &'a TempIndex, query: &str) -> Self {
let mut ctx = SearchContext::new(index, rtxn).unwrap();
let universe = filtered_universe(&ctx, &None).unwrap();
let universe = filtered_universe(ctx.index, ctx.txn, &None).unwrap();
let crate::search::PartialSearchResult { located_query_terms, .. } = execute_search(
&mut ctx,
Some(query),
@@ -523,6 +523,7 @@ mod tests {
&mut crate::DefaultSearchLogger,
&mut crate::DefaultSearchLogger,
TimeBudget::max(),
None,
)
.unwrap();

View File

@@ -197,6 +197,11 @@ fn resolve_maximally_reduced_query_graph(
.iter()
.flat_map(|x| x.iter())
.collect(),
TermsMatchingStrategy::Frequency => query_graph
.removal_order_for_terms_matching_strategy_frequency(ctx)?
.iter()
.flat_map(|x| x.iter())
.collect(),
TermsMatchingStrategy::All => vec![],
};
graph.remove_nodes_keep_edges(&nodes_to_remove);
@@ -543,11 +548,16 @@ fn resolve_sort_criteria<'ctx, Query: RankingRuleQueryTrait>(
Ok(())
}
pub fn filtered_universe(ctx: &SearchContext, filters: &Option<Filter>) -> Result<RoaringBitmap> {
#[tracing::instrument(level = "trace", skip_all, target = "search")]
pub fn filtered_universe(
index: &Index,
txn: &RoTxn<'_>,
filters: &Option<Filter>,
) -> Result<RoaringBitmap> {
Ok(if let Some(filters) = filters {
filters.evaluate(ctx.txn, ctx.index)?
filters.evaluate(txn, index)?
} else {
ctx.index.documents_ids(ctx.txn)?
index.documents_ids(txn)?
})
}
@@ -564,6 +574,7 @@ pub fn execute_vector_search(
embedder_name: &str,
embedder: &Embedder,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
) -> Result<PartialSearchResult> {
check_sort_criteria(ctx, sort_criteria.as_ref())?;
@@ -593,6 +604,7 @@ pub fn execute_vector_search(
scoring_strategy,
placeholder_search_logger,
time_budget,
ranking_score_threshold,
)?;
Ok(PartialSearchResult {
@@ -622,6 +634,7 @@ pub fn execute_search(
placeholder_search_logger: &mut dyn SearchLogger<PlaceholderQuery>,
query_graph_logger: &mut dyn SearchLogger<QueryGraph>,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
) -> Result<PartialSearchResult> {
check_sort_criteria(ctx, sort_criteria.as_ref())?;
@@ -710,6 +723,7 @@ pub fn execute_search(
scoring_strategy,
query_graph_logger,
time_budget,
ranking_score_threshold,
)?
} else {
let ranking_rules =
@@ -724,6 +738,7 @@ pub fn execute_search(
scoring_strategy,
placeholder_search_logger,
time_budget,
ranking_score_threshold,
)?
};

View File

@@ -1,8 +1,9 @@
use std::cmp::Ordering;
use std::cmp::{Ordering, Reverse};
use std::collections::BTreeMap;
use std::hash::{Hash, Hasher};
use fxhash::{FxHashMap, FxHasher};
use roaring::RoaringBitmap;
use super::interner::{FixedSizeInterner, Interned};
use super::query_term::{
@@ -11,6 +12,7 @@ use super::query_term::{
use super::small_bitmap::SmallBitmap;
use super::SearchContext;
use crate::search::new::interner::Interner;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
use crate::Result;
/// A node of the [`QueryGraph`].
@@ -290,6 +292,49 @@ impl QueryGraph {
}
}
pub fn removal_order_for_terms_matching_strategy_frequency(
&self,
ctx: &mut SearchContext,
) -> Result<Vec<SmallBitmap<QueryNode>>> {
// lookup frequency for each term
let mut term_with_frequency: Vec<(u8, u64)> = {
let mut term_docids: BTreeMap<u8, RoaringBitmap> = Default::default();
for (_, node) in self.nodes.iter() {
match &node.data {
QueryNodeData::Term(t) => {
let docids = compute_query_term_subset_docids(ctx, &t.term_subset)?;
for id in t.term_ids.clone() {
term_docids
.entry(id)
.and_modify(|curr| *curr |= &docids)
.or_insert_with(|| docids.clone());
}
}
QueryNodeData::Deleted | QueryNodeData::Start | QueryNodeData::End => continue,
}
}
term_docids
.into_iter()
.map(|(idx, docids)| match docids.len() {
0 => (idx, u64::max_value()),
frequency => (idx, frequency),
})
.collect()
};
term_with_frequency.sort_by_key(|(_, frequency)| Reverse(*frequency));
let mut term_weight = BTreeMap::new();
let mut weight: u16 = 1;
let mut peekable = term_with_frequency.into_iter().peekable();
while let Some((idx, frequency)) = peekable.next() {
term_weight.insert(idx, weight);
if peekable.peek().map_or(false, |(_, f)| frequency != *f) {
weight += 1;
}
}
let cost_of_term_idx = move |term_idx: u8| *term_weight.get(&term_idx).unwrap();
Ok(self.removal_order_for_terms_matching_strategy(ctx, cost_of_term_idx))
}
pub fn removal_order_for_terms_matching_strategy_last(
&self,
ctx: &SearchContext,
@@ -315,10 +360,19 @@ impl QueryGraph {
if first_term_idx >= last_term_idx {
return vec![];
}
let cost_of_term_idx = |term_idx: u8| {
let rank = 1 + last_term_idx - term_idx;
rank as u16
};
self.removal_order_for_terms_matching_strategy(ctx, cost_of_term_idx)
}
pub fn removal_order_for_terms_matching_strategy(
&self,
ctx: &SearchContext,
order: impl Fn(u8) -> u16,
) -> Vec<SmallBitmap<QueryNode>> {
let mut nodes_to_remove = BTreeMap::<u16, SmallBitmap<QueryNode>>::new();
let mut at_least_one_mandatory_term = false;
for (node_id, node) in self.nodes.iter() {
@@ -329,7 +383,7 @@ impl QueryGraph {
}
let mut cost = 0;
for id in t.term_ids.clone() {
cost = std::cmp::max(cost, cost_of_term_idx(id));
cost = std::cmp::max(cost, order(id));
}
nodes_to_remove
.entry(cost)

View File

@@ -49,19 +49,8 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
ctx: &mut SearchContext<'_>,
vector_candidates: &RoaringBitmap,
) -> Result<()> {
let writer_index = (self.embedder_index as u16) << 8;
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
.map_while(|k| {
arroy::Reader::open(ctx.txn, writer_index | (k as u16), ctx.index.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e),
})
.transpose()
})
.collect();
let readers: std::result::Result<Vec<_>, _> =
ctx.index.arroy_readers(ctx.txn, self.embedder_index).collect();
let readers = readers?;
let target = &self.target;

146
milli/src/search/similar.rs Normal file
View File

@@ -0,0 +1,146 @@
use std::sync::Arc;
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use crate::score_details::{self, ScoreDetails};
use crate::vector::Embedder;
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
pub struct Similar<'a> {
id: DocumentId,
// this should be linked to the String in the query
filter: Option<Filter<'a>>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
embedder_name: String,
embedder: Arc<Embedder>,
ranking_score_threshold: Option<f64>,
}
impl<'a> Similar<'a> {
pub fn new(
id: DocumentId,
offset: usize,
limit: usize,
index: &'a Index,
rtxn: &'a heed::RoTxn<'a>,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Self {
Self {
id,
filter: None,
offset,
limit,
rtxn,
index,
embedder_name,
embedder,
ranking_score_threshold: None,
}
}
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
self.filter = Some(filter);
self
}
pub fn ranking_score_threshold(&mut self, ranking_score_threshold: f64) -> &mut Self {
self.ranking_score_threshold = Some(ranking_score_threshold);
self
}
pub fn execute(&self) -> Result<SearchResult> {
let mut universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
// we never want to receive the docid
universe.remove(self.id);
let universe = universe;
let embedder_index =
self.index
.embedder_category_id
.get(self.rtxn, &self.embedder_name)?
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
let readers: std::result::Result<Vec<_>, _> =
self.index.arroy_readers(self.rtxn, embedder_index).collect();
let readers = readers?;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_item = reader.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
None,
Some(&universe),
)?;
if let Some(mut nns_by_item) = nns_by_item {
results.append(&mut nns_by_item);
} else {
break;
}
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
let mut documents_ids = Vec::with_capacity(self.limit);
let mut document_scores = Vec::with_capacity(self.limit);
// list of documents we've already seen, so that we don't return the same document multiple times.
// initialized to the target document, that we never want to return.
let mut documents_seen = RoaringBitmap::new();
documents_seen.insert(self.id);
let mut candidates = universe;
for (docid, distance) in results
.into_iter()
// skip documents we've already seen & mark that we saw the current document
.filter(|(docid, _)| documents_seen.insert(*docid))
.skip(self.offset)
// take **after** filter and skip so that we get exactly limit elements if available
.take(self.limit)
{
let score = 1.0 - distance;
let score = self
.embedder
.distribution()
.map(|distribution| distribution.shift(score))
.unwrap_or(score);
let score_details =
vec![ScoreDetails::Vector(score_details::Vector { similarity: Some(score) })];
let score = ScoreDetails::global_score(score_details.iter());
if let Some(ranking_score_threshold) = &self.ranking_score_threshold {
if score < *ranking_score_threshold {
// this document is no longer a candidate
candidates.remove(docid);
// any document after this one is no longer a candidate either, so restrict the set to documents already seen.
candidates &= documents_seen;
break;
}
}
documents_ids.push(docid);
document_scores.push(score_details);
}
Ok(SearchResult {
matching_words: Default::default(),
candidates,
documents_ids,
document_scores,
degraded: false,
used_negative_operator: false,
})
}
}

View File

@@ -21,8 +21,6 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
name = "clear_documents"
)]
pub fn execute(self) -> Result<u64> {
puffin::profile_function!();
self.index.set_updated_at(self.wtxn, &OffsetDateTime::now_utc())?;
let Index {
env: _env,

View File

@@ -40,11 +40,26 @@ pub fn into_del_add_obkv<K: obkv::Key + PartialOrd>(
operation: DelAddOperation,
buffer: &mut Vec<u8>,
) -> Result<(), std::io::Error> {
into_del_add_obkv_conditional_operation(reader, buffer, |_| operation)
}
/// Akin to the [into_del_add_obkv] function but lets you
/// conditionally define the `DelAdd` variant based on the obkv key.
pub fn into_del_add_obkv_conditional_operation<K, F>(
reader: obkv::KvReader<K>,
buffer: &mut Vec<u8>,
operation: F,
) -> std::io::Result<()>
where
K: obkv::Key + PartialOrd,
F: Fn(K) -> DelAddOperation,
{
let mut writer = obkv::KvWriter::new(buffer);
let mut value_buffer = Vec::new();
for (key, value) in reader.iter() {
value_buffer.clear();
let mut value_writer = KvWriterDelAdd::new(&mut value_buffer);
let operation = operation(key);
if matches!(operation, DelAddOperation::Deletion | DelAddOperation::DeletionAndAddition) {
value_writer.insert(DelAdd::Deletion, value)?;
}

View File

@@ -29,8 +29,6 @@ pub fn enrich_documents_batch<R: Read + Seek>(
autogenerate_docids: bool,
reader: DocumentsBatchReader<R>,
) -> Result<StdResult<EnrichedDocumentsBatchReader<R>, UserError>> {
puffin::profile_function!();
let (mut cursor, mut documents_batch_index) = reader.into_cursor_and_fields_index();
let mut external_ids = tempfile::tempfile().map(BufWriter::new).map(grenad::Writer::new)?;

View File

@@ -29,8 +29,6 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
settings_diff: &InnerIndexSettingsDiff,
max_positions_per_attributes: Option<u32>,
) -> Result<(grenad::Reader<BufReader<File>>, ScriptLanguageDocidsMap)> {
puffin::profile_function!();
let max_positions_per_attributes = max_positions_per_attributes
.map_or(MAX_POSITION_PER_ATTRIBUTE, |max| max.min(MAX_POSITION_PER_ATTRIBUTE));
let max_memory = indexer.max_memory_by_thread();

View File

@@ -23,8 +23,6 @@ pub fn extract_facet_number_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut facet_number_docids_sorter = create_sorter(

View File

@@ -28,8 +28,6 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let options = NormalizerOption { lossy: true, ..Default::default() };

View File

@@ -1,5 +1,5 @@
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::collections::{BTreeMap, BTreeSet};
use std::convert::TryInto;
use std::fs::File;
use std::io::{self, BufReader};
@@ -9,7 +9,7 @@ use std::result::Result as StdResult;
use bytemuck::bytes_of;
use grenad::Sorter;
use heed::BytesEncode;
use itertools::EitherOrBoth;
use itertools::{merge_join_by, EitherOrBoth};
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use serde_json::{from_slice, Value};
@@ -18,7 +18,7 @@ use FilterableValues::{Empty, Null, Values};
use super::helpers::{create_sorter, keep_first, sorter_into_reader, GrenadParameters};
use crate::error::InternalError;
use crate::facet::value_encoding::f64_into_bytes;
use crate::update::del_add::{DelAdd, KvWriterDelAdd};
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::{create_writer, writer_into_reader};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::{CboRoaringBitmapCodec, DocumentId, Error, FieldId, Result, MAX_FACET_VALUE_LENGTH};
@@ -45,10 +45,7 @@ pub fn extract_fid_docid_facet_values<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
geo_fields_ids: Option<(FieldId, FieldId)>,
) -> Result<ExtractedFacetValues> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut fid_docid_facet_numbers_sorter = create_sorter(
@@ -78,143 +75,181 @@ pub fn extract_fid_docid_facet_values<R: io::Read + io::Seek>(
let mut numbers_key_buffer = Vec::new();
let mut strings_key_buffer = Vec::new();
let mut cursor = obkv_documents.into_cursor()?;
while let Some((docid_bytes, value)) = cursor.move_on_next()? {
let obkv = obkv::KvReader::new(value);
let old_faceted_fids: BTreeSet<_> =
settings_diff.old.faceted_fields_ids.iter().copied().collect();
let new_faceted_fids: BTreeSet<_> =
settings_diff.new.faceted_fields_ids.iter().copied().collect();
for (field_id, field_bytes) in obkv.iter() {
let delete_faceted = settings_diff.old.faceted_fields_ids.contains(&field_id);
let add_faceted = settings_diff.new.faceted_fields_ids.contains(&field_id);
if delete_faceted || add_faceted {
numbers_key_buffer.clear();
strings_key_buffer.clear();
if !settings_diff.settings_update_only || old_faceted_fids != new_faceted_fids {
let mut cursor = obkv_documents.into_cursor()?;
while let Some((docid_bytes, value)) = cursor.move_on_next()? {
let obkv = obkv::KvReader::new(value);
let get_document_json_value = move |field_id, side| {
obkv.get(field_id)
.map(KvReaderDelAdd::new)
.and_then(|kv| kv.get(side))
.map(from_slice)
.transpose()
.map_err(InternalError::SerdeJson)
};
// iterate over the faceted fields instead of over the whole document.
for eob in
merge_join_by(old_faceted_fids.iter(), new_faceted_fids.iter(), |old, new| {
old.cmp(new)
})
{
let (field_id, del_value, add_value) = match eob {
EitherOrBoth::Left(&field_id) => {
let del_value = get_document_json_value(field_id, DelAdd::Deletion)?;
// Set key to the field_id
// Note: this encoding is consistent with FieldIdCodec
numbers_key_buffer.extend_from_slice(&field_id.to_be_bytes());
strings_key_buffer.extend_from_slice(&field_id.to_be_bytes());
// deletion only
(field_id, del_value, None)
}
EitherOrBoth::Right(&field_id) => {
let add_value = get_document_json_value(field_id, DelAdd::Addition)?;
let document: [u8; 4] = docid_bytes[..4].try_into().ok().unwrap();
let document = DocumentId::from_be_bytes(document);
// addition only
(field_id, None, add_value)
}
EitherOrBoth::Both(&field_id, _) => {
// during settings update, recompute the changing settings only.
if settings_diff.settings_update_only {
continue;
}
// For the other extraction tasks, prefix the key with the field_id and the document_id
numbers_key_buffer.extend_from_slice(docid_bytes);
strings_key_buffer.extend_from_slice(docid_bytes);
let del_value = get_document_json_value(field_id, DelAdd::Deletion)?;
let add_value = get_document_json_value(field_id, DelAdd::Addition)?;
let del_add_obkv = obkv::KvReader::new(field_bytes);
let del_value = match del_add_obkv.get(DelAdd::Deletion).filter(|_| delete_faceted)
{
Some(bytes) => Some(from_slice(bytes).map_err(InternalError::SerdeJson)?),
None => None,
};
let add_value = match del_add_obkv.get(DelAdd::Addition).filter(|_| add_faceted) {
Some(bytes) => Some(from_slice(bytes).map_err(InternalError::SerdeJson)?),
None => None,
(field_id, del_value, add_value)
}
};
// We insert the document id on the Del and the Add side if the field exists.
let (ref mut del_exists, ref mut add_exists) =
facet_exists_docids.entry(field_id).or_default();
let (ref mut del_is_null, ref mut add_is_null) =
facet_is_null_docids.entry(field_id).or_default();
let (ref mut del_is_empty, ref mut add_is_empty) =
facet_is_empty_docids.entry(field_id).or_default();
if del_value.is_some() || add_value.is_some() {
numbers_key_buffer.clear();
strings_key_buffer.clear();
if del_value.is_some() {
del_exists.insert(document);
}
if add_value.is_some() {
add_exists.insert(document);
}
// Set key to the field_id
// Note: this encoding is consistent with FieldIdCodec
numbers_key_buffer.extend_from_slice(&field_id.to_be_bytes());
strings_key_buffer.extend_from_slice(&field_id.to_be_bytes());
let geo_support =
geo_fields_ids.map_or(false, |(lat, lng)| field_id == lat || field_id == lng);
let del_filterable_values =
del_value.map(|value| extract_facet_values(&value, geo_support));
let add_filterable_values =
add_value.map(|value| extract_facet_values(&value, geo_support));
let document: [u8; 4] = docid_bytes[..4].try_into().ok().unwrap();
let document = DocumentId::from_be_bytes(document);
// Those closures are just here to simplify things a bit.
let mut insert_numbers_diff = |del_numbers, add_numbers| {
insert_numbers_diff(
&mut fid_docid_facet_numbers_sorter,
&mut numbers_key_buffer,
del_numbers,
add_numbers,
)
};
let mut insert_strings_diff = |del_strings, add_strings| {
insert_strings_diff(
&mut fid_docid_facet_strings_sorter,
&mut strings_key_buffer,
del_strings,
add_strings,
)
};
// For the other extraction tasks, prefix the key with the field_id and the document_id
numbers_key_buffer.extend_from_slice(docid_bytes);
strings_key_buffer.extend_from_slice(docid_bytes);
match (del_filterable_values, add_filterable_values) {
(None, None) => (),
(Some(del_filterable_values), None) => match del_filterable_values {
Null => {
del_is_null.insert(document);
}
Empty => {
del_is_empty.insert(document);
}
Values { numbers, strings } => {
insert_numbers_diff(numbers, vec![])?;
insert_strings_diff(strings, vec![])?;
}
},
(None, Some(add_filterable_values)) => match add_filterable_values {
Null => {
add_is_null.insert(document);
}
Empty => {
add_is_empty.insert(document);
}
Values { numbers, strings } => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
}
},
(Some(del_filterable_values), Some(add_filterable_values)) => {
match (del_filterable_values, add_filterable_values) {
(Null, Null) | (Empty, Empty) => (),
(Null, Empty) => {
del_is_null.insert(document);
add_is_empty.insert(document);
}
(Empty, Null) => {
del_is_empty.insert(document);
add_is_null.insert(document);
}
(Null, Values { numbers, strings }) => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
// We insert the document id on the Del and the Add side if the field exists.
let (ref mut del_exists, ref mut add_exists) =
facet_exists_docids.entry(field_id).or_default();
let (ref mut del_is_null, ref mut add_is_null) =
facet_is_null_docids.entry(field_id).or_default();
let (ref mut del_is_empty, ref mut add_is_empty) =
facet_is_empty_docids.entry(field_id).or_default();
if del_value.is_some() {
del_exists.insert(document);
}
if add_value.is_some() {
add_exists.insert(document);
}
let del_geo_support = settings_diff
.old
.geo_fields_ids
.map_or(false, |(lat, lng)| field_id == lat || field_id == lng);
let add_geo_support = settings_diff
.new
.geo_fields_ids
.map_or(false, |(lat, lng)| field_id == lat || field_id == lng);
let del_filterable_values =
del_value.map(|value| extract_facet_values(&value, del_geo_support));
let add_filterable_values =
add_value.map(|value| extract_facet_values(&value, add_geo_support));
// Those closures are just here to simplify things a bit.
let mut insert_numbers_diff = |del_numbers, add_numbers| {
insert_numbers_diff(
&mut fid_docid_facet_numbers_sorter,
&mut numbers_key_buffer,
del_numbers,
add_numbers,
)
};
let mut insert_strings_diff = |del_strings, add_strings| {
insert_strings_diff(
&mut fid_docid_facet_strings_sorter,
&mut strings_key_buffer,
del_strings,
add_strings,
)
};
match (del_filterable_values, add_filterable_values) {
(None, None) => (),
(Some(del_filterable_values), None) => match del_filterable_values {
Null => {
del_is_null.insert(document);
}
(Empty, Values { numbers, strings }) => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
Empty => {
del_is_empty.insert(document);
}
(Values { numbers, strings }, Null) => {
add_is_null.insert(document);
Values { numbers, strings } => {
insert_numbers_diff(numbers, vec![])?;
insert_strings_diff(strings, vec![])?;
}
(Values { numbers, strings }, Empty) => {
add_is_empty.insert(document);
insert_numbers_diff(numbers, vec![])?;
insert_strings_diff(strings, vec![])?;
},
(None, Some(add_filterable_values)) => match add_filterable_values {
Null => {
add_is_null.insert(document);
}
(
Values { numbers: del_numbers, strings: del_strings },
Values { numbers: add_numbers, strings: add_strings },
) => {
insert_numbers_diff(del_numbers, add_numbers)?;
insert_strings_diff(del_strings, add_strings)?;
Empty => {
add_is_empty.insert(document);
}
Values { numbers, strings } => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
}
},
(Some(del_filterable_values), Some(add_filterable_values)) => {
match (del_filterable_values, add_filterable_values) {
(Null, Null) | (Empty, Empty) => (),
(Null, Empty) => {
del_is_null.insert(document);
add_is_empty.insert(document);
}
(Empty, Null) => {
del_is_empty.insert(document);
add_is_null.insert(document);
}
(Null, Values { numbers, strings }) => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
del_is_null.insert(document);
}
(Empty, Values { numbers, strings }) => {
insert_numbers_diff(vec![], numbers)?;
insert_strings_diff(vec![], strings)?;
del_is_empty.insert(document);
}
(Values { numbers, strings }, Null) => {
add_is_null.insert(document);
insert_numbers_diff(numbers, vec![])?;
insert_strings_diff(strings, vec![])?;
}
(Values { numbers, strings }, Empty) => {
add_is_empty.insert(document);
insert_numbers_diff(numbers, vec![])?;
insert_strings_diff(strings, vec![])?;
}
(
Values { numbers: del_numbers, strings: del_strings },
Values { numbers: add_numbers, strings: add_strings },
) => {
insert_numbers_diff(del_numbers, add_numbers)?;
insert_strings_diff(del_strings, add_strings)?;
}
}
}
}

View File

@@ -26,8 +26,6 @@ pub fn extract_fid_word_count_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut fid_word_count_docids_sorter = create_sorter(

View File

@@ -8,6 +8,7 @@ use super::helpers::{create_writer, writer_into_reader, GrenadParameters};
use crate::error::GeoError;
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::extract_finite_float_from_value;
use crate::update::settings::{InnerIndexSettings, InnerIndexSettingsDiff};
use crate::{FieldId, InternalError, Result};
/// Extracts the geographical coordinates contained in each document under the `_geo` field.
@@ -18,10 +19,8 @@ pub fn extract_geo_points<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
primary_key_id: FieldId,
(lat_fid, lng_fid): (FieldId, FieldId),
settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let mut writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
@@ -40,47 +39,27 @@ pub fn extract_geo_points<R: io::Read + io::Seek>(
serde_json::from_slice(document_id).unwrap()
};
// first we get the two fields
match (obkv.get(lat_fid), obkv.get(lng_fid)) {
(Some(lat), Some(lng)) => {
let deladd_lat_obkv = KvReaderDelAdd::new(lat);
let deladd_lng_obkv = KvReaderDelAdd::new(lng);
// extract old version
let del_lat_lng =
extract_lat_lng(&obkv, &settings_diff.old, DelAdd::Deletion, document_id)?;
// extract new version
let add_lat_lng =
extract_lat_lng(&obkv, &settings_diff.new, DelAdd::Addition, document_id)?;
// then we extract the values
let del_lat_lng = deladd_lat_obkv
.get(DelAdd::Deletion)
.zip(deladd_lng_obkv.get(DelAdd::Deletion))
.map(|(lat, lng)| extract_lat_lng(lat, lng, document_id))
.transpose()?;
let add_lat_lng = deladd_lat_obkv
.get(DelAdd::Addition)
.zip(deladd_lng_obkv.get(DelAdd::Addition))
.map(|(lat, lng)| extract_lat_lng(lat, lng, document_id))
.transpose()?;
if del_lat_lng != add_lat_lng {
let mut obkv = KvWriterDelAdd::memory();
if let Some([lat, lng]) = del_lat_lng {
#[allow(clippy::drop_non_drop)]
let bytes: [u8; 16] = concat_arrays![lat.to_ne_bytes(), lng.to_ne_bytes()];
obkv.insert(DelAdd::Deletion, bytes)?;
}
if let Some([lat, lng]) = add_lat_lng {
#[allow(clippy::drop_non_drop)]
let bytes: [u8; 16] = concat_arrays![lat.to_ne_bytes(), lng.to_ne_bytes()];
obkv.insert(DelAdd::Addition, bytes)?;
}
let bytes = obkv.into_inner()?;
writer.insert(docid_bytes, bytes)?;
}
if del_lat_lng != add_lat_lng {
let mut obkv = KvWriterDelAdd::memory();
if let Some([lat, lng]) = del_lat_lng {
#[allow(clippy::drop_non_drop)]
let bytes: [u8; 16] = concat_arrays![lat.to_ne_bytes(), lng.to_ne_bytes()];
obkv.insert(DelAdd::Deletion, bytes)?;
}
(None, Some(_)) => {
return Err(GeoError::MissingLatitude { document_id: document_id() }.into())
if let Some([lat, lng]) = add_lat_lng {
#[allow(clippy::drop_non_drop)]
let bytes: [u8; 16] = concat_arrays![lat.to_ne_bytes(), lng.to_ne_bytes()];
obkv.insert(DelAdd::Addition, bytes)?;
}
(Some(_), None) => {
return Err(GeoError::MissingLongitude { document_id: document_id() }.into())
}
(None, None) => (),
let bytes = obkv.into_inner()?;
writer.insert(docid_bytes, bytes)?;
}
}
@@ -88,16 +67,37 @@ pub fn extract_geo_points<R: io::Read + io::Seek>(
}
/// Extract the finite floats lat and lng from two bytes slices.
fn extract_lat_lng(lat: &[u8], lng: &[u8], document_id: impl Fn() -> Value) -> Result<[f64; 2]> {
let lat = extract_finite_float_from_value(
serde_json::from_slice(lat).map_err(InternalError::SerdeJson)?,
)
.map_err(|lat| GeoError::BadLatitude { document_id: document_id(), value: lat })?;
fn extract_lat_lng(
document: &obkv::KvReader<FieldId>,
settings: &InnerIndexSettings,
deladd: DelAdd,
document_id: impl Fn() -> Value,
) -> Result<Option<[f64; 2]>> {
match settings.geo_fields_ids {
Some((lat_fid, lng_fid)) => {
let lat = document.get(lat_fid).map(KvReaderDelAdd::new).and_then(|r| r.get(deladd));
let lng = document.get(lng_fid).map(KvReaderDelAdd::new).and_then(|r| r.get(deladd));
let (lat, lng) = match (lat, lng) {
(Some(lat), Some(lng)) => (lat, lng),
(Some(_), None) => {
return Err(GeoError::MissingLatitude { document_id: document_id() }.into())
}
(None, Some(_)) => {
return Err(GeoError::MissingLongitude { document_id: document_id() }.into())
}
(None, None) => return Ok(None),
};
let lat = extract_finite_float_from_value(
serde_json::from_slice(lat).map_err(InternalError::SerdeJson)?,
)
.map_err(|lat| GeoError::BadLatitude { document_id: document_id(), value: lat })?;
let lng = extract_finite_float_from_value(
serde_json::from_slice(lng).map_err(InternalError::SerdeJson)?,
)
.map_err(|lng| GeoError::BadLongitude { document_id: document_id(), value: lng })?;
Ok([lat, lng])
let lng = extract_finite_float_from_value(
serde_json::from_slice(lng).map_err(InternalError::SerdeJson)?,
)
.map_err(|lng| GeoError::BadLongitude { document_id: document_id(), value: lng })?;
Ok(Some([lat, lng]))
}
None => Ok(None),
}
}

View File

@@ -10,16 +10,16 @@ use bytemuck::cast_slice;
use grenad::Writer;
use itertools::EitherOrBoth;
use ordered_float::OrderedFloat;
use serde_json::{from_slice, Value};
use serde_json::Value;
use super::helpers::{create_writer, writer_into_reader, GrenadParameters};
use crate::error::UserError;
use crate::prompt::Prompt;
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::helpers::try_split_at;
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::parsed_vectors::{ParsedVectorsDiff, RESERVED_VECTORS_FIELD_NAME};
use crate::vector::Embedder;
use crate::{DocumentId, InternalError, Result, ThreadPoolNoAbort, VectorOrArrayOfVectors};
use crate::{DocumentId, Result, ThreadPoolNoAbort};
/// The length of the elements that are always in the buffer when inserting new values.
const TRUNCATE_SIZE: usize = size_of::<DocumentId>();
@@ -31,6 +31,10 @@ pub struct ExtractedVectorPoints {
pub remove_vectors: grenad::Reader<BufReader<File>>,
// docid -> prompt
pub prompts: grenad::Reader<BufReader<File>>,
// embedder
pub embedder_name: String,
pub embedder: Arc<Embedder>,
}
enum VectorStateDelta {
@@ -65,6 +69,19 @@ impl VectorStateDelta {
}
}
struct EmbedderVectorExtractor {
embedder_name: String,
embedder: Arc<Embedder>,
prompt: Arc<Prompt>,
// (docid, _index) -> KvWriterDelAdd -> Vector
manual_vectors_writer: Writer<BufWriter<File>>,
// (docid) -> (prompt)
prompts_writer: Writer<BufWriter<File>>,
// (docid) -> ()
remove_vectors_writer: Writer<BufWriter<File>>,
}
/// Extracts the embedding vector contained in each document under the `_vectors` field.
///
/// Returns the generated grenad reader containing the docid as key associated to the Vec<f32>
@@ -73,34 +90,52 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
prompt: &Prompt,
embedder_name: &str,
) -> Result<ExtractedVectorPoints> {
puffin::profile_function!();
) -> Result<Vec<ExtractedVectorPoints>> {
let reindex_vectors = settings_diff.reindex_vectors();
let old_fields_ids_map = &settings_diff.old.fields_ids_map;
let new_fields_ids_map = &settings_diff.new.fields_ids_map;
// the vector field id may have changed
let old_vectors_fid = old_fields_ids_map.id(RESERVED_VECTORS_FIELD_NAME);
// filter the old vector fid if the settings has been changed forcing reindexing.
let old_vectors_fid = old_vectors_fid.filter(|_| !reindex_vectors);
// (docid, _index) -> KvWriterDelAdd -> Vector
let mut manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let new_vectors_fid = new_fields_ids_map.id(RESERVED_VECTORS_FIELD_NAME);
// (docid) -> (prompt)
let mut prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut extractors = Vec::new();
for (embedder_name, (embedder, prompt)) in
settings_diff.new.embedding_configs.clone().into_iter()
{
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let mut remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
});
}
let mut key_buffer = Vec::new();
let mut cursor = obkv_documents.into_cursor()?;
@@ -114,152 +149,138 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
key_buffer.clear();
key_buffer.extend_from_slice(docid_bytes);
// since we only needs the primary key when we throw an error we create this getter to
// since we only need the primary key when we throw an error we create this getter to
// lazily get it when needed
let document_id = || -> Value { from_utf8(external_id_bytes).unwrap().into() };
// the vector field id may have changed
let old_vectors_fid = old_fields_ids_map.id("_vectors");
// filter the old vector fid if the settings has been changed forcing reindexing.
let old_vectors_fid = old_vectors_fid.filter(|_| !settings_diff.reindex_vectors());
let mut parsed_vectors = ParsedVectorsDiff::new(obkv, old_vectors_fid, new_vectors_fid)
.map_err(|error| error.to_crate_error(document_id().to_string()))?;
let new_vectors_fid = new_fields_ids_map.id("_vectors");
let vectors_field = {
let del = old_vectors_fid
.and_then(|vectors_fid| obkv.get(vectors_fid))
.map(KvReaderDelAdd::new)
.map(|obkv| to_vector_map(obkv, DelAdd::Deletion, &document_id))
.transpose()?
.flatten();
let add = new_vectors_fid
.and_then(|vectors_fid| obkv.get(vectors_fid))
.map(KvReaderDelAdd::new)
.map(|obkv| to_vector_map(obkv, DelAdd::Addition, &document_id))
.transpose()?
.flatten();
(del, add)
};
for EmbedderVectorExtractor {
embedder_name,
embedder: _,
prompt,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
} in extractors.iter_mut()
{
let delta = match parsed_vectors.remove(embedder_name) {
(Some(old), Some(new)) => {
// no autogeneration
let del_vectors = old.into_array_of_vectors();
let add_vectors = new.into_array_of_vectors();
let (del_map, add_map) = vectors_field;
let del_value = del_map.and_then(|mut map| map.remove(embedder_name));
let add_value = add_map.and_then(|mut map| map.remove(embedder_name));
let delta = match (del_value, add_value) {
(Some(old), Some(new)) => {
// no autogeneration
let del_vectors = extract_vectors(old, document_id, embedder_name)?;
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
VectorStateDelta::ManualDelta(del_vectors, add_vectors)
}
(Some(_old), None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// becomes autogenerated
VectorStateDelta::NowGenerated(prompt.render(
obkv,
DelAdd::Addition,
new_fields_ids_map,
)?)
} else {
VectorStateDelta::NowRemoved
}
}
(None, Some(new)) => {
// was possibly autogenerated, remove all vectors for that document
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
VectorStateDelta::WasGeneratedNowManual(add_vectors)
}
(None, None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// Don't give up if the old prompt was failing
let old_prompt = Some(prompt)
// TODO: this filter works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
.filter(|_| !settings_diff.reindex_vectors())
.map(|p| {
p.render(obkv, DelAdd::Deletion, old_fields_ids_map).unwrap_or_default()
});
let new_prompt = prompt.render(obkv, DelAdd::Addition, new_fields_ids_map)?;
if old_prompt.as_ref() != Some(&new_prompt) {
let old_prompt = old_prompt.unwrap_or_default();
tracing::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
);
VectorStateDelta::NowGenerated(new_prompt)
} else {
tracing::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
} else {
VectorStateDelta::NowRemoved
}
}
};
// and we finally push the unique vectors into the writer
push_vectors_diff(
&mut remove_vectors_writer,
&mut prompts_writer,
&mut manual_vectors_writer,
&mut key_buffer,
delta,
settings_diff,
)?;
VectorStateDelta::ManualDelta(del_vectors, add_vectors)
}
(Some(_old), None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// becomes autogenerated
VectorStateDelta::NowGenerated(prompt.render(
obkv,
DelAdd::Addition,
new_fields_ids_map,
)?)
} else {
VectorStateDelta::NowRemoved
}
}
(None, Some(new)) => {
// was possibly autogenerated, remove all vectors for that document
let add_vectors = new.into_array_of_vectors();
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
VectorStateDelta::WasGeneratedNowManual(add_vectors)
}
(None, None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// Don't give up if the old prompt was failing
let old_prompt = Some(&prompt)
// TODO: this filter works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
.filter(|_| !settings_diff.reindex_vectors())
.map(|p| {
p.render(obkv, DelAdd::Deletion, old_fields_ids_map)
.unwrap_or_default()
});
let new_prompt =
prompt.render(obkv, DelAdd::Addition, new_fields_ids_map)?;
if old_prompt.as_ref() != Some(&new_prompt) {
let old_prompt = old_prompt.unwrap_or_default();
tracing::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
);
VectorStateDelta::NowGenerated(new_prompt)
} else {
tracing::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
}
} else {
VectorStateDelta::NowRemoved
}
}
};
// and we finally push the unique vectors into the writer
push_vectors_diff(
remove_vectors_writer,
prompts_writer,
manual_vectors_writer,
&mut key_buffer,
delta,
reindex_vectors,
)?;
}
}
Ok(ExtractedVectorPoints {
// docid, _index -> KvWriterDelAdd -> Vector
manual_vectors: writer_into_reader(manual_vectors_writer)?,
// docid -> ()
remove_vectors: writer_into_reader(remove_vectors_writer)?,
// docid -> prompt
prompts: writer_into_reader(prompts_writer)?,
})
}
let mut results = Vec::new();
fn to_vector_map(
obkv: KvReaderDelAdd,
side: DelAdd,
document_id: &impl Fn() -> Value,
) -> Result<Option<serde_json::Map<String, Value>>> {
Ok(if let Some(value) = obkv.get(side) {
let Ok(value) = from_slice(value) else {
let value = from_slice(value).map_err(InternalError::SerdeJson)?;
return Err(crate::Error::UserError(UserError::InvalidVectorsMapType {
document_id: document_id(),
value,
}));
};
Some(value)
} else {
None
})
for EmbedderVectorExtractor {
embedder_name,
embedder,
prompt: _,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
} in extractors
{
results.push(ExtractedVectorPoints {
// docid, _index -> KvWriterDelAdd -> Vector
manual_vectors: writer_into_reader(manual_vectors_writer)?,
// docid -> ()
remove_vectors: writer_into_reader(remove_vectors_writer)?,
// docid -> prompt
prompts: writer_into_reader(prompts_writer)?,
embedder,
embedder_name,
})
}
Ok(results)
}
/// Computes the diff between both Del and Add numbers and
@@ -270,14 +291,13 @@ fn push_vectors_diff(
manual_vectors_writer: &mut Writer<BufWriter<File>>,
key_buffer: &mut Vec<u8>,
delta: VectorStateDelta,
settings_diff: &InnerIndexSettingsDiff,
reindex_vectors: bool,
) -> Result<()> {
puffin::profile_function!();
let (must_remove, prompt, (mut del_vectors, mut add_vectors)) = delta.into_values();
if must_remove
// TODO: the below condition works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
&& !settings_diff.reindex_vectors()
&& !reindex_vectors
{
key_buffer.truncate(TRUNCATE_SIZE);
remove_vectors_writer.insert(&key_buffer, [])?;
@@ -308,7 +328,7 @@ fn push_vectors_diff(
EitherOrBoth::Left(vector) => {
// TODO: the below condition works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
if !settings_diff.reindex_vectors() {
if !reindex_vectors {
// We insert only the Del part of the Obkv to inform
// that we only want to remove all those vectors.
let mut obkv = KvWriterDelAdd::memory();
@@ -336,26 +356,6 @@ fn compare_vectors(a: &[f32], b: &[f32]) -> Ordering {
a.iter().copied().map(OrderedFloat).cmp(b.iter().copied().map(OrderedFloat))
}
/// Extracts the vectors from a JSON value.
fn extract_vectors(
value: Value,
document_id: impl Fn() -> Value,
name: &str,
) -> Result<Vec<Vec<f32>>> {
// FIXME: ugly clone of the vectors here
match serde_json::from_value(value.clone()) {
Ok(vectors) => {
Ok(VectorOrArrayOfVectors::into_array_of_vectors(vectors).unwrap_or_default())
}
Err(_) => Err(UserError::InvalidVectorsType {
document_id: document_id(),
value,
subfield: name.to_owned(),
}
.into()),
}
}
#[tracing::instrument(level = "trace", skip_all, target = "indexing::extract")]
pub fn extract_embeddings<R: io::Read + io::Seek>(
// docid, prompt
@@ -364,7 +364,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
embedder: Arc<Embedder>,
request_threads: &ThreadPoolNoAbort,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
let n_vectors_per_chunk = embedder.prompt_count_in_chunk_hint(); // number of vectors in a single chunk

View File

@@ -36,8 +36,6 @@ pub fn extract_word_docids<R: io::Read + io::Seek>(
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
)> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut word_fid_docids_sorter = create_sorter(
@@ -167,8 +165,6 @@ fn words_into_sorter(
add_words: &BTreeSet<Vec<u8>>,
word_fid_docids_sorter: &mut grenad::Sorter<MergeFn>,
) -> Result<()> {
puffin::profile_function!();
use itertools::merge_join_by;
use itertools::EitherOrBoth::{Both, Left, Right};

View File

@@ -26,12 +26,8 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let any_deletion = settings_diff.old.proximity_precision == ProximityPrecision::ByWord;
let any_addition = settings_diff.new.proximity_precision == ProximityPrecision::ByWord;
// early return if the data shouldn't be deleted nor created.
if !any_deletion && !any_addition {
if settings_diff.settings_update_only && !settings_diff.reindex_proximities() {
let writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
@@ -40,8 +36,10 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
return writer_into_reader(writer);
}
let max_memory = indexer.max_memory_by_thread();
let any_deletion = settings_diff.old.proximity_precision == ProximityPrecision::ByWord;
let any_addition = settings_diff.new.proximity_precision == ProximityPrecision::ByWord;
let max_memory = indexer.max_memory_by_thread();
let mut word_pair_proximity_docids_sorters: Vec<_> = (1..MAX_DISTANCE)
.map(|_| {
create_sorter(
@@ -71,8 +69,6 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
// if we change document, we fill the sorter
if current_document_id.map_or(false, |id| id != document_id) {
puffin::profile_scope!("Document into sorter");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "document_into_sorter");
let _entered = span.enter();
@@ -163,7 +159,6 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
}
if let Some(document_id) = current_document_id {
puffin::profile_scope!("Final document into sorter");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "final_document_into_sorter");
let _entered = span.enter();
@@ -176,7 +171,6 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
)?;
}
{
puffin::profile_scope!("sorter_into_reader");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "sorter_into_reader");
let _entered = span.enter();

View File

@@ -25,8 +25,6 @@ pub fn extract_word_position_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut word_position_docids_sorter = create_sorter(
@@ -104,8 +102,6 @@ fn words_position_into_sorter(
add_word_positions: &BTreeSet<(u16, Vec<u8>)>,
word_position_docids_sorter: &mut grenad::Sorter<MergeFn>,
) -> Result<()> {
puffin::profile_function!();
use itertools::merge_join_by;
use itertools::EitherOrBoth::{Both, Left, Right};

View File

@@ -8,6 +8,7 @@ mod extract_vector_points;
mod extract_word_docids;
mod extract_word_pair_proximity_docids;
mod extract_word_position_docids;
// mod searchable;
use std::fs::File;
use std::io::BufReader;
@@ -43,12 +44,9 @@ pub(crate) fn data_from_obkv_documents(
indexer: GrenadParameters,
lmdb_writer_sx: Sender<Result<TypedChunk>>,
primary_key_id: FieldId,
geo_fields_ids: Option<(FieldId, FieldId)>,
settings_diff: Arc<InnerIndexSettingsDiff>,
max_positions_per_attributes: Option<u32>,
) -> Result<()> {
puffin::profile_function!();
let (original_pipeline_result, flattened_pipeline_result): (Result<_>, Result<_>) = rayon::join(
|| {
original_obkv_chunks
@@ -72,7 +70,6 @@ pub(crate) fn data_from_obkv_documents(
indexer,
lmdb_writer_sx.clone(),
primary_key_id,
geo_fields_ids,
settings_diff.clone(),
max_positions_per_attributes,
)
@@ -90,7 +87,6 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_fid_word_count_docids,
TypedChunk::FieldIdWordCountDocids,
"field-id-wordcount-docids",
);
run_extraction_task::<
_,
@@ -117,7 +113,6 @@ pub(crate) fn data_from_obkv_documents(
word_fid_docids_reader,
}
},
"word-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -127,7 +122,6 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_word_position_docids,
TypedChunk::WordPositionDocids,
"word-position-docids",
);
run_extraction_task::<
@@ -141,7 +135,6 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_facet_string_docids,
TypedChunk::FieldIdFacetStringDocids,
"field-id-facet-string-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -151,7 +144,6 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_facet_number_docids,
TypedChunk::FieldIdFacetNumberDocids,
"field-id-facet-number-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -161,7 +153,6 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_word_pair_proximity_docids,
TypedChunk::WordPairProximityDocids,
"word-pair-proximity-docids",
);
}
@@ -185,7 +176,6 @@ fn run_extraction_task<FE, FS, M>(
lmdb_writer_sx: Sender<Result<TypedChunk>>,
extract_fn: FE,
serialize_fn: FS,
name: &'static str,
) where
FE: Fn(
grenad::Reader<CursorClonableMmap>,
@@ -203,7 +193,7 @@ fn run_extraction_task<FE, FS, M>(
rayon::spawn(move || {
let child_span = tracing::trace_span!(target: "indexing::extract::details", parent: &current_span, "extract_multiple_chunks");
let _entered = child_span.enter();
puffin::profile_scope!("extract_multiple_chunks", name);
match extract_fn(chunk, indexer, &settings_diff) {
Ok(chunk) => {
let _ = lmdb_writer_sx.send(Ok(serialize_fn(chunk)));
@@ -226,27 +216,31 @@ fn send_original_documents_data(
let original_documents_chunk =
original_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
let documents_chunk_cloned = original_documents_chunk.clone();
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
let request_threads = ThreadPoolNoAbortBuilder::new()
.num_threads(crate::vector::REQUEST_PARALLELISM)
.thread_name(|index| format!("embedding-request-{index}"))
.build()?;
if settings_diff.reindex_vectors() || !settings_diff.settings_update_only() {
let index_vectors = (settings_diff.reindex_vectors() || !settings_diff.settings_update_only())
// no point in indexing vectors without embedders
&& (!settings_diff.new.embedding_configs.inner_as_ref().is_empty());
if index_vectors {
let settings_diff = settings_diff.clone();
let original_documents_chunk = original_documents_chunk.clone();
let lmdb_writer_sx = lmdb_writer_sx.clone();
rayon::spawn(move || {
for (name, (embedder, prompt)) in settings_diff.new.embedding_configs.clone() {
let result = extract_vector_points(
documents_chunk_cloned.clone(),
indexer,
&settings_diff,
&prompt,
&name,
);
match result {
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
match extract_vector_points(original_documents_chunk.clone(), indexer, &settings_diff) {
Ok(extracted_vectors) => {
for ExtractedVectorPoints {
manual_vectors,
remove_vectors,
prompts,
embedder_name,
embedder,
} in extracted_vectors
{
let embeddings = match extract_embeddings(
prompts,
indexer,
@@ -255,28 +249,26 @@ fn send_original_documents_data(
) {
Ok(results) => Some(results),
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));
let _ = lmdb_writer_sx.send(Err(error));
None
}
};
if !(remove_vectors.is_empty()
&& manual_vectors.is_empty()
&& embeddings.as_ref().map_or(true, |e| e.is_empty()))
{
let _ = lmdb_writer_sx_cloned.send(Ok(TypedChunk::VectorPoints {
let _ = lmdb_writer_sx.send(Ok(TypedChunk::VectorPoints {
remove_vectors,
embeddings,
expected_dimension: embedder.dimensions(),
manual_vectors,
embedder_name: name,
embedder_name,
}));
}
}
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));
}
}
Err(error) => {
let _ = lmdb_writer_sx.send(Err(error));
}
}
});
@@ -300,7 +292,6 @@ fn send_and_extract_flattened_documents_data(
indexer: GrenadParameters,
lmdb_writer_sx: Sender<Result<TypedChunk>>,
primary_key_id: FieldId,
geo_fields_ids: Option<(FieldId, FieldId)>,
settings_diff: Arc<InnerIndexSettingsDiff>,
max_positions_per_attributes: Option<u32>,
) -> Result<(
@@ -310,12 +301,13 @@ fn send_and_extract_flattened_documents_data(
let flattened_documents_chunk =
flattened_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
if let Some(geo_fields_ids) = geo_fields_ids {
if settings_diff.run_geo_indexing() {
let documents_chunk_cloned = flattened_documents_chunk.clone();
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
let settings_diff = settings_diff.clone();
rayon::spawn(move || {
let result =
extract_geo_points(documents_chunk_cloned, indexer, primary_key_id, geo_fields_ids);
extract_geo_points(documents_chunk_cloned, indexer, primary_key_id, &settings_diff);
let _ = match result {
Ok(geo_points) => lmdb_writer_sx_cloned.send(Ok(TypedChunk::GeoPoints(geo_points))),
Err(error) => lmdb_writer_sx_cloned.send(Err(error)),
@@ -354,7 +346,6 @@ fn send_and_extract_flattened_documents_data(
flattened_documents_chunk.clone(),
indexer,
&settings_diff,
geo_fields_ids,
)?;
// send fid_docid_facet_numbers_chunk to DB writer

View File

@@ -0,0 +1,211 @@
use std::collections::HashMap;
use charabia::normalizer::NormalizedTokenIter;
use charabia::{Language, Script, SeparatorKind, Token, TokenKind, Tokenizer, TokenizerBuilder};
use roaring::RoaringBitmap;
use serde_json::Value;
use crate::update::settings::InnerIndexSettings;
use crate::{InternalError, Result, MAX_POSITION_PER_ATTRIBUTE, MAX_WORD_LENGTH};
pub type ScriptLanguageDocidsMap = HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>;
pub struct FieldWordPositionExtractorBuilder<'a> {
max_positions_per_attributes: u16,
stop_words: Option<&'a fst::Set<Vec<u8>>>,
separators: Option<Vec<&'a str>>,
dictionary: Option<Vec<&'a str>>,
}
impl<'a> FieldWordPositionExtractorBuilder<'a> {
pub fn new(
max_positions_per_attributes: Option<u32>,
settings: &'a InnerIndexSettings,
) -> Result<Self> {
let stop_words = settings.stop_words.as_ref();
let separators: Option<Vec<_>> =
settings.allowed_separators.as_ref().map(|s| s.iter().map(String::as_str).collect());
let dictionary: Option<Vec<_>> =
settings.dictionary.as_ref().map(|s| s.iter().map(String::as_str).collect());
Ok(Self {
max_positions_per_attributes: max_positions_per_attributes
.map_or(MAX_POSITION_PER_ATTRIBUTE as u16, |max| {
max.min(MAX_POSITION_PER_ATTRIBUTE) as u16
}),
stop_words,
separators,
dictionary,
})
}
pub fn build(&'a self) -> FieldWordPositionExtractor<'a> {
let builder = tokenizer_builder(
self.stop_words,
self.separators.as_deref(),
self.dictionary.as_deref(),
None,
);
FieldWordPositionExtractor {
tokenizer: builder.into_tokenizer(),
max_positions_per_attributes: self.max_positions_per_attributes,
}
}
}
pub struct FieldWordPositionExtractor<'a> {
tokenizer: Tokenizer<'a>,
max_positions_per_attributes: u16,
}
impl<'a> FieldWordPositionExtractor<'a> {
pub fn extract<'b>(
&'a self,
field_bytes: &[u8],
buffer: &'b mut String,
) -> Result<ExtractedFieldWordPosition<'a, 'b>> {
let field_value = serde_json::from_slice(field_bytes).map_err(InternalError::SerdeJson)?;
Ok(ExtractedFieldWordPosition {
tokenizer: &self.tokenizer,
max_positions_per_attributes: self.max_positions_per_attributes,
field_value,
buffer: buffer,
})
}
}
pub struct ExtractedFieldWordPosition<'a, 'b> {
tokenizer: &'a Tokenizer<'a>,
max_positions_per_attributes: u16,
field_value: Value,
buffer: &'b mut String,
}
impl<'a> ExtractedFieldWordPosition<'a, '_> {
pub fn iter<'o>(&'o mut self) -> FieldWordPositionIter<'o> {
self.buffer.clear();
let inner = match json_to_string(&self.field_value, &mut self.buffer) {
Some(field) => Some(self.tokenizer.tokenize(field)),
None => None,
};
// create an iterator of token with their positions.
FieldWordPositionIter {
inner,
max_positions_per_attributes: self.max_positions_per_attributes,
position: 0,
prev_kind: None,
}
}
}
pub struct FieldWordPositionIter<'a> {
inner: Option<NormalizedTokenIter<'a, 'a>>,
max_positions_per_attributes: u16,
position: u16,
prev_kind: Option<TokenKind>,
}
impl<'a> Iterator for FieldWordPositionIter<'a> {
type Item = (u16, Token<'a>);
fn next(&mut self) -> Option<Self::Item> {
if self.position >= self.max_positions_per_attributes {
return None;
}
let token = self.inner.as_mut().map(|i| i.next()).flatten()?;
match token.kind {
TokenKind::Word | TokenKind::StopWord if !token.lemma().is_empty() => {
self.position += match self.prev_kind {
Some(TokenKind::Separator(SeparatorKind::Hard)) => 8,
Some(_) => 1,
None => 0,
};
self.prev_kind = Some(token.kind)
}
TokenKind::Separator(_) if self.position == 0 => {
return self.next();
}
TokenKind::Separator(SeparatorKind::Hard) => {
self.prev_kind = Some(token.kind);
}
TokenKind::Separator(SeparatorKind::Soft)
if self.prev_kind != Some(TokenKind::Separator(SeparatorKind::Hard)) =>
{
self.prev_kind = Some(token.kind);
}
_ => return self.next(),
}
if !token.is_word() {
return self.next();
}
// keep a word only if it is not empty and fit in a LMDB key.
let lemma = token.lemma().trim();
if !lemma.is_empty() && lemma.len() <= MAX_WORD_LENGTH {
Some((self.position, token))
} else {
self.next()
}
}
}
/// Factorize tokenizer building.
pub fn tokenizer_builder<'a>(
stop_words: Option<&'a fst::Set<Vec<u8>>>,
allowed_separators: Option<&'a [&str]>,
dictionary: Option<&'a [&str]>,
script_language: Option<&'a HashMap<Script, Vec<Language>>>,
) -> TokenizerBuilder<'a, Vec<u8>> {
let mut tokenizer_builder = TokenizerBuilder::new();
if let Some(stop_words) = stop_words {
tokenizer_builder.stop_words(stop_words);
}
if let Some(dictionary) = dictionary {
tokenizer_builder.words_dict(dictionary);
}
if let Some(separators) = allowed_separators {
tokenizer_builder.separators(separators);
}
if let Some(script_language) = script_language {
tokenizer_builder.allow_list(script_language);
}
tokenizer_builder
}
/// Transform a JSON value into a string that can be indexed.
fn json_to_string<'a>(value: &'a Value, buffer: &'a mut String) -> Option<&'a str> {
fn inner(value: &Value, output: &mut String) -> bool {
use std::fmt::Write;
match value {
Value::Null | Value::Object(_) => false,
Value::Bool(boolean) => write!(output, "{}", boolean).is_ok(),
Value::Number(number) => write!(output, "{}", number).is_ok(),
Value::String(string) => write!(output, "{}", string).is_ok(),
Value::Array(array) => {
let mut count = 0;
for value in array {
if inner(value, output) {
output.push_str(". ");
count += 1;
}
}
// check that at least one value was written
count != 0
}
}
}
if let Value::String(string) = value {
Some(string)
} else if inner(value, buffer) {
Some(buffer)
} else {
None
}
}

View File

@@ -0,0 +1,114 @@
use std::collections::{BTreeMap, BTreeSet};
use std::convert::TryInto;
use std::fs::File;
use std::io;
use std::io::BufReader;
use field_word_position::FieldWordPositionExtractorBuilder;
use obkv::KvReader;
use roaring::RoaringBitmap;
use word_docids::{WordDocidsDump, WordDocidsExtractor};
use crate::update::del_add::{DelAdd, KvReaderDelAdd};
use crate::update::index_documents::extract::extract_docid_word_positions::ScriptLanguageDocidsMap;
use crate::update::index_documents::GrenadParameters;
use crate::update::settings::InnerIndexSettingsDiff;
use crate::{FieldId, Result, SerializationError};
mod field_word_position;
mod word_docids;
#[tracing::instrument(level = "trace", skip_all, target = "indexing::extract")]
pub fn extract_searchable_data<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
max_positions_per_attributes: Option<u32>,
) -> Result<(grenad::Reader<BufReader<File>>, ScriptLanguageDocidsMap)> {
let searchable_fields_to_index = settings_diff.searchable_fields_to_index();
let mut documents_ids = RoaringBitmap::new();
let add_builder =
FieldWordPositionExtractorBuilder::new(max_positions_per_attributes, &settings_diff.new)?;
let add_token_positions_extractor = add_builder.build();
let del_builder;
let del_token_positions_extractor = if settings_diff.settings_update_only {
del_builder = FieldWordPositionExtractorBuilder::new(
max_positions_per_attributes,
&settings_diff.old,
)?;
del_builder.build()
} else {
add_builder.build()
};
let token_positions_extractor = &[del_token_positions_extractor, add_token_positions_extractor];
let mut word_map = BTreeMap::new();
let mut word_docids_extractor = WordDocidsExtractor::new(settings_diff);
let mut cursor = obkv_documents.into_cursor()?;
// loop over documents
while let Some((key, value)) = cursor.move_on_next()? {
let document_id = key
.try_into()
.map(u32::from_be_bytes)
.map_err(|_| SerializationError::InvalidNumberSerialization)?;
let obkv = KvReader::<FieldId>::new(value);
// if the searchable fields didn't change, skip the searchable indexing for this document.
if !settings_diff.reindex_searchable()
&& !searchable_fields_changed(&obkv, &searchable_fields_to_index)
{
continue;
}
documents_ids.push(document_id);
let mut buffer = String::new();
for field_id in searchable_fields_to_index.iter() {
let Some(field_obkv) = obkv.get(*field_id).map(KvReaderDelAdd::new) else { continue };
for (deladd, field_bytes) in field_obkv {
let mut extracted_positions =
token_positions_extractor[deladd as usize].extract(field_bytes, &mut buffer)?;
for (position, token) in extracted_positions.iter() {
let word = token.lemma().trim();
if !word_map.contains_key(word) {
word_map.insert(word.to_string(), word_map.len() as u32);
}
let word_id = word_map.get(word).unwrap();
word_docids_extractor.insert(*word_id, *field_id, document_id, deladd);
}
}
}
if word_docids_extractor.rough_size_estimate()
> indexer.max_memory.map_or(512 * 1024 * 1024, |s| s.min(512 * 1024 * 1024))
{
let WordDocidsDump { .. } =
word_docids_extractor.dump(&word_map, &searchable_fields_to_index, indexer)?;
}
}
todo!()
}
/// Check if any searchable fields of a document changed.
fn searchable_fields_changed(
obkv: &KvReader<FieldId>,
searchable_fields: &BTreeSet<FieldId>,
) -> bool {
for field_id in searchable_fields {
let Some(field_obkv) = obkv.get(*field_id).map(KvReaderDelAdd::new) else { continue };
match (field_obkv.get(DelAdd::Deletion), field_obkv.get(DelAdd::Addition)) {
// if both fields are None, check the next field.
(None, None) => (),
// if both contains a value and values are the same, check the next field.
(Some(del), Some(add)) if del == add => (),
// otherwise the fields are different, return true.
_otherwise => return true,
}
}
false
}

View File

@@ -0,0 +1,203 @@
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
use std::fs::File;
use std::hash::Hash;
use std::io::BufReader;
use std::mem::size_of;
use roaring::RoaringBitmap;
use crate::update::del_add::KvWriterDelAdd;
use crate::update::index_documents::extract::searchable::DelAdd;
use crate::update::index_documents::{create_writer, writer_into_reader, GrenadParameters};
use crate::update::settings::InnerIndexSettingsDiff;
use crate::{CboRoaringBitmapCodec, DocumentId, FieldId, Result};
pub struct WordDocidsExtractor<'a> {
word_fid_docids: RevertedIndex<(u32, FieldId)>,
settings_diff: &'a InnerIndexSettingsDiff,
}
impl<'a> WordDocidsExtractor<'a> {
pub fn new(settings_diff: &'a InnerIndexSettingsDiff) -> Self {
Self { word_fid_docids: RevertedIndex::new(), settings_diff }
}
pub fn insert(&mut self, wordid: u32, fieldid: FieldId, docid: DocumentId, del_add: DelAdd) {
self.word_fid_docids.insert((wordid, fieldid), docid, del_add);
}
pub fn rough_size_estimate(&self) -> usize {
self.word_fid_docids.rough_size_estimate()
}
pub fn dump(
&mut self,
word_map: &BTreeMap<String, u32>,
fields: &BTreeSet<FieldId>,
indexer: GrenadParameters,
) -> Result<WordDocidsDump> {
let mut word_fid_docids_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut word_docids_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut exact_word_docids_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut exact_word_deletion = RoaringBitmap::new();
let mut exact_word_addition = RoaringBitmap::new();
let mut word_deletion = RoaringBitmap::new();
let mut word_addition = RoaringBitmap::new();
let mut key_buffer = Vec::new();
let mut bitmap_buffer = Vec::new();
let mut obkv_buffer = Vec::new();
for (word, wid) in word_map {
exact_word_deletion.clear();
exact_word_addition.clear();
word_deletion.clear();
word_addition.clear();
for fid in fields {
if let Some((deletion, addition)) = self.word_fid_docids.inner.get(&(*wid, *fid)) {
if self.settings_diff.old.exact_attributes.contains(&fid) {
exact_word_deletion |= deletion;
} else {
word_deletion |= deletion;
}
if self.settings_diff.new.exact_attributes.contains(&fid) {
exact_word_addition |= addition;
} else {
word_addition |= addition;
}
if deletion != addition {
key_buffer.clear();
key_buffer.extend_from_slice(word.as_bytes());
key_buffer.push(0);
key_buffer.extend_from_slice(&fid.to_be_bytes());
let value = bitmaps_into_deladd_obkv(
deletion,
addition,
&mut obkv_buffer,
&mut bitmap_buffer,
)?;
word_fid_docids_writer.insert(&key_buffer, value)?;
}
}
}
key_buffer.clear();
key_buffer.extend_from_slice(word.as_bytes());
if exact_word_deletion != exact_word_addition {
let value = bitmaps_into_deladd_obkv(
&exact_word_deletion,
&exact_word_addition,
&mut obkv_buffer,
&mut bitmap_buffer,
)?;
exact_word_docids_writer.insert(&key_buffer, value)?;
}
if word_deletion != word_addition {
let value = bitmaps_into_deladd_obkv(
&word_deletion,
&word_addition,
&mut obkv_buffer,
&mut bitmap_buffer,
)?;
word_docids_writer.insert(&key_buffer, value)?;
}
}
self.word_fid_docids.clear();
Ok(WordDocidsDump {
word_fid_docids: writer_into_reader(word_fid_docids_writer)?,
word_docids: writer_into_reader(word_docids_writer)?,
exact_word_docids: writer_into_reader(exact_word_docids_writer)?,
})
}
}
fn bitmaps_into_deladd_obkv<'a>(
deletion: &RoaringBitmap,
addition: &RoaringBitmap,
obkv_buffer: &'a mut Vec<u8>,
bitmap_buffer: &mut Vec<u8>,
) -> Result<&'a mut Vec<u8>> {
obkv_buffer.clear();
let mut value_writer = KvWriterDelAdd::new(obkv_buffer);
if !deletion.is_empty() {
bitmap_buffer.clear();
CboRoaringBitmapCodec::serialize_into(deletion, bitmap_buffer);
value_writer.insert(DelAdd::Deletion, &*bitmap_buffer)?;
}
if !addition.is_empty() {
bitmap_buffer.clear();
CboRoaringBitmapCodec::serialize_into(addition, bitmap_buffer);
value_writer.insert(DelAdd::Addition, &*bitmap_buffer)?;
}
Ok(value_writer.into_inner()?)
}
#[derive(Debug)]
struct RevertedIndex<K> {
inner: HashMap<K, (RoaringBitmap, RoaringBitmap)>,
max_value_size: usize,
}
impl<K: PartialEq + Eq + Hash> RevertedIndex<K> {
pub fn insert(&mut self, key: K, docid: DocumentId, del_add: DelAdd) {
let size = match self.inner.entry(key) {
Occupied(mut entry) => {
let (ref mut del, ref mut add) = entry.get_mut();
match del_add {
DelAdd::Deletion => del.insert(docid),
DelAdd::Addition => add.insert(docid),
};
del.serialized_size() + add.serialized_size()
}
Vacant(entry) => {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(docid);
let size = bitmap.serialized_size();
match del_add {
DelAdd::Deletion => entry.insert((bitmap, RoaringBitmap::new())),
DelAdd::Addition => entry.insert((RoaringBitmap::new(), bitmap)),
};
size * 2
}
};
self.max_value_size = self.max_value_size.max(size);
}
pub fn new() -> Self {
Self { inner: HashMap::new(), max_value_size: 0 }
}
pub fn rough_size_estimate(&self) -> usize {
self.inner.len() * size_of::<K>() + self.inner.len() * self.max_value_size
}
fn clear(&mut self) {
self.max_value_size = 0;
self.inner.clear();
}
}
pub struct WordDocidsDump {
pub word_fid_docids: grenad::Reader<BufReader<File>>,
pub word_docids: grenad::Reader<BufReader<File>>,
pub exact_word_docids: grenad::Reader<BufReader<File>>,
}

Some files were not shown because too many files have changed in this diff Show More