Compare commits

..

7 Commits

Author SHA1 Message Date
Clément Renault
3e31479c81 Show the actual number of actually edited documents 2024-05-09 23:59:01 +02:00
Clément Renault
b1016649d0 Make the filter field really optional 2024-05-09 23:26:46 +02:00
Clément Renault
408b3a6cd1 Check the Rhai syntax before accepting the script 2024-05-09 21:51:51 +02:00
Clément Renault
02123a3326 It works perfectly with some Rhai 2024-05-09 13:07:32 +02:00
Clément Renault
5644af10ef Executing Lua works correctly 2024-05-08 23:37:57 +02:00
Clément Renault
389d673bc2 Support filtering the documents to edit with lua 2024-05-08 15:53:40 +02:00
Clément Renault
bba401eb37 Prepare for processing documents edition 2024-05-08 15:26:21 +02:00
122 changed files with 1548 additions and 7863 deletions

View File

@@ -43,11 +43,4 @@ jobs:
- name: Run benchmarks on PR ${{ github.event.issue.id }}
run: |
cargo xtask bench --api-key "${{ secrets.BENCHMARK_API_KEY }}" \
--dashboard-url "${{ vars.BENCHMARK_DASHBOARD_URL }}" \
--reason "[Comment](${{ github.event.comment.html_url }}) on [#${{ github.event.issue.number }}](${{ github.event.issue.html_url }})" \
-- ${{ steps.command.outputs.command-arguments }} > benchlinks.txt
- name: Send comment in PR
run: |
gh pr comment ${{github.event.issue.number}} --body-file benchlinks.txt
cargo xtask bench --api-key "${{ secrets.BENCHMARK_API_KEY }}" --dashboard-url "${{ vars.BENCHMARK_DASHBOARD_URL }}" --reason "[Comment](${{ github.event.comment.html_url }}) on [#${{ github.event.issue.number }}](${{ github.event.issue.html_url }})" -- ${{ steps.command.outputs.command-arguments }}

View File

@@ -56,12 +56,6 @@ jobs:
matrix:
os: [macos-12, windows-2022]
steps:
- name: Check free disk space on C
run: |
fsutil volume diskfree c:
- name: Check free disk space on D
run: |
fsutil volume diskfree d:
- uses: actions/checkout@v3
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.7.1
@@ -69,23 +63,11 @@ jobs:
with:
toolchain: stable
override: true
- name: Check free disk space on C
run: |
fsutil volume diskfree c:
- name: Check free disk space on D
run: |
fsutil volume diskfree d:
- name: Run cargo check without any default features
uses: actions-rs/cargo@v1
with:
command: build
args: --locked --release --no-default-features --all
- name: Check free disk space on C
run: |
fsutil volume diskfree c:
- name: Check free disk space on D
run: |
fsutil volume diskfree d:
- name: Run cargo test
uses: actions-rs/cargo@v1
with:

View File

@@ -187,8 +187,8 @@ They are JSON files with the following structure (comments are not actually supp
},
// Core of the workload.
// A list of commands to run sequentially.
// Optional: A precommand is a request to the Meilisearch instance that is executed before the profiling runs.
"precommands": [
// A command is a request to the Meilisearch instance that is executed while the profiling runs.
"commands": [
{
// Meilisearch route to call. `http://localhost:7700/` will be prepended.
"route": "indexes/movies/settings",
@@ -224,11 +224,8 @@ They are JSON files with the following structure (comments are not actually supp
// - DontWait: run the next command without waiting the response to this one.
// - WaitForResponse: run the next command as soon as the response from the server is received.
// - WaitForTask: run the next command once **all** the Meilisearch tasks created up to now have finished processing.
"synchronous": "WaitForTask"
}
],
// A command is a request to the Meilisearch instance that is executed while the profiling runs.
"commands": [
"synchronous": "DontWait"
},
{
"route": "indexes/movies/documents",
"method": "POST",

125
Cargo.lock generated
View File

@@ -262,6 +262,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e89da841a80418a9b391ebaea17f5c112ffaaa96f621d2c285b5174da76b9011"
dependencies = [
"cfg-if",
"const-random",
"getrandom",
"once_cell",
"version_check",
@@ -378,9 +379,9 @@ dependencies = [
[[package]]
name = "arroy"
version = "0.3.1"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73897699bf04bac935c0b120990d2a511e91e563e0f9769f9c8bb983d98dfbc9"
checksum = "efddeb1e7c32a551cc07ef4c3e181e3cd5478fdaf4f0bd799983171c1f6efe57"
dependencies = [
"bytemuck",
"byteorder",
@@ -1049,6 +1050,26 @@ dependencies = [
"windows-sys 0.45.0",
]
[[package]]
name = "const-random"
version = "0.1.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87e00182fe74b066627d63b85fd550ac2998d4b0bd86bfed477a0ae4c7c71359"
dependencies = [
"const-random-macro",
]
[[package]]
name = "const-random-macro"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f9d839f2a20b0aee515dc581a6172f2321f96cab76c1a38a4c584a194955390e"
dependencies = [
"getrandom",
"once_cell",
"tiny-keccak",
]
[[package]]
name = "constant_time_eq"
version = "0.1.5"
@@ -1536,9 +1557,9 @@ checksum = "fea41bba32d969b513997752735605054bc0dfa92b4c56bf1189f2e174be7a10"
[[package]]
name = "doxygen-rs"
version = "0.4.2"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "415b6ec780d34dcf624666747194393603d0373b7141eef01d12ee58881507d9"
checksum = "bff670ea0c9bbb8414e7efa6e23ebde2b8f520a7eef78273a3918cf1903e7505"
dependencies = [
"phf",
]
@@ -2262,11 +2283,12 @@ checksum = "95505c38b4572b2d910cecb0281560f54b440a19336cbbcb27bf6ce6adc6f5a8"
[[package]]
name = "heed"
version = "0.20.1"
version = "0.20.0-alpha.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6f7acb9683d7c7068aa46d47557bfa4e35a277964b350d9504a87b03610163fd"
checksum = "9648a50991c86df7d00c56c268c27754fcf4c80be2ba57fc4a00dc928c6fe934"
dependencies = [
"bitflags 2.5.0",
"bytemuck",
"byteorder",
"heed-traits",
"heed-types",
@@ -2280,15 +2302,15 @@ dependencies = [
[[package]]
name = "heed-traits"
version = "0.20.0"
version = "0.20.0-alpha.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb3130048d404c57ce5a1ac61a903696e8fcde7e8c2991e9fcfc1f27c3ef74ff"
checksum = "5ab0b7d9cde969ad36dde692e487dc89d97f7168bf6a7bd3b894ad4bf7278298"
[[package]]
name = "heed-types"
version = "0.20.0"
version = "0.20.0-alpha.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3cb0d6ba3700c9a57e83c013693e3eddb68a6d9b6781cacafc62a0d992e8ddb3"
checksum = "f0cb3567a7363f28b597bf6e9897b9466397951dd0e52df2c8196dd8a71af44a"
dependencies = [
"bincode",
"byteorder",
@@ -2464,6 +2486,7 @@ dependencies = [
"meilisearch-auth",
"meilisearch-types",
"page_size 0.5.0",
"puffin",
"rayon",
"roaring",
"serde",
@@ -3187,13 +3210,14 @@ checksum = "f9d642685b028806386b2b6e75685faadd3eb65a85fff7df711ce18446a422da"
[[package]]
name = "lmdb-master-sys"
version = "0.2.0"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc9048db3a58c0732d7236abc4909058f9d2708cfb6d7d047eb895fddec6419a"
checksum = "629c123f5321b48fa4f8f4d3b868165b748d9ba79c7103fb58e3a94f736bcedd"
dependencies = [
"cc",
"doxygen-rs",
"libc",
"pkg-config",
]
[[package]]
@@ -3230,6 +3254,12 @@ version = "0.4.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"
[[package]]
name = "lz4_flex"
version = "0.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b8c72594ac26bfd34f2d99dfced2edfaddfe8a476e3ff2ca0eb293d925c4f83"
[[package]]
name = "macro_rules_attribute"
version = "0.2.0"
@@ -3334,6 +3364,7 @@ dependencies = [
"pin-project-lite",
"platform-dirs",
"prometheus",
"puffin",
"rand",
"rayon",
"regex",
@@ -3501,9 +3532,11 @@ dependencies = [
"obkv",
"once_cell",
"ordered-float",
"puffin",
"rand",
"rand_pcg",
"rayon",
"rhai",
"roaring",
"rstar",
"serde",
@@ -4171,6 +4204,23 @@ version = "2.28.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "106dd99e98437432fed6519dedecfade6a06a73bb7b2a1e019fdd2bee5778d94"
[[package]]
name = "puffin"
version = "0.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "76425abd4e1a0ad4bd6995dd974b52f414fca9974171df8e3708b3e660d05a21"
dependencies = [
"anyhow",
"bincode",
"byteorder",
"cfg-if",
"instant",
"lz4_flex",
"once_cell",
"parking_lot",
"serde",
]
[[package]]
name = "pulp"
version = "0.18.9"
@@ -4394,6 +4444,35 @@ version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8c31b5c4033f8fdde8700e4657be2c497e7288f01515be52168c631e2e4d4086"
[[package]]
name = "rhai"
version = "1.18.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a7d88770120601ba1e548bb6bc2a05019e54ff01b51479e38e64ec3b59d4759"
dependencies = [
"ahash",
"bitflags 2.5.0",
"instant",
"num-traits",
"once_cell",
"rhai_codegen",
"serde",
"smallvec",
"smartstring",
"thin-vec",
]
[[package]]
name = "rhai_codegen"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "59aecf17969c04b9c0c5d21f6bc9da9fec9dd4980e64d1871443a476589d8c86"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.60",
]
[[package]]
name = "ring"
version = "0.17.8"
@@ -4807,6 +4886,9 @@ name = "smallvec"
version = "1.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2593d31f82ead8df961d8bd23a64c2ccf2eb5dd34b0a34bfb4dd54011c72009e"
dependencies = [
"serde",
]
[[package]]
name = "smartstring"
@@ -4815,6 +4897,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb72c633efbaa2dd666986505016c32c3044395ceaf881518399d2f4127ee29"
dependencies = [
"autocfg",
"serde",
"static_assertions",
"version_check",
]
@@ -5061,6 +5144,15 @@ dependencies = [
"winapi-util",
]
[[package]]
name = "thin-vec"
version = "0.2.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a38c90d48152c236a3ab59271da4f4ae63d678c5d7ad6b7714d7cb9760be5e4b"
dependencies = [
"serde",
]
[[package]]
name = "thiserror"
version = "1.0.58"
@@ -5139,6 +5231,15 @@ dependencies = [
"time-core",
]
[[package]]
name = "tiny-keccak"
version = "2.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2c9d3793400a45f954c52e73d068316d76b6f4e36977e3fcebb13a2721e80237"
dependencies = [
"crunchy",
]
[[package]]
name = "tinytemplate"
version = "1.2.1"

View File

@@ -166,6 +166,7 @@ impl From<KindWithContent> for KindDump {
documents_count,
allow_index_creation,
},
KindWithContent::DocumentEdition { .. } => todo!(),
KindWithContent::DocumentDeletion { documents_ids, .. } => {
KindDump::DocumentDeletion { documents_ids }
}

View File

@@ -197,140 +197,6 @@ pub(crate) mod test {
use super::*;
use crate::reader::v6::RuntimeTogglableFeatures;
#[test]
fn import_dump_v6_with_vectors() {
// dump containing two indexes
//
// "vector", configured with an embedder
// contains:
// - one document with an overriden vector,
// - one document with a natural vector
// - one document with a _vectors map containing one additional embedder name and a natural vector
// - one document with a _vectors map containing one additional embedder name and an overriden vector
//
// "novector", no embedder
// contains:
// - a document without vector
// - a document with a random _vectors field
let dump = File::open("tests/assets/v6-with-vectors.dump").unwrap();
let mut dump = DumpReader::open(dump).unwrap();
// top level infos
insta::assert_display_snapshot!(dump.date().unwrap(), @"2024-05-16 15:51:34.151044 +00:00:00");
insta::assert_debug_snapshot!(dump.instance_uid().unwrap(), @"None");
// tasks
let tasks = dump.tasks().unwrap().collect::<Result<Vec<_>>>().unwrap();
let (tasks, update_files): (Vec<_>, Vec<_>) = tasks.into_iter().unzip();
meili_snap::snapshot_hash!(meili_snap::json_string!(tasks), @"278f63325ef06ca04d01df98d8207b94");
assert_eq!(update_files.len(), 10);
assert!(update_files[0].is_none()); // the dump creation
assert!(update_files[1].is_none());
assert!(update_files[2].is_none());
assert!(update_files[3].is_none());
assert!(update_files[4].is_none());
assert!(update_files[5].is_none());
assert!(update_files[6].is_none());
assert!(update_files[7].is_none());
assert!(update_files[8].is_none());
assert!(update_files[9].is_none());
// indexes
let mut indexes = dump.indexes().unwrap().collect::<Result<Vec<_>>>().unwrap();
// the index are not ordered in any way by default
indexes.sort_by_key(|index| index.metadata().uid.to_string());
let mut vector_index = indexes.pop().unwrap();
let mut novector_index = indexes.pop().unwrap();
assert!(indexes.is_empty());
// vector
insta::assert_json_snapshot!(vector_index.metadata(), @r###"
{
"uid": "vector",
"primaryKey": "id",
"createdAt": "2024-05-16T15:33:17.240962Z",
"updatedAt": "2024-05-16T15:40:55.723052Z"
}
"###);
{
let documents: Result<Vec<_>> = vector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();
assert_eq!(documents.len(), 4);
documents.sort_by_key(|doc| doc.get("id").unwrap().to_string());
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document);
}
}
// novector
insta::assert_json_snapshot!(novector_index.metadata(), @r###"
{
"uid": "novector",
"primaryKey": "id",
"createdAt": "2024-05-16T15:33:03.568055Z",
"updatedAt": "2024-05-16T15:33:07.530217Z"
}
"###);
insta::assert_json_snapshot!(novector_index.settings().unwrap().embedders, @"null");
{
let documents: Result<Vec<_>> = novector_index.documents().unwrap().collect();
let mut documents = documents.unwrap();
assert_eq!(documents.len(), 2);
documents.sort_by_key(|doc| doc.get("id").unwrap().to_string());
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document, @r###"
{
"id": "e1",
"other": "random1",
"_vectors": "toto"
}
"###);
}
{
let document = documents.pop().unwrap();
insta::assert_json_snapshot!(document, @r###"
{
"id": "e0",
"other": "random0"
}
"###);
}
}
assert_eq!(
dump.features().unwrap().unwrap(),
RuntimeTogglableFeatures { vector_store: true, ..Default::default() }
);
}
#[test]
fn import_dump_v6_experimental() {
let dump = File::open("tests/assets/v6-with-experimental.dump").unwrap();

View File

@@ -1,783 +0,0 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e3",
"desc": "overriden vector + map",
"_vectors": {
"default": [
0.2,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
],
"toto": [
0.1
]
}
}

View File

@@ -1,786 +0,0 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e2",
"desc": "natural vector + map",
"_vectors": {
"toto": [],
"default": {
"embeddings": [
[
-0.05189208313822746,
-0.9273212552070618,
0.1443813145160675,
0.0932632014155388,
0.2665371894836426,
0.36266782879829407,
0.6402910947799683,
0.32014018297195435,
0.030915971845388412,
-0.9312191605567932,
-0.3718109726905823,
-0.2700554132461548,
-1.1014580726623535,
0.9154956936836244,
-0.3406888246536255,
1.0077725648880005,
0.6577560901641846,
-0.3955195546150207,
-0.4148270785808563,
0.1855088472366333,
0.5062315464019775,
-0.3632686734199524,
-0.2277890294790268,
0.2560805082321167,
-0.3853609561920166,
-0.1604762226343155,
-0.13947471976280212,
-0.20147813856601715,
-0.4466346800327301,
-0.3761846721172333,
0.1443382054567337,
0.18205296993255615,
0.49359792470932007,
-0.22538000345230105,
-0.4996317625045776,
-0.22734887897968292,
-0.6034309267997742,
-0.7857939600944519,
-0.34923747181892395,
-0.3466345965862274,
0.21176661550998688,
-0.5101462006568909,
-0.3403083384037018,
0.000315118464641273,
0.236465722322464,
-0.10246097296476364,
-1.3013339042663574,
0.3419138789176941,
-0.32963496446609497,
-0.0901619717478752,
-0.5426247119903564,
0.22656650841236117,
-0.44758284091949463,
0.14151698350906372,
-0.1089438870549202,
0.5500766634941101,
-0.670711100101471,
-0.6227269768714905,
0.3894464075565338,
-0.27609574794769287,
0.7028202414512634,
-0.19697771966457367,
0.328511506319046,
0.5063360929489136,
0.4065195322036743,
0.2614171802997589,
-0.30274391174316406,
1.0393824577331543,
-0.7742937207221985,
-0.7874112129211426,
-0.6749666929244995,
0.5190866589546204,
0.004123548045754433,
-0.28312963247299194,
-0.038731709122657776,
-1.0142987966537476,
-0.09519586712121964,
0.8755272626876831,
0.4876938760280609,
0.7811151742935181,
0.85174959897995,
0.11826585978269576,
0.5373436808586121,
0.3649002015590668,
0.19064077734947205,
-0.00287026260048151,
-0.7305403351783752,
-0.015206154435873032,
-0.7899249196052551,
0.19407285749912265,
0.08596625179052353,
-0.28976231813430786,
-0.1525907665491104,
0.3798313438892365,
0.050306469202041626,
-0.5697937607765198,
0.4219021201133728,
0.276252806186676,
0.1559903472661972,
0.10030482709407806,
-0.4043720066547394,
-0.1969818025827408,
0.5739826560020447,
0.2116064727306366,
-1.4620544910430908,
-0.7802462577819824,
-0.24739810824394223,
-0.09791352599859238,
-0.4413802027702331,
0.21549351513385773,
-0.9520436525344848,
-0.08762510865926743,
0.08154498040676117,
-0.6154940724372864,
-1.01079523563385,
0.885427713394165,
0.6967288851737976,
0.27186504006385803,
-0.43194177746772766,
-0.11248451471328735,
0.7576630711555481,
0.4998855590820313,
0.0264343973249197,
0.9872855544090272,
0.5634694695472717,
0.053698331117630005,
0.19410227239131927,
0.3570743501186371,
-0.23670297861099243,
-0.9114483594894408,
0.07884842902421951,
0.7318344116210938,
0.44630110263824463,
0.08745364099740982,
-0.347101628780365,
-0.4314247667789459,
-0.5060274004936218,
0.003706763498485088,
0.44320008158683777,
-0.00788921769708395,
-0.1368623524904251,
-0.17391923069953918,
0.14473655819892883,
0.10927865654230118,
0.6974599361419678,
0.005052129738032818,
-0.016953065991401672,
-0.1256176233291626,
-0.036742497235536575,
0.5591985583305359,
-0.37619709968566895,
0.22429119050502777,
0.5403043031692505,
-0.8603790998458862,
-0.3456307053565979,
0.9292937517166138,
0.5074859261512756,
0.6310645937919617,
-0.3091641068458557,
0.46902573108673096,
0.7891915440559387,
0.4499550759792328,
0.2744995653629303,
0.2712305784225464,
-0.04349074140191078,
-0.3638863265514374,
0.7839881777763367,
0.7352104783058167,
-0.19457511603832245,
-0.5957832932472229,
-0.43704694509506226,
-1.084769368171692,
0.4904985725879669,
0.5385226011276245,
0.1891629993915558,
0.12338479608297348,
0.8315675258636475,
-0.07830192148685455,
1.0916285514831543,
-0.28066861629486084,
-1.3585069179534912,
0.5203898549079895,
0.08678033947944641,
-0.2566044330596924,
0.09484415501356123,
-0.0180208683013916,
1.0264745950698853,
-0.023572135716676712,
0.5864979028701782,
0.7625196576118469,
-0.2543414533138275,
-0.8877770900726318,
0.7611982822418213,
-0.06220436468720436,
0.937336564064026,
0.2704363465309143,
-0.37733694911003113,
0.5076137781143188,
-0.30641937255859375,
0.6252772808074951,
-0.0823579877614975,
-0.03736555948853493,
0.4131673276424408,
-0.6514252424240112,
0.12918265163898468,
-0.4483584463596344,
0.6750786304473877,
-0.37008383870124817,
-0.02324833907186985,
0.38027650117874146,
-0.26374951004981995,
0.4346931278705597,
0.42882832884788513,
-0.48798441886901855,
1.1882442235946655,
0.5132288336753845,
0.5284568667411804,
-0.03538886830210686,
0.29620853066444397,
-1.0683696269989014,
0.25936177372932434,
0.10404160618782043,
-0.25796034932136536,
0.027896970510482788,
-0.09225251525640488,
1.4811025857925415,
0.641173779964447,
-0.13838383555412292,
-0.3437179923057556,
0.5667019486427307,
-0.5400741696357727,
0.31090837717056274,
0.6470608115196228,
-0.3747067153453827,
-0.7364534735679626,
-0.07431528717279434,
0.5173454880714417,
-0.6578747034072876,
0.7107478976249695,
-0.7918999791145325,
-0.0648345872759819,
0.609937846660614,
-0.7329513430595398,
0.9741371870040894,
0.17912346124649048,
-0.02658769302070141,
0.5162150859832764,
-0.3978803157806397,
-0.7833885550498962,
-0.6497276425361633,
-0.3898126780986786,
-0.0952848568558693,
0.2663288116455078,
-0.1604052186012268,
0.373076468706131,
-0.8357769250869751,
-0.05217683315277099,
-0.2680160701274872,
0.8389158248901367,
0.6833611130714417,
-0.6712407469749451,
0.7406917214393616,
-0.44522786140441895,
-0.34645363688468933,
-0.27384576201438904,
-0.9878405928611756,
-0.8166060447692871,
0.06268279999494553,
0.38567957282066345,
-0.3274703919887543,
0.5296315550804138,
-0.11810623109340668,
0.23029841482639313,
0.08616159111261368,
-0.2195747196674347,
0.09430307894945145,
0.4057176411151886,
0.4892159104347229,
-0.1636916548013687,
-0.6071445345878601,
0.41256585717201233,
0.622254490852356,
-0.41223976016044617,
-0.6686707139015198,
-0.7474371790885925,
-0.8509522080421448,
-0.16754287481307983,
-0.9078601002693176,
-0.29653599858283997,
-0.5020652413368225,
0.4692700505256653,
0.01281109917908907,
-0.16071580350399017,
0.03388889133930206,
-0.020511148497462273,
0.5027827024459839,
-0.20729811489582065,
0.48107290267944336,
0.33669769763946533,
-0.5275911688804626,
0.48271527886390686,
0.2738940715789795,
-0.033152539283037186,
-0.13629786670207977,
-0.05965912342071533,
-0.26200807094573975,
0.04002794995903969,
-0.34095603227615356,
-3.986898899078369,
-0.46819332242012024,
-0.422744482755661,
-0.169097900390625,
0.6008929014205933,
0.058016058057546616,
-0.11401277780532836,
-0.3077819049358368,
-0.09595538675785063,
0.6723822355270386,
0.19367831945419312,
0.28304359316825867,
0.1609862744808197,
0.7567598819732666,
0.6889985799789429,
0.06907720118761063,
-0.04188092052936554,
-0.7434936165809631,
0.13321782648563385,
0.8456063270568848,
-0.10364038497209548,
-0.45084846019744873,
-0.4758241474628449,
0.43882066011428833,
-0.6432598829269409,
0.7217311859130859,
-0.24189773201942444,
0.12737572193145752,
-1.1008601188659668,
-0.3305315673351288,
0.14614742994308472,
-0.7819333076477051,
0.5287120342254639,
-0.055538054555654526,
0.1877404749393463,
-0.6907662153244019,
0.5616975426673889,
-0.4611121714115143,
-0.26109233498573303,
-0.12898315489292145,
-0.3724522292613983,
-0.7191406488418579,
-0.4425233602523804,
-0.644108235836029,
0.8424481153488159,
0.17532426118850708,
-0.5121750235557556,
-0.6467239260673523,
-0.0008507720194756985,
0.7866212129592896,
-0.02644744887948036,
-0.005045140627771616,
0.015782782807946205,
0.16334445774555206,
-0.1913367658853531,
-0.13697923719882965,
-0.6684983372688293,
0.18346354365348816,
-0.341105580329895,
0.5427411198616028,
0.3779832422733307,
-0.6778115034103394,
-0.2931850254535675,
-0.8805161714553833,
-0.4212774932384491,
-0.5368952751159668,
-1.3937891721725464,
-1.225494146347046,
0.4276703894138336,
1.1205668449401855,
-0.6005299687385559,
0.15732505917549133,
-0.3914784789085388,
-1.357046604156494,
-0.4707142114639282,
-0.1497287154197693,
-0.25035548210144043,
-0.34328439831733704,
0.39083412289619446,
0.1623048633337021,
-0.9275814294815063,
-0.6430015563964844,
0.2973862886428833,
0.5580436587333679,
-0.6232585310935974,
-0.6611042022705078,
0.4015969038009643,
-1.0232892036437988,
-0.2585645020008087,
-0.5431421399116516,
0.5021264553070068,
-0.48601630330085754,
-0.010242084041237833,
0.5862035155296326,
0.7316920161247253,
0.4036808013916016,
0.4269520044326782,
-0.705938458442688,
0.7747307419776917,
0.10164368897676468,
0.7887958884239197,
-0.9612497091293336,
0.12755516171455383,
0.06812842190265656,
-0.022603651508688927,
0.14722754061222076,
-0.5588505268096924,
-0.20689940452575684,
0.3557641804218292,
-0.6812759637832642,
0.2860803008079529,
-0.38954633474349976,
0.1759403496980667,
-0.5678874850273132,
-0.1692986786365509,
-0.14578519761562347,
0.5711379051208496,
1.0208125114440918,
0.7759483456611633,
-0.372348427772522,
-0.5460885763168335,
0.7190321683883667,
-0.6914990544319153,
0.13365162909030914,
-0.4854792356491089,
0.4054908752441406,
0.4502798914909363,
-0.3041122555732727,
-0.06726965308189392,
-0.05570871382951737,
-0.0455719493329525,
0.4785125255584717,
0.8867972493171692,
0.4107886850833893,
0.6121342182159424,
-0.20477132499217987,
-0.5598517656326294,
-0.6443566679954529,
-0.5905212759971619,
-0.5571200251579285,
0.17573799192905426,
-0.28621870279312134,
0.1685224026441574,
0.09719007462263109,
-0.04223639518022537,
-0.28623101115226746,
-0.1449810117483139,
-0.3789580464363098,
-0.5227636098861694,
-0.049728814512491226,
0.7849089503288269,
0.16792525351047516,
0.9849340915679932,
-0.6559549570083618,
0.35723909735679626,
-0.6822739243507385,
1.2873116731643677,
0.19993330538272855,
0.03512010723352432,
-0.6972134113311768,
0.18453484773635864,
-0.2437680810689926,
0.2156416028738022,
0.5230382680892944,
0.22020135819911957,
0.8314080238342285,
0.15627102553844452,
-0.7330264449119568,
0.3888184726238251,
-0.22034703195095065,
0.5457669496536255,
-0.48084837198257446,
-0.45576658844947815,
-0.09287727624177931,
-0.06968110054731369,
0.35125672817230225,
-0.4278119504451752,
0.2038476765155792,
0.11392722278833388,
0.9433983564376832,
-0.4097744226455689,
0.035297419875860214,
-0.4274404048919678,
-0.25100165605545044,
1.0943366289138794,
-0.07634022831916809,
-0.2925529479980469,
-0.7512530088424683,
0.2649727463722229,
-0.4078235328197479,
-0.3372223973274231,
0.05190162733197212,
0.005654910113662481,
-0.0001571219472680241,
-0.35445958375930786,
-0.7837416529655457,
0.1500556766986847,
0.4383024573326111,
0.6099548935890198,
0.05951934307813645,
-0.21325334906578064,
0.0199207104742527,
-0.22704418003559113,
-0.6481077671051025,
0.37442275881767273,
-1.015955924987793,
0.38637226819992065,
-0.06489371508359909,
-0.494120329618454,
0.3469836115837097,
0.15402406454086304,
-0.7660972476005554,
-0.7053225040435791,
-0.25964751839637756,
0.014004424214363098,
-0.2860170006752014,
-0.17565494775772095,
-0.45117494463920593,
-0.0031954257283359766,
0.09676837921142578,
-0.514464259147644,
0.41698193550109863,
-0.21642713248729703,
-0.5398141145706177,
-0.3647628426551819,
0.37005379796028137,
0.239425927400589,
-0.08833975344896317,
0.934946596622467,
-0.48340797424316406,
0.6241437792778015,
-0.7253676652908325,
-0.04303571209311485,
1.1125205755233765,
-0.15692919492721558,
-0.2914651036262512,
-0.5117168426513672,
0.21365483105182648,
0.4924402534961701,
0.5269662141799927,
0.0352792888879776,
-0.149167999625206,
-0.6019760370254517,
0.08245442807674408,
0.4900692105293274,
0.518824577331543,
-0.00005570516441366635,
-0.553304135799408,
0.22217543423175812,
0.5047767758369446,
0.135724738240242,
1.1511540412902832,
-0.3541218340396881,
-0.9712511897087096,
0.8353699445724487,
-0.39227569103240967,
-0.9117669463157654,
-0.26349931955337524,
0.05597023293375969,
0.20695461332798004,
0.3178807199001312,
1.0663238763809204,
0.5062212347984314,
0.7288597822189331,
0.09899299591779707,
0.553720235824585,
0.675009548664093,
-0.20067055523395536,
0.3138423264026642,
-0.6886593103408813,
-0.2910398542881012,
-1.3186300992965698,
-0.4684459865093231,
-0.095743365585804,
-0.1257995069026947,
-0.4858281314373016,
-0.4935407340526581,
-0.3266896903514862,
-0.3928797245025635,
-0.40803104639053345,
-0.9975396394729614,
0.4229583740234375,
0.37309643626213074,
0.4431034922599793,
0.30364808440208435,
-0.3765178918838501,
0.5616499185562134,
0.16904796659946442,
-0.7343707084655762,
0.2560209631919861,
0.6166825294494629,
0.3200829327106476,
-0.4483652710914612,
0.16224201023578644,
-0.31495288014411926,
-0.42713335156440735,
0.7270734906196594,
0.7049484848976135,
-0.0571461021900177,
0.04477125033736229,
-0.6647796034812927,
1.183672308921814,
0.36199676990509033,
0.046881116926670074,
0.4515796303749085,
0.9278061985969543,
0.31471705436706543,
-0.7073333859443665,
-0.3443860113620758,
0.5440067052841187,
-0.15020819008350372,
-0.541202962398529,
0.5203295946121216,
1.2192286252975464,
-0.9983593225479126,
-0.18758884072303772,
0.2758221924304962,
-0.6511523723602295,
-0.1584404855966568,
-0.236241415143013,
0.2692437767982483,
-0.4941152036190033,
0.4987454116344452,
-0.3331359028816223,
0.3163745701313019,
0.745529294013977,
-0.2905873656272888,
0.13602906465530396,
0.4679684340953827,
1.0555986166000366,
1.075700044631958,
0.5368486046791077,
-0.5118206739425659,
0.8668332099914551,
-0.5726966857910156,
-0.7811751961708069,
0.1938626915216446,
-0.1929349899291992,
0.1757766306400299,
0.6384295225143433,
0.26462844014167786,
0.9542630314826964,
0.19313029944896695,
1.264248013496399,
-0.6304428577423096,
0.0487106591463089,
-0.16211535036563873,
-0.7894763350486755,
0.3582514822483063,
-0.04153040423989296,
0.635784387588501,
0.6554391980171204,
-0.47010496258735657,
-0.8302040696144104,
-0.1350124627351761,
0.2568812072277069,
0.13614831864833832,
-0.2563649117946625,
-1.0434694290161133,
0.3232482671737671,
0.47882452607154846,
0.4298652410507202,
1.0563770532608032,
-0.28917592763900757,
-0.8533256649971008,
0.10648339986801147,
0.6376127004623413,
-0.20832888782024384,
0.2370245456695557,
0.0018312990432605147,
-0.2034837007522583,
0.01051164511591196,
-1.105310082435608,
0.29724350571632385,
0.15604574978351593,
0.1973688006401062,
0.44394731521606445,
0.3974513411521912,
-0.13625948131084442,
0.9571986198425292,
0.2257384955883026,
0.2323588728904724,
-0.5583669543266296,
-0.7854922413825989,
0.1647188365459442,
-1.6098142862319946,
0.318587988615036,
-0.13399995863437653,
-0.2172701060771942,
-0.767514705657959,
-0.5813586711883545,
-0.3195130527019501,
-0.04894036799669266,
0.2929930090904236,
-0.8213384747505188,
0.07181350141763687,
0.7469993829727173,
0.6407455801963806,
0.16365697979927063,
0.7870153188705444,
0.6524736881256104,
0.6399973630905151,
-0.04992736503481865,
-0.03959266096353531,
-0.2512352466583252,
0.8448855876922607,
-0.1422702670097351,
0.1216789186000824,
-1.2647287845611572,
0.5931149125099182,
0.7186052203178406,
-0.06118432432413101,
-1.1942816972732544,
-0.17677085101604462,
0.31543800234794617,
-0.32252824306488037,
0.8255583047866821,
-0.14529970288276672,
-0.2695446312427521,
-0.33378756046295166,
-0.1653425395488739,
0.1454019844532013,
-0.3920115828514099,
0.912214994430542,
-0.7279734015464783,
0.7374742031097412,
0.933980405330658,
0.13429680466651917,
-0.514870285987854,
0.3989711999893189,
-0.11613689363002776,
0.4022413492202759,
-0.9990655779838562,
-0.33749932050704956,
-0.4334589838981629,
-1.376373291015625,
-0.2993924915790558,
-0.09454808384180068,
-0.01314175222069025,
-0.001090060803107917,
0.2137461006641388,
0.2938512861728668,
0.17508235573768616,
0.8260607123374939,
-0.7218498587608337,
0.2414487451314926,
-0.47296759486198425,
-0.3002610504627228,
-1.238540768623352,
0.08663805574178696,
0.6805586218833923,
0.5909030437469482,
-0.42807504534721375,
-0.22887496650218964,
0.47537800669670105,
-1.0474627017974854,
0.6338009238243103,
0.06548397243022919,
0.4971011281013489,
1.3484878540039063
]
],
"userProvided": false
}
}
}

View File

@@ -1,785 +0,0 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e1",
"desc": "natural vector",
"_vectors": {
"default": {
"embeddings": [
[
-0.2979458272457123,
-0.5288640856742859,
-0.019957859069108963,
-0.18495318293571472,
0.7429973483085632,
0.5238497257232666,
0.432366281747818,
0.32744166254997253,
0.0020762972999364138,
-0.9507834911346436,
-0.35097137093544006,
0.08469701558351517,
-1.4176613092422483,
0.4647577106952667,
-0.69340580701828,
1.0372896194458008,
0.3716741800308227,
0.06031008064746857,
-0.6152024269104004,
0.007914665155112743,
0.7954924702644348,
-0.20773003995418549,
0.09376765787601472,
0.04508133605122566,
-0.2084471583366394,
-0.1518009901046753,
0.018195509910583496,
-0.07044368237257004,
-0.18119366466999057,
-0.4480230510234833,
0.3822529911994934,
0.1911812424659729,
0.4674372375011444,
0.06963984668254852,
-0.09341949224472046,
0.005675444379448891,
-0.6774799227714539,
-0.7066726684570313,
-0.39256376028060913,
0.04005039855837822,
0.2084812968969345,
-0.7872875928878784,
-0.8205880522727966,
0.2919981777667999,
-0.06004738807678223,
-0.4907574355602264,
-1.5937862396240234,
0.24249385297298431,
-0.14709846675395966,
-0.11860740929841997,
-0.8299489617347717,
0.472964346408844,
-0.497518390417099,
-0.22205302119255063,
-0.4196169078350067,
0.32697558403015137,
-0.360930860042572,
-0.9789686799049376,
0.1887447088956833,
-0.403737336397171,
0.18524253368377688,
0.3768732249736786,
0.3666233420372009,
0.3511938452720642,
0.6985810995101929,
0.41721710562705994,
0.09754953533411026,
0.6204307079315186,
-1.0762996673583984,
-0.06263761967420578,
-0.7376511693000793,
0.6849768161773682,
-0.1745152473449707,
-0.40449759364128113,
0.20757411420345304,
-0.8424443006515503,
0.330015629529953,
0.3489064872264862,
1.0954371690750122,
0.8487558960914612,
1.1076823472976685,
0.61430823802948,
0.4155903458595276,
0.4111340939998626,
0.05753209814429283,
-0.06429877132177353,
-0.765606164932251,
-0.41703930497169495,
-0.508820652961731,
0.19859947264194489,
-0.16607828438282013,
-0.28112146258354187,
0.11032675206661224,
0.38809511065483093,
-0.36498191952705383,
-0.48671194911003113,
0.6755134463310242,
0.03958442434668541,
0.4478721618652344,
-0.10335399955511092,
-0.9546685814857484,
-0.6087718605995178,
0.17498846352100372,
0.08320838958024979,
-1.4478336572647097,
-0.605027437210083,
-0.5867993235588074,
-0.14711688458919525,
-0.5447602272033691,
-0.026259321719408035,
-0.6997418403625488,
-0.07349082082509995,
0.10638900846242905,
-0.7133527398109436,
-0.9396815299987792,
1.087092399597168,
1.1885089874267578,
0.4011896848678589,
-0.4089202582836151,
-0.10938972979784012,
0.6726722121238708,
0.24576938152313232,
-0.24247920513153076,
1.1499971151351929,
0.47813335061073303,
-0.05331678315997124,
0.32338133454322815,
0.4870913326740265,
-0.23144258558750153,
-1.2023426294326782,
0.2349330335855484,
1.080536961555481,
0.29334118962287903,
0.391574501991272,
-0.15818795561790466,
-0.2948290705680847,
-0.024689948186278343,
0.06602869182825089,
0.5937030911445618,
-0.047901444137096405,
-0.512734591960907,
-0.35780075192451477,
0.28751692175865173,
0.4298716187477112,
0.9242428541183472,
-0.17208744585514069,
0.11515070497989656,
-0.0335976779460907,
-0.3422986567020416,
0.5344581604003906,
0.19895796477794647,
0.33001241087913513,
0.6390730142593384,
-0.6074934005737305,
-0.2553696632385254,
0.9644920229911804,
0.2699219584465027,
0.6403993368148804,
-0.6380003690719604,
-0.027310986071825027,
0.638815701007843,
0.27719101309776306,
-0.13553589582443237,
0.750195324420929,
0.1224869191646576,
-0.20613941550254825,
0.8444448709487915,
0.16200250387191772,
-0.24750925600528717,
-0.739950954914093,
-0.28443849086761475,
-1.176282525062561,
0.516107976436615,
0.3774825632572174,
0.10906043648719788,
0.07962015271186829,
0.7384604215621948,
-0.051241904497146606,
1.1730090379714966,
-0.4828610122203827,
-1.404372215270996,
0.8811132311820984,
-0.3839482367038727,
0.022516896948218346,
-0.0491158664226532,
-0.43027013540267944,
1.2049334049224854,
-0.27309560775756836,
0.6883630752563477,
0.8264574408531189,
-0.5020735263824463,
-0.4874092042446137,
0.6007202863693237,
-0.4965405762195587,
1.1302915811538696,
0.032572727650403976,
-0.3731859028339386,
0.658271849155426,
-0.9023059010505676,
0.7400162220001221,
0.014550759457051754,
-0.19699542224407196,
0.2319706380367279,
-0.789058268070221,
-0.14905710518360138,
-0.5826214551925659,
0.207652747631073,
-0.4507439732551574,
-0.3163885474205017,
0.3604124188423157,
-0.45119962096214294,
0.3428427278995514,
0.3005594313144684,
-0.36026081442832947,
1.1014249324798584,
0.40884315967559814,
0.34991952776908875,
-0.1806638240814209,
0.27440476417541504,
-0.7118373513221741,
0.4645499587059021,
0.214790478348732,
-0.2343102991580963,
0.10500429570674896,
-0.28034430742263794,
1.2267805337905884,
1.0561333894729614,
-0.497364342212677,
-0.6143305897712708,
0.24963727593421936,
-0.33136463165283203,
-0.01473914459347725,
0.495918869972229,
-0.6985538005828857,
-1.0033197402954102,
0.35937801003456116,
0.6325868368148804,
-0.6808838844299316,
1.0354058742523191,
-0.7214401960372925,
-0.33318862318992615,
0.874398410320282,
-0.6594992280006409,
0.6830640435218811,
-0.18534131348133087,
0.024834271520376205,
0.19901277124881744,
-0.5992477536201477,
-1.2126628160476685,
-0.9245557188987732,
-0.3898217976093292,
-0.1286519467830658,
0.4217943847179413,
-0.1143646091222763,
0.5630772709846497,
-0.5240639448165894,
0.21152715384960177,
-0.3792001008987427,
0.8266305327415466,
1.170984387397766,
-0.8072142004966736,
0.11382893472909927,
-0.17953898012638092,
-0.1789460331201553,
-0.15078622102737427,
-1.2082908153533936,
-0.7812382578849792,
-0.10903695970773696,
0.7303897142410278,
-0.39054441452026367,
0.19511254131793976,
-0.09121843427419662,
0.22400228679180145,
0.30143046379089355,
0.1141919493675232,
0.48112115263938904,
0.7307931780815125,
0.09701362252235413,
-0.2795647978782654,
-0.3997688889503479,
0.5540812611579895,
0.564578115940094,
-0.40065160393714905,
-0.3629159033298493,
-0.3789091110229492,
-0.7298538088798523,
-0.6996853351593018,
-0.4477842152118683,
-0.289089560508728,
-0.6430277824401855,
0.2344944179058075,
0.3742927014827728,
-0.5079357028007507,
0.28841453790664673,
0.06515737622976303,
0.707315981388092,
0.09498685598373412,
0.8365515470504761,
0.10002726316452026,
-0.7695478200912476,
0.6264724135398865,
0.7562043070793152,
-0.23112858831882477,
-0.2871039807796478,
-0.25010058283805847,
0.2783474028110504,
-0.03224996477365494,
-0.9119359850883484,
-3.6940200328826904,
-0.5099936127662659,
-0.1604711413383484,
0.17453284561634064,
0.41759559512138367,
0.1419190913438797,
-0.11362407356500626,
-0.33312007784843445,
0.11511333286762238,
0.4667884409427643,
-0.0031647447030991316,
0.15879854559898376,
0.3042248487472534,
0.5404849052429199,
0.8515422344207764,
0.06286454200744629,
0.43790125846862793,
-0.8682025074958801,
-0.06363756954669952,
0.5547921657562256,
-0.01483887154608965,
-0.07361344993114471,
-0.929947018623352,
0.3502565622329712,
-0.5080993175506592,
1.0380364656448364,
-0.2017953395843506,
0.21319580078125,
-1.0763001441955566,
-0.556368887424469,
0.1949922740459442,
-0.6445739269256592,
0.6791343688964844,
0.21188358962535855,
0.3736183941364288,
-0.21800459921360016,
0.7597446441650391,
-0.3732394874095917,
-0.4710160195827484,
0.025146087631583217,
0.05341297015547752,
-0.9522109627723694,
-0.6000866889953613,
-0.08469046652317047,
0.5966026186943054,
0.3444081246852875,
-0.461188405752182,
-0.5279349088668823,
0.10296865552663804,
0.5175143480300903,
-0.20671147108078003,
0.13392412662506104,
0.4812754988670349,
0.2993808686733246,
-0.3005635440349579,
0.5141698122024536,
-0.6239235401153564,
0.2877119481563568,
-0.4452739953994751,
0.5621107816696167,
0.5047508478164673,
-0.4226335883140564,
-0.18578553199768064,
-1.1967322826385498,
0.28178197145462036,
-0.8692031502723694,
-1.1812998056411743,
-1.4526212215423584,
0.4645712077617645,
0.9327932000160216,
-0.6560136675834656,
0.461549699306488,
-0.5621527433395386,
-1.328449010848999,
-0.08676894754171371,
0.00021918353741057217,
-0.18864136934280396,
0.1259666532278061,
0.18240638077259064,
-0.14919660985469818,
-0.8965857625007629,
-0.7539900541305542,
0.013973715715110302,
0.504276692867279,
-0.704748272895813,
-0.6428424119949341,
0.6303996443748474,
-0.5404738187789917,
-0.31176653504371643,
-0.21262824535369873,
0.18736739456653595,
-0.7998970746994019,
0.039946746081113815,
0.7390344738960266,
0.4283199906349182,
0.3795057237148285,
0.07204607129096985,
-0.9230587482452391,
0.9440426230430604,
0.26272690296173096,
0.5598306655883789,
-1.0520871877670288,
-0.2677186131477356,
-0.1888762265443802,
0.30426350235939026,
0.4746131896972656,
-0.5746733546257019,
-0.4197768568992615,
0.8565112948417664,
-0.6767723560333252,
0.23448683321475983,
-0.2010004222393036,
0.4112907350063324,
-0.6497949957847595,
-0.418667733669281,
-0.4950824975967407,
0.44438859820365906,
1.026281714439392,
0.482397586107254,
-0.26220494508743286,
-0.3640787005424499,
0.5907743573188782,
-0.8771642446517944,
0.09708411991596222,
-0.3671700060367584,
0.4331349730491638,
0.619417667388916,
-0.2684665620326996,
-0.5123821496963501,
-0.1502324342727661,
-0.012190685607492924,
0.3580845892429352,
0.8617186546325684,
0.3493645489215851,
1.0270192623138428,
0.18297909200191495,
-0.5881339311599731,
-0.1733516901731491,
-0.5040576457977295,
-0.340370237827301,
-0.26767754554748535,
-0.28570041060447693,
-0.032928116619586945,
0.6029254794120789,
0.17397655546665192,
0.09346921741962431,
0.27815181016921997,
-0.46699589490890503,
-0.8148876428604126,
-0.3964351713657379,
0.3812595009803772,
0.13547226786613464,
0.7126688361167908,
-0.3473474085330963,
-0.06573959439992905,
-0.6483767032623291,
1.4808889627456665,
0.30924928188323975,
-0.5085946917533875,
-0.8613000512123108,
0.3048902451992035,
-0.4241599142551422,
0.15909206867218018,
0.5764641761779785,
-0.07879110425710678,
1.015336513519287,
0.07599356025457382,
-0.7025855779647827,
0.30047643184661865,
-0.35094937682151794,
0.2522146999835968,
-0.2338722199201584,
-0.8326804637908936,
-0.13695412874221802,
-0.03452421352267265,
0.47974953055381775,
-0.18385636806488037,
0.32438594102859497,
0.1797013282775879,
0.787494957447052,
-0.12579888105392456,
-0.07507286965847015,
-0.4389670491218567,
0.2720070779323578,
0.8138866424560547,
0.01974171027541161,
-0.3057698905467987,
-0.6709924936294556,
0.0885881632566452,
-0.2862754464149475,
0.03475658595561981,
-0.1285519152879715,
0.3838353455066681,
-0.2944154739379883,
-0.4204859137535095,
-0.4416137933731079,
0.13426260650157928,
0.36733248829841614,
0.573428750038147,
-0.14928072690963745,
-0.026076916605234143,
0.33286052942276,
-0.5340145826339722,
-0.17279052734375,
-0.01154550164937973,
-0.6620771884918213,
0.18390542268753052,
-0.08265615254640579,
-0.2489682286977768,
0.2429984211921692,
-0.044153645634651184,
-0.986578404903412,
-0.33574509620666504,
-0.5387663841247559,
0.19767941534519196,
0.12540718913078308,
-0.3403128981590271,
-0.4154576361179352,
0.17275673151016235,
0.09407442808151244,
-0.5414086580276489,
0.4393929839134216,
0.1725579798221588,
-0.4998118281364441,
-0.6926208138465881,
0.16552448272705078,
0.6659538149833679,
-0.10949844866991044,
0.986426830291748,
0.01748848147690296,
0.4003709554672241,
-0.5430638194084167,
0.35347291827201843,
0.6887399554252625,
0.08274628221988678,
0.13407137989997864,
-0.591465950012207,
0.3446292281150818,
0.6069018244743347,
0.1935492902994156,
-0.0989871397614479,
0.07008486241102219,
-0.8503749370574951,
-0.09507356584072112,
0.6259510517120361,
0.13934025168418884,
0.06392545253038406,
-0.4112265408039093,
-0.08475656062364578,
0.4974113404750824,
-0.30606114864349365,
1.111435890197754,
-0.018766529858112335,
-0.8422622680664063,
0.4325508773326874,
-0.2832120656967163,
-0.4859798848628998,
-0.41498348116874695,
0.015977520495653152,
0.5292825698852539,
0.4538311660289765,
1.1328668594360352,
0.22632671892642975,
0.7918671369552612,
0.33401933312416077,
0.7306135296821594,
0.3548600673675537,
0.12506209313869476,
0.8573207855224609,
-0.5818327069282532,
-0.6953738927841187,
-1.6171947717666626,
-0.1699674427509308,
0.6318262815475464,
-0.05671752244234085,
-0.28145185112953186,
-0.3976689279079437,
-0.2041076272726059,
-0.5495951175689697,
-0.5152917504310608,
-0.9309796094894408,
0.101932130753994,
0.1367802917957306,
0.1490798443555832,
0.5304336547851563,
-0.5082434415817261,
0.06688683480024338,
0.14657628536224365,
-0.782435953617096,
0.2962816655635834,
0.6965363621711731,
0.8496337532997131,
-0.3042965829372406,
0.04343798756599426,
0.0330701619386673,
-0.5662598013877869,
1.1086925268173218,
0.756072998046875,
-0.204134538769722,
0.2404300570487976,
-0.47848284244537354,
1.3659011125564575,
0.5645433068275452,
-0.15836156904697418,
0.43395575881004333,
0.5944653749465942,
1.0043466091156006,
-0.49446743726730347,
-0.5954391360282898,
0.5341240763664246,
0.020598189905285835,
-0.4036853015422821,
0.4473709762096405,
1.1998231410980225,
-0.9317775368690492,
-0.23321466147899628,
0.2052552700042725,
-0.7423108816146851,
-0.19917210936546328,
-0.1722569614648819,
-0.034072667360305786,
-0.00671181408688426,
0.46396249532699585,
-0.1372445821762085,
0.053376372903585434,
0.7392690777778625,
-0.38447609543800354,
0.07497968524694443,
0.5197252631187439,
1.3746477365493774,
0.9060075879096984,
0.20000585913658145,
-0.4053704142570496,
0.7497360110282898,
-0.34087055921554565,
-1.101803183555603,
0.273650586605072,
-0.5125769376754761,
0.22472351789474487,
0.480757474899292,
-0.19845178723335263,
0.8857700824737549,
0.30752456188201904,
1.1109285354614258,
-0.6768012642860413,
0.524367094039917,
-0.22495046257972717,
-0.4224412739276886,
0.40753406286239624,
-0.23133376240730288,
0.3297771215438843,
0.4905449151992798,
-0.6813114285469055,
-0.7543983459472656,
-0.5599071383476257,
0.14351597428321838,
-0.029278717935085297,
-0.3970443606376648,
-0.303079217672348,
0.24161772429943085,
0.008353390730917454,
-0.0062365154735744,
1.0824860334396362,
-0.3704061508178711,
-1.0337258577346802,
0.04638749733567238,
1.163011074066162,
-0.31737643480300903,
0.013986887410283089,
0.19223114848136905,
-0.2260770797729492,
-0.210910826921463,
-1.0191949605941772,
0.22356095910072327,
0.09353553503751756,
0.18096882104873657,
0.14867214858531952,
0.43408671021461487,
-0.33312076330184937,
0.8173948526382446,
0.6428242921829224,
0.20215003192424777,
-0.6634518504142761,
-0.4132290482521057,
0.29815030097961426,
-1.579406976699829,
-0.0981958732008934,
-0.03941014781594277,
0.1709178239107132,
-0.5481140613555908,
-0.5338194966316223,
-0.3528362512588501,
-0.11561278253793716,
-0.21793591976165771,
-1.1570470333099363,
0.2157980799674988,
0.42083489894866943,
0.9639263153076172,
0.09747201204299928,
0.15671424567699432,
0.4034591615200043,
0.6728067994117737,
-0.5216875672340393,
0.09657668322324751,
-0.2416689097881317,
0.747975766658783,
0.1021689772605896,
0.11652665585279463,
-1.0484966039657593,
0.8489304780960083,
0.7169828414916992,
-0.09012343734502792,
-1.3173753023147583,
0.057890523225069046,
-0.006231260951608419,
-0.1018214002251625,
0.936040461063385,
-0.0502331368625164,
-0.4284322261810303,
-0.38209280371665955,
-0.22668412327766416,
0.0782942995429039,
-0.4881664514541626,
0.9268959760665894,
0.001867273123934865,
0.42261114716529846,
0.8283362984657288,
0.4256294071674347,
-0.7965338826179504,
0.4840078353881836,
-0.19861412048339844,
0.33977967500686646,
-0.4604192078113556,
-0.3107339143753052,
-0.2839638590812683,
-1.5734281539916992,
0.005220232997089624,
0.09239906817674635,
-0.7828494906425476,
-0.1397123783826828,
0.2576255202293396,
0.21372435986995697,
-0.23169949650764465,
0.4016408920288086,
-0.462497353553772,
-0.2186472862958908,
-0.5617868900299072,
-0.3649831712245941,
-1.1585862636566162,
-0.08222806453704834,
0.931126832962036,
0.4327389597892761,
-0.46451422572135925,
-0.5430706143379211,
-0.27434298396110535,
-0.9479129314422609,
0.1845661848783493,
0.3972720205783844,
0.4883299469947815,
1.04031240940094
]
],
"userProvided": false
}
}
}

View File

@@ -1,780 +0,0 @@
---
source: dump/src/reader/mod.rs
expression: document
---
{
"id": "e0",
"desc": "overriden vector",
"_vectors": {
"default": [
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1,
0.1
]
}
}

View File

@@ -22,6 +22,7 @@ flate2 = "1.0.28"
meilisearch-auth = { path = "../meilisearch-auth" }
meilisearch-types = { path = "../meilisearch-types" }
page_size = "0.5.0"
puffin = { version = "0.16.0", features = ["serialization"] }
rayon = "1.8.1"
roaring = { version = "0.10.2", features = ["serde"] }
serde = { version = "1.0.195", features = ["derive"] }

View File

@@ -24,6 +24,7 @@ enum AutobatchKind {
allow_index_creation: bool,
primary_key: Option<String>,
},
DocumentEdition,
DocumentDeletion,
DocumentDeletionByFilter,
DocumentClear,
@@ -63,6 +64,7 @@ impl From<KindWithContent> for AutobatchKind {
primary_key,
..
} => AutobatchKind::DocumentImport { method, allow_index_creation, primary_key },
KindWithContent::DocumentEdition { .. } => AutobatchKind::DocumentEdition,
KindWithContent::DocumentDeletion { .. } => AutobatchKind::DocumentDeletion,
KindWithContent::DocumentClear { .. } => AutobatchKind::DocumentClear,
KindWithContent::DocumentDeletionByFilter { .. } => {
@@ -98,6 +100,9 @@ pub enum BatchKind {
primary_key: Option<String>,
operation_ids: Vec<TaskId>,
},
DocumentEdition {
id: TaskId,
},
DocumentDeletion {
deletion_ids: Vec<TaskId>,
},
@@ -199,6 +204,7 @@ impl BatchKind {
}),
allow_index_creation,
),
K::DocumentEdition => (Break(BatchKind::DocumentEdition { id: task_id }), false),
K::DocumentDeletion => {
(Continue(BatchKind::DocumentDeletion { deletion_ids: vec![task_id] }), false)
}
@@ -222,7 +228,7 @@ impl BatchKind {
match (self, kind) {
// We don't batch any of these operations
(this, K::IndexCreation | K::IndexUpdate | K::IndexSwap | K::DocumentDeletionByFilter) => Break(this),
(this, K::IndexCreation | K::IndexUpdate | K::IndexSwap | K::DocumentEdition | K::DocumentDeletionByFilter) => Break(this),
// We must not batch tasks that don't have the same index creation rights if the index doesn't already exists.
(this, kind) if !index_already_exists && this.allow_index_creation() == Some(false) && kind.allow_index_creation() == Some(true) => {
Break(this)
@@ -519,6 +525,7 @@ impl BatchKind {
| BatchKind::IndexDeletion { .. }
| BatchKind::IndexUpdate { .. }
| BatchKind::IndexSwap { .. }
| BatchKind::DocumentEdition { .. }
| BatchKind::DocumentDeletionByFilter { .. },
_,
) => {

View File

@@ -31,9 +31,6 @@ use meilisearch_types::milli::heed::CompactionOption;
use meilisearch_types::milli::update::{
IndexDocumentsConfig, IndexDocumentsMethod, IndexerConfig, Settings as MilliSettings,
};
use meilisearch_types::milli::vector::parsed_vectors::{
ExplicitVectors, VectorOrArrayOfVectors, RESERVED_VECTORS_FIELD_NAME,
};
use meilisearch_types::milli::{self, Filter};
use meilisearch_types::settings::{apply_settings_to_builder, Settings, Unchecked};
use meilisearch_types::tasks::{Details, IndexSwap, Kind, KindWithContent, Status, Task};
@@ -106,6 +103,10 @@ pub(crate) enum IndexOperation {
operations: Vec<DocumentOperation>,
tasks: Vec<Task>,
},
DocumentEdition {
index_uid: String,
task: Task,
},
IndexDocumentDeletionByFilter {
index_uid: String,
task: Task,
@@ -164,7 +165,8 @@ impl Batch {
| IndexOperation::DocumentClear { tasks, .. } => {
RoaringBitmap::from_iter(tasks.iter().map(|task| task.uid))
}
IndexOperation::IndexDocumentDeletionByFilter { task, .. } => {
IndexOperation::DocumentEdition { task, .. }
| IndexOperation::IndexDocumentDeletionByFilter { task, .. } => {
RoaringBitmap::from_sorted_iter(std::iter::once(task.uid)).unwrap()
}
IndexOperation::SettingsAndDocumentOperation {
@@ -228,6 +230,7 @@ impl IndexOperation {
pub fn index_uid(&self) -> &str {
match self {
IndexOperation::DocumentOperation { index_uid, .. }
| IndexOperation::DocumentEdition { index_uid, .. }
| IndexOperation::IndexDocumentDeletionByFilter { index_uid, .. }
| IndexOperation::DocumentClear { index_uid, .. }
| IndexOperation::Settings { index_uid, .. }
@@ -243,6 +246,9 @@ impl fmt::Display for IndexOperation {
IndexOperation::DocumentOperation { .. } => {
f.write_str("IndexOperation::DocumentOperation")
}
IndexOperation::DocumentEdition { .. } => {
f.write_str("IndexOperation::DocumentEdition")
}
IndexOperation::IndexDocumentDeletionByFilter { .. } => {
f.write_str("IndexOperation::IndexDocumentDeletionByFilter")
}
@@ -295,6 +301,21 @@ impl IndexScheduler {
_ => unreachable!(),
}
}
BatchKind::DocumentEdition { id } => {
let task = self.get_task(rtxn, id)?.ok_or(Error::CorruptedTaskQueue)?;
match &task.kind {
KindWithContent::DocumentEdition { index_uid, .. } => {
Ok(Some(Batch::IndexOperation {
op: IndexOperation::DocumentEdition {
index_uid: index_uid.clone(),
task,
},
must_create_index: false,
}))
}
_ => unreachable!(),
}
}
BatchKind::DocumentOperation { method, operation_ids, .. } => {
let tasks = self.get_existing_tasks(rtxn, operation_ids)?;
let primary_key = tasks
@@ -529,6 +550,8 @@ impl IndexScheduler {
#[cfg(test)]
self.maybe_fail(crate::tests::FailureLocation::InsideCreateBatch)?;
puffin::profile_function!();
let enqueued = &self.get_status(rtxn, Status::Enqueued)?;
let to_cancel = self.get_kind(rtxn, Kind::TaskCancelation)? & enqueued;
@@ -637,6 +660,8 @@ impl IndexScheduler {
self.breakpoint(crate::Breakpoint::InsideProcessBatch);
}
puffin::profile_function!(batch.to_string());
match batch {
Batch::TaskCancelation { mut task, previous_started_at, previous_processing_tasks } => {
// 1. Retrieve the tasks that matched the query at enqueue-time.
@@ -784,12 +809,10 @@ impl IndexScheduler {
let dst = temp_snapshot_dir.path().join("auth");
fs::create_dir_all(&dst)?;
// TODO We can't use the open_auth_store_env function here but we should
let auth = unsafe {
milli::heed::EnvOpenOptions::new()
.map_size(1024 * 1024 * 1024) // 1 GiB
.max_dbs(2)
.open(&self.auth_path)
}?;
let auth = milli::heed::EnvOpenOptions::new()
.map_size(1024 * 1024 * 1024) // 1 GiB
.max_dbs(2)
.open(&self.auth_path)?;
auth.copy_to_file(dst.join("data.mdb"), CompactionOption::Enabled)?;
// 5. Copy and tarball the flat snapshot
@@ -915,55 +938,8 @@ impl IndexScheduler {
if self.must_stop_processing.get() {
return Err(Error::AbortedTask);
}
let (id, doc) = ret?;
let mut document = milli::obkv_to_json(&all_fields, &fields_ids_map, doc)?;
'inject_vectors: {
let embeddings = index.embeddings(&rtxn, id)?;
if embeddings.is_empty() {
break 'inject_vectors;
}
let vectors = document
.entry(RESERVED_VECTORS_FIELD_NAME.to_owned())
.or_insert(serde_json::Value::Object(Default::default()));
let serde_json::Value::Object(vectors) = vectors else {
return Err(milli::Error::UserError(
milli::UserError::InvalidVectorsMapType {
document_id: {
if let Ok(Some(Ok(index))) = index
.external_id_of(&rtxn, std::iter::once(id))
.map(|it| it.into_iter().next())
{
index
} else {
format!("internal docid={id}")
}
},
value: vectors.clone(),
},
)
.into());
};
for (embedder_name, embeddings) in embeddings {
// don't change the entry if it already exists, because it was user-provided
vectors.entry(embedder_name).or_insert_with(|| {
let embeddings = ExplicitVectors {
embeddings: VectorOrArrayOfVectors::from_array_of_vectors(
embeddings,
),
user_provided: false,
};
serde_json::to_value(embeddings).unwrap()
});
}
}
let (_id, doc) = ret?;
let document = milli::obkv_to_json(&all_fields, &fields_ids_map, doc)?;
index_dumper.push_document(&document)?;
}
@@ -1222,6 +1198,8 @@ impl IndexScheduler {
index: &'i Index,
operation: IndexOperation,
) -> Result<Vec<Task>> {
puffin::profile_function!();
match operation {
IndexOperation::DocumentClear { mut tasks, .. } => {
let count = milli::update::ClearDocuments::new(index_wtxn, index).execute()?;
@@ -1380,6 +1358,56 @@ impl IndexScheduler {
Ok(tasks)
}
IndexOperation::DocumentEdition { mut task, .. } => {
let (filter, edition_code) =
if let KindWithContent::DocumentEdition { filter_expr, edition_code, .. } =
&task.kind
{
(filter_expr, edition_code)
} else {
unreachable!()
};
let edited_documents = edit_documents_by_function(
index_wtxn,
filter,
edition_code,
self.index_mapper.indexer_config(),
self.must_stop_processing.clone(),
index,
);
let (original_filter, edition_code) =
if let Some(Details::DocumentEdition {
original_filter, edition_code, ..
}) = task.details
{
(original_filter, edition_code)
} else {
// In the case of a `documentDeleteByFilter` the details MUST be set
unreachable!();
};
match edited_documents {
Ok(edited_documents) => {
task.status = Status::Succeeded;
task.details = Some(Details::DocumentEdition {
original_filter,
edition_code,
edited_documents: Some(edited_documents),
});
}
Err(e) => {
task.status = Status::Failed;
task.details = Some(Details::DocumentEdition {
original_filter,
edition_code,
edited_documents: Some(0),
});
task.error = Some(e.into());
}
}
Ok(vec![task])
}
IndexOperation::IndexDocumentDeletionByFilter { mut task, index_uid: _ } => {
let filter =
if let KindWithContent::DocumentDeletionByFilter { filter_expr, .. } =
@@ -1668,3 +1696,43 @@ fn delete_document_by_filter<'a>(
0
})
}
fn edit_documents_by_function<'a>(
wtxn: &mut RwTxn<'a>,
filter: &Option<serde_json::Value>,
code: &str,
indexer_config: &IndexerConfig,
must_stop_processing: MustStopProcessing,
index: &'a Index,
) -> Result<u64> {
let candidates = match filter.as_ref().map(Filter::from_json) {
Some(Ok(Some(filter))) => filter.evaluate(wtxn, index).map_err(|err| match err {
milli::Error::UserError(milli::UserError::InvalidFilter(_)) => {
Error::from(err).with_custom_error_code(Code::InvalidDocumentFilter)
}
e => e.into(),
})?,
None | Some(Ok(None)) => index.documents_ids(wtxn)?,
Some(Err(e)) => return Err(e.into()),
};
let config = IndexDocumentsConfig {
update_method: IndexDocumentsMethod::ReplaceDocuments,
..Default::default()
};
let mut builder = milli::update::IndexDocuments::new(
wtxn,
index,
indexer_config,
config,
|indexing_step| tracing::debug!(update = ?indexing_step),
|| must_stop_processing.get(),
)?;
let (new_builder, count) = builder.edit_documents(&candidates, code)?;
builder = new_builder;
let _ = builder.execute()?;
Ok(count.unwrap())
}

View File

@@ -68,6 +68,19 @@ impl RoFeatures {
.into())
}
}
pub fn check_puffin(&self) -> Result<()> {
if self.runtime.export_puffin_reports {
Ok(())
} else {
Err(FeatureNotEnabledError {
disabled_action: "Outputting Puffin reports to disk",
feature: "export puffin reports",
issue_link: "https://github.com/meilisearch/product/discussions/693",
}
.into())
}
}
}
impl FeatureData {

View File

@@ -32,6 +32,7 @@ pub fn snapshot_index_scheduler(scheduler: &IndexScheduler) -> String {
features: _,
max_number_of_tasks: _,
max_number_of_batched_tasks: _,
puffin_frame: _,
wake_up: _,
dumps_path: _,
snapshots_path: _,
@@ -177,6 +178,13 @@ fn snapshot_details(d: &Details) -> String {
} => {
format!("{{ received_documents: {received_documents}, indexed_documents: {indexed_documents:?} }}")
}
Details::DocumentEdition {
edited_documents,
edition_code,
original_filter,
} => {
format!("{{ edited_documents: {edited_documents:?}, edition_code: {edition_code:?}, original_filter: {original_filter:?} }}")
}
Details::SettingsUpdate { settings } => {
format!("{{ settings: {settings:?} }}")
}

View File

@@ -33,6 +33,7 @@ pub type Result<T> = std::result::Result<T, Error>;
pub type TaskId = u32;
use std::collections::{BTreeMap, HashMap};
use std::fs::File;
use std::io::{self, BufReader, Read};
use std::ops::{Bound, RangeBounds};
use std::path::{Path, PathBuf};
@@ -58,6 +59,7 @@ use meilisearch_types::milli::vector::{Embedder, EmbedderOptions, EmbeddingConfi
use meilisearch_types::milli::{self, CboRoaringBitmapCodec, Index, RoaringBitmapCodec, BEU32};
use meilisearch_types::task_view::TaskView;
use meilisearch_types::tasks::{Kind, KindWithContent, Status, Task};
use puffin::FrameView;
use rayon::current_num_threads;
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
use roaring::RoaringBitmap;
@@ -342,6 +344,9 @@ pub struct IndexScheduler {
/// The Authorization header to send to the webhook URL.
pub(crate) webhook_authorization_header: Option<String>,
/// A frame to output the indexation profiling files to disk.
pub(crate) puffin_frame: Arc<puffin::GlobalFrameView>,
/// The path used to create the dumps.
pub(crate) dumps_path: PathBuf,
@@ -396,6 +401,7 @@ impl IndexScheduler {
cleanup_enabled: self.cleanup_enabled,
max_number_of_tasks: self.max_number_of_tasks,
max_number_of_batched_tasks: self.max_number_of_batched_tasks,
puffin_frame: self.puffin_frame.clone(),
snapshots_path: self.snapshots_path.clone(),
dumps_path: self.dumps_path.clone(),
auth_path: self.auth_path.clone(),
@@ -447,12 +453,10 @@ impl IndexScheduler {
)
};
let env = unsafe {
heed::EnvOpenOptions::new()
.max_dbs(11)
.map_size(budget.task_db_size)
.open(options.tasks_path)
}?;
let env = heed::EnvOpenOptions::new()
.max_dbs(11)
.map_size(budget.task_db_size)
.open(options.tasks_path)?;
let features = features::FeatureData::new(&env, options.instance_features)?;
@@ -494,6 +498,7 @@ impl IndexScheduler {
env,
// we want to start the loop right away in case meilisearch was ctrl+Ced while processing things
wake_up: Arc::new(SignalEvent::auto(true)),
puffin_frame: Arc::new(puffin::GlobalFrameView::default()),
autobatching_enabled: options.autobatching_enabled,
cleanup_enabled: options.cleanup_enabled,
max_number_of_tasks: options.max_number_of_tasks,
@@ -580,9 +585,9 @@ impl IndexScheduler {
}
fn is_good_heed(tasks_path: &Path, map_size: usize) -> bool {
if let Ok(env) = unsafe {
if let Ok(env) =
heed::EnvOpenOptions::new().map_size(clamp_to_page_size(map_size)).open(tasks_path)
} {
{
env.prepare_for_closing().wait();
true
} else {
@@ -614,6 +619,10 @@ impl IndexScheduler {
run.wake_up.wait();
loop {
let puffin_enabled = run.features().check_puffin().is_ok();
puffin::set_scopes_on(puffin_enabled);
puffin::GlobalProfiler::lock().new_frame();
match run.tick() {
Ok(TickOutcome::TickAgain(_)) => (),
Ok(TickOutcome::WaitForSignal) => run.wake_up.wait(),
@@ -625,6 +634,31 @@ impl IndexScheduler {
}
}
}
// Let's write the previous frame to disk but only if
// the user wanted to profile with puffin.
if puffin_enabled {
let mut frame_view = run.puffin_frame.lock();
if !frame_view.is_empty() {
let now = OffsetDateTime::now_utc();
let mut file = match File::create(format!("{}.puffin", now)) {
Ok(file) => file,
Err(e) => {
tracing::error!("{e}");
continue;
}
};
if let Err(e) = frame_view.save_to_writer(&mut file) {
tracing::error!("{e}");
}
if let Err(e) = file.sync_all() {
tracing::error!("{e}");
}
// We erase this frame view as it is no more useful. We want to
// measure the new frames now that we exported the previous ones.
*frame_view = FrameView::default();
}
}
}
})
.unwrap();
@@ -1738,7 +1772,6 @@ mod tests {
use big_s::S;
use crossbeam::channel::RecvTimeoutError;
use file_store::File;
use insta::assert_json_snapshot;
use meili_snap::{json_string, snapshot};
use meilisearch_auth::AuthFilter;
use meilisearch_types::document_formats::DocumentFormatError;
@@ -1816,7 +1849,7 @@ mod tests {
// To be 100% consistent between all test we're going to start the scheduler right now
// and ensure it's in the expected starting state.
let breakpoint = match receiver.recv_timeout(std::time::Duration::from_secs(10)) {
let breakpoint = match receiver.recv_timeout(std::time::Duration::from_secs(1)) {
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
panic!("The scheduler seems to be waiting for a new task while your test is waiting for a breakpoint.")
@@ -1927,7 +1960,7 @@ mod tests {
fn advance(&mut self) -> Breakpoint {
let (breakpoint_1, b) = match self
.test_breakpoint_rcv
.recv_timeout(std::time::Duration::from_secs(50))
.recv_timeout(std::time::Duration::from_secs(5))
{
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
@@ -1948,7 +1981,7 @@ mod tests {
let (breakpoint_2, b) = match self
.test_breakpoint_rcv
.recv_timeout(std::time::Duration::from_secs(50))
.recv_timeout(std::time::Duration::from_secs(5))
{
Ok(b) => b,
Err(RecvTimeoutError::Timeout) => {
@@ -4947,233 +4980,4 @@ mod tests {
----------------------------------------------------------------------
"###);
}
#[test]
fn import_vectors() {
use meilisearch_types::settings::{Settings, Unchecked};
use milli::update::Setting;
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
let mut new_settings: Box<Settings<Unchecked>> = Box::default();
let mut embedders = BTreeMap::default();
let embedding_settings = milli::vector::settings::EmbeddingSettings {
source: Setting::Set(milli::vector::settings::EmbedderSource::Rest),
api_key: Setting::Set(S("My super secret")),
url: Setting::Set(S("http://localhost:7777")),
dimensions: Setting::Set(384),
..Default::default()
};
embedders.insert(S("A_fakerest"), Setting::Set(embedding_settings));
let embedding_settings = milli::vector::settings::EmbeddingSettings {
source: Setting::Set(milli::vector::settings::EmbedderSource::HuggingFace),
model: Setting::Set(S("sentence-transformers/all-MiniLM-L6-v2")),
revision: Setting::Set(S("e4ce9877abf3edfe10b0d82785e83bdcb973e22e")),
document_template: Setting::Set(S("{{doc.doggo}} the {{doc.breed}} best doggo")),
..Default::default()
};
embedders.insert(S("B_small_hf"), Setting::Set(embedding_settings));
new_settings.embedders = Setting::Set(embedders);
index_scheduler
.register(
KindWithContent::SettingsUpdate {
index_uid: S("doggos"),
new_settings,
is_deletion: false,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_registering_settings_task_vectors");
{
let rtxn = index_scheduler.read_txn().unwrap();
let task = index_scheduler.get_task(&rtxn, 0).unwrap().unwrap();
let task = meilisearch_types::task_view::TaskView::from_task(&task);
insta::assert_json_snapshot!(task.details);
}
handle.advance_n_successful_batches(1);
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "settings_update_processed_vectors");
{
let rtxn = index_scheduler.read_txn().unwrap();
let task = index_scheduler.get_task(&rtxn, 0).unwrap().unwrap();
let task = meilisearch_types::task_view::TaskView::from_task(&task);
insta::assert_json_snapshot!(task.details);
}
let (fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed) = {
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let configs = index.embedding_configs(&rtxn).unwrap();
// for consistency with the below
#[allow(clippy::get_first)]
let (name, fakerest_config) = configs.get(0).unwrap();
insta::assert_json_snapshot!(name, @r###""A_fakerest""###);
insta::assert_json_snapshot!(fakerest_config.embedder_options);
let fakerest_name = name.clone();
let (name, simple_hf_config) = configs.get(1).unwrap();
insta::assert_json_snapshot!(name, @r###""B_small_hf""###);
insta::assert_json_snapshot!(simple_hf_config.embedder_options);
let simple_hf_name = name.clone();
let configs = index_scheduler.embedders(configs).unwrap();
let (hf_embedder, _) = configs.get(&simple_hf_name).unwrap();
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
};
// add one doc, specifying vectors
let doc = serde_json::json!(
{
"id": 0,
"doggo": "Intel",
"breed": "beagle",
"_vectors": {
&fakerest_name: {
// this will never trigger regeneration, which is good because we can't actually generate with
// this embedder
"userProvided": true,
"embeddings": beagle_embed,
},
&simple_hf_name: {
// this will be regenerated on updates
"userProvided": false,
"embeddings": lab_embed,
},
"noise": [0.1, 0.2, 0.3]
}
}
);
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0u128).unwrap();
let documents_count = read_json(doc.to_string().as_bytes(), &mut file).unwrap();
assert_eq!(documents_count, 1);
file.persist().unwrap();
index_scheduler
.register(
KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: UpdateDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after adding Intel");
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "adding Intel succeeds");
// check embeddings
{
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let embeddings = index.embeddings(&rtxn, 0).unwrap();
assert_json_snapshot!(embeddings[&simple_hf_name][0] == lab_embed, @"true");
assert_json_snapshot!(embeddings[&fakerest_name][0] == beagle_embed, @"true");
let doc = index.documents(&rtxn, std::iter::once(0)).unwrap()[0].1;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let doc = obkv_to_json(
&[
fields_ids_map.id("doggo").unwrap(),
fields_ids_map.id("breed").unwrap(),
fields_ids_map.id("_vectors").unwrap(),
],
&fields_ids_map,
doc,
)
.unwrap();
assert_json_snapshot!(doc, {"._vectors.A_fakerest.embeddings" => "[vector]"});
}
// update the doc, specifying vectors
let doc = serde_json::json!(
{
"id": 0,
"doggo": "kefir",
"breed": "patou",
}
);
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(1u128).unwrap();
let documents_count = read_json(doc.to_string().as_bytes(), &mut file).unwrap();
assert_eq!(documents_count, 1);
file.persist().unwrap();
index_scheduler
.register(
KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: None,
method: UpdateDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
},
None,
false,
)
.unwrap();
index_scheduler.assert_internally_consistent();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "Intel to kefir");
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "Intel to kefir succeeds");
{
// check embeddings
{
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let embeddings = index.embeddings(&rtxn, 0).unwrap();
// automatically changed to patou
assert_json_snapshot!(embeddings[&simple_hf_name][0] == patou_embed, @"true");
// remained beagle because set to userProvided
assert_json_snapshot!(embeddings[&fakerest_name][0] == beagle_embed, @"true");
let doc = index.documents(&rtxn, std::iter::once(0)).unwrap()[0].1;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let doc = obkv_to_json(
&[
fields_ids_map.id("doggo").unwrap(),
fields_ids_map.id("breed").unwrap(),
fields_ids_map.id("_vectors").unwrap(),
],
&fields_ids_map,
doc,
)
.unwrap();
assert_json_snapshot!(doc, {"._vectors.A_fakerest.embeddings" => "[vector]"});
}
}
}
}

View File

@@ -1,19 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: doc
---
{
"doggo": "kefir",
"breed": "patou",
"_vectors": {
"A_fakerest": {
"embeddings": "[vector]",
"userProvided": true
},
"noise": [
0.1,
0.2,
0.3
]
}
}

View File

@@ -1,20 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: task.details
---
{
"embedders": {
"A_fakerest": {
"source": "rest",
"apiKey": "MyXXXX...",
"dimensions": 384,
"url": "http://localhost:7777"
},
"B_small_hf": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}} the {{doc.breed}} best doggo"
}
}
}

View File

@@ -1,23 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: fakerest_config.embedder_options
---
{
"Rest": {
"api_key": "My super secret",
"distribution": null,
"dimensions": 384,
"url": "http://localhost:7777",
"query": null,
"input_field": [
"input"
],
"path_to_embeddings": [
"data"
],
"embedding_object": [
"embedding"
],
"input_type": "text"
}
}

View File

@@ -1,11 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: simple_hf_config.embedder_options
---
{
"HuggingFace": {
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"distribution": null
}
}

View File

@@ -1,19 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: doc
---
{
"doggo": "Intel",
"breed": "beagle",
"_vectors": {
"A_fakerest": {
"embeddings": "[vector]",
"userProvided": true
},
"noise": [
0.1,
0.2,
0.3
]
}
}

View File

@@ -1,20 +0,0 @@
---
source: index-scheduler/src/lib.rs
expression: task.details
---
{
"embedders": {
"A_fakerest": {
"source": "rest",
"apiKey": "MyXXXX...",
"dimensions": 384,
"url": "http://localhost:7777"
},
"B_small_hf": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}} the {{doc.breed}} best doggo"
}
}
}

View File

@@ -1,49 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,2,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,2,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,2,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,48 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [2,]
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,2,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,2,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
[timestamp] [2,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000001
----------------------------------------------------------------------

View File

@@ -1,45 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"_vectors": 1, "breed": 1, "doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,44 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [1,]
succeeded [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 0, field_distribution: {} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@@ -1,36 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -1,40 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, query: NotSet, input_field: NotSet, path_to_embeddings: NotSet, embedding_object: NotSet, input_type: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,]
----------------------------------------------------------------------
### Kind:
"settingsUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 0, field_distribution: {} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@@ -238,6 +238,7 @@ pub fn swap_index_uid_in_task(task: &mut Task, swap: (&str, &str)) {
let mut index_uids = vec![];
match &mut task.kind {
K::DocumentAdditionOrUpdate { index_uid, .. } => index_uids.push(index_uid),
K::DocumentEdition { index_uid, .. } => index_uids.push(index_uid),
K::DocumentDeletion { index_uid, .. } => index_uids.push(index_uid),
K::DocumentDeletionByFilter { index_uid, .. } => index_uids.push(index_uid),
K::DocumentClear { index_uid } => index_uids.push(index_uid),
@@ -272,9 +273,9 @@ pub fn swap_index_uid_in_task(task: &mut Task, swap: (&str, &str)) {
}
for index_uid in index_uids {
if index_uid == swap.0 {
swap.1.clone_into(index_uid);
*index_uid = swap.1.to_owned();
} else if index_uid == swap.1 {
swap.0.clone_into(index_uid);
*index_uid = swap.0.to_owned();
}
}
}
@@ -408,7 +409,26 @@ impl IndexScheduler {
match status {
Status::Succeeded => assert!(indexed_documents <= received_documents),
Status::Failed | Status::Canceled => assert_eq!(indexed_documents, 0),
status => panic!("DocumentAddition can't have an indexed_document set if it's {}", status),
status => panic!("DocumentAddition can't have an indexed_documents set if it's {}", status),
}
}
None => {
assert!(matches!(status, Status::Enqueued | Status::Processing))
}
}
}
Details::DocumentEdition { edited_documents, .. } => {
assert_eq!(kind.as_kind(), Kind::DocumentEdition);
match edited_documents {
Some(edited_documents) => {
assert!(matches!(
status,
Status::Succeeded | Status::Failed | Status::Canceled
));
match status {
Status::Succeeded => (),
Status::Failed | Status::Canceled => assert_eq!(edited_documents, 0),
status => panic!("DocumentEdition can't have an edited_documents set if it's {}", status),
}
}
None => {

View File

@@ -49,7 +49,7 @@ pub fn open_auth_store_env(path: &Path) -> milli::heed::Result<milli::heed::Env>
let mut options = EnvOpenOptions::new();
options.map_size(AUTH_STORE_SIZE); // 1GB
options.max_dbs(2);
unsafe { options.open(path) }
options.open(path)
}
impl HeedAuthStore {

View File

@@ -189,4 +189,3 @@ merge_with_error_impl_take_error_message!(ParseTaskKindError);
merge_with_error_impl_take_error_message!(ParseTaskStatusError);
merge_with_error_impl_take_error_message!(IndexUidFormatError);
merge_with_error_impl_take_error_message!(InvalidSearchSemanticRatio);
merge_with_error_impl_take_error_message!(InvalidSimilarId);

View File

@@ -239,23 +239,18 @@ InvalidIndexUid , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToSearchOn , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToCrop , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToHighlight , InvalidRequest , BAD_REQUEST ;
InvalidSimilarAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidSearchSemanticRatio , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
InvalidSimilarId , InvalidRequest , BAD_REQUEST ;
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
InvalidSimilarFilter , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPreTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHitsPerPage , InvalidRequest , BAD_REQUEST ;
InvalidSimilarLimit , InvalidRequest , BAD_REQUEST ;
InvalidSearchLimit , InvalidRequest , BAD_REQUEST ;
InvalidSearchMatchingStrategy , InvalidRequest , BAD_REQUEST ;
InvalidSimilarOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
@@ -264,9 +259,7 @@ InvalidFacetSearchName , InvalidRequest , BAD_REQUEST ;
InvalidSearchVector , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSimilarShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSimilarShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;
@@ -329,8 +322,7 @@ UnretrievableErrorCode , InvalidRequest , BAD_REQUEST ;
UnsupportedMediaType , InvalidRequest , UNSUPPORTED_MEDIA_TYPE ;
// Experimental features
VectorEmbeddingError , InvalidRequest , BAD_REQUEST ;
NotFoundSimilarId , InvalidRequest , BAD_REQUEST
VectorEmbeddingError , InvalidRequest , BAD_REQUEST
}
impl ErrorCode for JoinError {
@@ -392,6 +384,7 @@ impl ErrorCode for milli::Error {
UserError::InvalidGeoField { .. } => Code::InvalidDocumentGeoField,
UserError::InvalidVectorDimensions { .. } => Code::InvalidVectorDimensions,
UserError::InvalidVectorsMapType { .. } => Code::InvalidVectorsType,
UserError::InvalidVectorsType { .. } => Code::InvalidVectorsType,
UserError::TooManyVectors(_, _) => Code::TooManyVectors,
UserError::SortError(_) => Code::InvalidSearchSort,
UserError::InvalidMinTypoWordLenSetting(_, _) => {
@@ -430,6 +423,7 @@ impl ErrorCode for HeedError {
HeedError::Mdb(_)
| HeedError::Encoding(_)
| HeedError::Decoding(_)
| HeedError::InvalidDatabaseTyping
| HeedError::DatabaseClosing
| HeedError::BadOpenOptions { .. } => Code::Internal,
}
@@ -494,17 +488,6 @@ impl fmt::Display for deserr_codes::InvalidSearchSemanticRatio {
}
}
impl fmt::Display for deserr_codes::InvalidSimilarId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"the value of `id` is invalid. \
A document identifier can be of type integer or string, \
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_)."
)
}
}
#[macro_export]
macro_rules! internal_error {
($target:ty : $($other:path), *) => {

View File

@@ -6,6 +6,7 @@ pub struct RuntimeTogglableFeatures {
pub vector_store: bool,
pub metrics: bool,
pub logs_route: bool,
pub export_puffin_reports: bool,
}
#[derive(Default, Debug, Clone, Copy)]

View File

@@ -54,6 +54,8 @@ pub struct DetailsView {
#[serde(skip_serializing_if = "Option::is_none")]
pub indexed_documents: Option<Option<u64>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub edited_documents: Option<Option<u64>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub primary_key: Option<Option<String>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub provided_ids: Option<usize>,
@@ -70,6 +72,8 @@ pub struct DetailsView {
#[serde(skip_serializing_if = "Option::is_none")]
pub dump_uid: Option<Option<String>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub edition_code: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
#[serde(flatten)]
pub settings: Option<Box<Settings<Unchecked>>>,
#[serde(skip_serializing_if = "Option::is_none")]
@@ -86,6 +90,14 @@ impl From<Details> for DetailsView {
..DetailsView::default()
}
}
Details::DocumentEdition { edited_documents, original_filter, edition_code } => {
DetailsView {
edited_documents: Some(edited_documents),
original_filter: Some(original_filter),
edition_code: Some(edition_code),
..DetailsView::default()
}
}
Details::SettingsUpdate { mut settings } => {
settings.hide_secrets();
DetailsView { settings: Some(settings), ..DetailsView::default() }

View File

@@ -48,6 +48,7 @@ impl Task {
| TaskDeletion { .. }
| IndexSwap { .. } => None,
DocumentAdditionOrUpdate { index_uid, .. }
| DocumentEdition { index_uid, .. }
| DocumentDeletion { index_uid, .. }
| DocumentDeletionByFilter { index_uid, .. }
| DocumentClear { index_uid }
@@ -67,7 +68,8 @@ impl Task {
pub fn content_uuid(&self) -> Option<Uuid> {
match self.kind {
KindWithContent::DocumentAdditionOrUpdate { content_file, .. } => Some(content_file),
KindWithContent::DocumentDeletion { .. }
KindWithContent::DocumentEdition { .. }
| KindWithContent::DocumentDeletion { .. }
| KindWithContent::DocumentDeletionByFilter { .. }
| KindWithContent::DocumentClear { .. }
| KindWithContent::SettingsUpdate { .. }
@@ -94,6 +96,11 @@ pub enum KindWithContent {
documents_count: u64,
allow_index_creation: bool,
},
DocumentEdition {
index_uid: String,
filter_expr: Option<serde_json::Value>,
edition_code: String,
},
DocumentDeletion {
index_uid: String,
documents_ids: Vec<String>,
@@ -150,6 +157,7 @@ impl KindWithContent {
pub fn as_kind(&self) -> Kind {
match self {
KindWithContent::DocumentAdditionOrUpdate { .. } => Kind::DocumentAdditionOrUpdate,
KindWithContent::DocumentEdition { .. } => Kind::DocumentEdition,
KindWithContent::DocumentDeletion { .. } => Kind::DocumentDeletion,
KindWithContent::DocumentDeletionByFilter { .. } => Kind::DocumentDeletion,
KindWithContent::DocumentClear { .. } => Kind::DocumentDeletion,
@@ -174,6 +182,7 @@ impl KindWithContent {
| TaskCancelation { .. }
| TaskDeletion { .. } => vec![],
DocumentAdditionOrUpdate { index_uid, .. }
| DocumentEdition { index_uid, .. }
| DocumentDeletion { index_uid, .. }
| DocumentDeletionByFilter { index_uid, .. }
| DocumentClear { index_uid }
@@ -202,6 +211,13 @@ impl KindWithContent {
indexed_documents: None,
})
}
KindWithContent::DocumentEdition { index_uid: _, edition_code, filter_expr } => {
Some(Details::DocumentEdition {
edited_documents: None,
original_filter: filter_expr.as_ref().map(|v| v.to_string()),
edition_code: edition_code.clone(),
})
}
KindWithContent::DocumentDeletion { index_uid: _, documents_ids } => {
Some(Details::DocumentDeletion {
provided_ids: documents_ids.len(),
@@ -250,6 +266,13 @@ impl KindWithContent {
indexed_documents: Some(0),
})
}
KindWithContent::DocumentEdition { index_uid: _, filter_expr, edition_code } => {
Some(Details::DocumentEdition {
edited_documents: Some(0),
original_filter: filter_expr.as_ref().map(|v| v.to_string()),
edition_code: edition_code.clone(),
})
}
KindWithContent::DocumentDeletion { index_uid: _, documents_ids } => {
Some(Details::DocumentDeletion {
provided_ids: documents_ids.len(),
@@ -301,6 +324,7 @@ impl From<&KindWithContent> for Option<Details> {
indexed_documents: None,
})
}
KindWithContent::DocumentEdition { .. } => None,
KindWithContent::DocumentDeletion { .. } => None,
KindWithContent::DocumentDeletionByFilter { .. } => None,
KindWithContent::DocumentClear { .. } => None,
@@ -394,6 +418,7 @@ impl std::error::Error for ParseTaskStatusError {}
#[serde(rename_all = "camelCase")]
pub enum Kind {
DocumentAdditionOrUpdate,
DocumentEdition,
DocumentDeletion,
SettingsUpdate,
IndexCreation,
@@ -410,6 +435,7 @@ impl Kind {
pub fn related_to_one_index(&self) -> bool {
match self {
Kind::DocumentAdditionOrUpdate
| Kind::DocumentEdition
| Kind::DocumentDeletion
| Kind::SettingsUpdate
| Kind::IndexCreation
@@ -427,6 +453,7 @@ impl Display for Kind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Kind::DocumentAdditionOrUpdate => write!(f, "documentAdditionOrUpdate"),
Kind::DocumentEdition => write!(f, "documentEdition"),
Kind::DocumentDeletion => write!(f, "documentDeletion"),
Kind::SettingsUpdate => write!(f, "settingsUpdate"),
Kind::IndexCreation => write!(f, "indexCreation"),
@@ -454,6 +481,8 @@ impl FromStr for Kind {
Ok(Kind::IndexDeletion)
} else if kind.eq_ignore_ascii_case("documentAdditionOrUpdate") {
Ok(Kind::DocumentAdditionOrUpdate)
} else if kind.eq_ignore_ascii_case("documentEdition") {
Ok(Kind::DocumentEdition)
} else if kind.eq_ignore_ascii_case("documentDeletion") {
Ok(Kind::DocumentDeletion)
} else if kind.eq_ignore_ascii_case("settingsUpdate") {
@@ -495,16 +524,48 @@ impl std::error::Error for ParseTaskKindError {}
#[derive(Debug, PartialEq, Eq, Clone, Serialize, Deserialize)]
pub enum Details {
DocumentAdditionOrUpdate { received_documents: u64, indexed_documents: Option<u64> },
SettingsUpdate { settings: Box<Settings<Unchecked>> },
IndexInfo { primary_key: Option<String> },
DocumentDeletion { provided_ids: usize, deleted_documents: Option<u64> },
DocumentDeletionByFilter { original_filter: String, deleted_documents: Option<u64> },
ClearAll { deleted_documents: Option<u64> },
TaskCancelation { matched_tasks: u64, canceled_tasks: Option<u64>, original_filter: String },
TaskDeletion { matched_tasks: u64, deleted_tasks: Option<u64>, original_filter: String },
Dump { dump_uid: Option<String> },
IndexSwap { swaps: Vec<IndexSwap> },
DocumentAdditionOrUpdate {
received_documents: u64,
indexed_documents: Option<u64>,
},
DocumentEdition {
edited_documents: Option<u64>,
original_filter: Option<String>,
edition_code: String,
},
SettingsUpdate {
settings: Box<Settings<Unchecked>>,
},
IndexInfo {
primary_key: Option<String>,
},
DocumentDeletion {
provided_ids: usize,
deleted_documents: Option<u64>,
},
DocumentDeletionByFilter {
original_filter: String,
deleted_documents: Option<u64>,
},
ClearAll {
deleted_documents: Option<u64>,
},
TaskCancelation {
matched_tasks: u64,
canceled_tasks: Option<u64>,
original_filter: String,
},
TaskDeletion {
matched_tasks: u64,
deleted_tasks: Option<u64>,
original_filter: String,
},
Dump {
dump_uid: Option<String>,
},
IndexSwap {
swaps: Vec<IndexSwap>,
},
}
impl Details {
@@ -514,6 +575,7 @@ impl Details {
Self::DocumentAdditionOrUpdate { indexed_documents, .. } => {
*indexed_documents = Some(0)
}
Self::DocumentEdition { edited_documents, .. } => *edited_documents = Some(0),
Self::DocumentDeletion { deleted_documents, .. } => *deleted_documents = Some(0),
Self::DocumentDeletionByFilter { deleted_documents, .. } => {
*deleted_documents = Some(0)

View File

@@ -67,6 +67,7 @@ permissive-json-pointer = { path = "../permissive-json-pointer" }
pin-project-lite = "0.2.13"
platform-dirs = "0.3.0"
prometheus = { version = "0.13.3", features = ["process"] }
puffin = { version = "0.16.0", features = ["serialization"] }
rand = "0.8.5"
rayon = "1.8.0"
regex = "1.10.2"

View File

@@ -25,18 +25,6 @@ impl SearchAggregator {
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct SimilarAggregator;
#[allow(dead_code)]
impl SimilarAggregator {
pub fn from_query(_: &dyn Any, _: &dyn Any) -> Self {
Self
}
pub fn succeed(&mut self, _: &dyn Any) {}
}
#[derive(Default)]
pub struct MultiSearchAggregator;
@@ -78,8 +66,6 @@ impl Analytics for MockAnalytics {
fn publish(&self, _event_name: String, _send: Value, _request: Option<&HttpRequest>) {}
fn get_search(&self, _aggregate: super::SearchAggregator) {}
fn post_search(&self, _aggregate: super::SearchAggregator) {}
fn get_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_similar(&self, _aggregate: super::SimilarAggregator) {}
fn post_multi_search(&self, _aggregate: super::MultiSearchAggregator) {}
fn post_facet_search(&self, _aggregate: super::FacetSearchAggregator) {}
fn add_documents(

View File

@@ -22,8 +22,6 @@ pub type SegmentAnalytics = mock_analytics::MockAnalytics;
#[cfg(not(feature = "analytics"))]
pub type SearchAggregator = mock_analytics::SearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type SimilarAggregator = mock_analytics::SimilarAggregator;
#[cfg(not(feature = "analytics"))]
pub type MultiSearchAggregator = mock_analytics::MultiSearchAggregator;
#[cfg(not(feature = "analytics"))]
pub type FacetSearchAggregator = mock_analytics::FacetSearchAggregator;
@@ -34,8 +32,6 @@ pub type SegmentAnalytics = segment_analytics::SegmentAnalytics;
#[cfg(feature = "analytics")]
pub type SearchAggregator = segment_analytics::SearchAggregator;
#[cfg(feature = "analytics")]
pub type SimilarAggregator = segment_analytics::SimilarAggregator;
#[cfg(feature = "analytics")]
pub type MultiSearchAggregator = segment_analytics::MultiSearchAggregator;
#[cfg(feature = "analytics")]
pub type FacetSearchAggregator = segment_analytics::FacetSearchAggregator;
@@ -90,12 +86,6 @@ pub trait Analytics: Sync + Send {
/// This method should be called to aggregate a post search
fn post_search(&self, aggregate: SearchAggregator);
/// This method should be called to aggregate a get similar request
fn get_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post similar request
fn post_similar(&self, aggregate: SimilarAggregator);
/// This method should be called to aggregate a post array of searches
fn post_multi_search(&self, aggregate: MultiSearchAggregator);

View File

@@ -36,9 +36,8 @@ use crate::routes::indexes::facet_search::FacetSearchQuery;
use crate::routes::{create_all_stats, Stats};
use crate::search::{
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
SimilarQuery, SimilarResult, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEMANTIC_RATIO,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEMANTIC_RATIO,
};
use crate::Opt;
@@ -74,8 +73,6 @@ pub enum AnalyticsMsg {
BatchMessage(Track),
AggregateGetSearch(SearchAggregator),
AggregatePostSearch(SearchAggregator),
AggregateGetSimilar(SimilarAggregator),
AggregatePostSimilar(SimilarAggregator),
AggregatePostMultiSearch(MultiSearchAggregator),
AggregatePostFacetSearch(FacetSearchAggregator),
AggregateAddDocuments(DocumentsAggregator),
@@ -152,8 +149,6 @@ impl SegmentAnalytics {
update_documents_aggregator: DocumentsAggregator::default(),
get_fetch_documents_aggregator: DocumentsFetchAggregator::default(),
post_fetch_documents_aggregator: DocumentsFetchAggregator::default(),
get_similar_aggregator: SimilarAggregator::default(),
post_similar_aggregator: SimilarAggregator::default(),
});
tokio::spawn(segment.run(index_scheduler.clone(), auth_controller.clone()));
@@ -189,14 +184,6 @@ impl super::Analytics for SegmentAnalytics {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostSearch(aggregate));
}
fn get_similar(&self, aggregate: SimilarAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregateGetSimilar(aggregate));
}
fn post_similar(&self, aggregate: SimilarAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostSimilar(aggregate));
}
fn post_facet_search(&self, aggregate: FacetSearchAggregator) {
let _ = self.sender.try_send(AnalyticsMsg::AggregatePostFacetSearch(aggregate));
}
@@ -392,8 +379,6 @@ pub struct Segment {
update_documents_aggregator: DocumentsAggregator,
get_fetch_documents_aggregator: DocumentsFetchAggregator,
post_fetch_documents_aggregator: DocumentsFetchAggregator,
get_similar_aggregator: SimilarAggregator,
post_similar_aggregator: SimilarAggregator,
}
impl Segment {
@@ -456,8 +441,6 @@ impl Segment {
Some(AnalyticsMsg::AggregateUpdateDocuments(agreg)) => self.update_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateGetFetchDocuments(agreg)) => self.get_fetch_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostFetchDocuments(agreg)) => self.post_fetch_documents_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregateGetSimilar(agreg)) => self.get_similar_aggregator.aggregate(agreg),
Some(AnalyticsMsg::AggregatePostSimilar(agreg)) => self.post_similar_aggregator.aggregate(agreg),
None => (),
}
}
@@ -511,8 +494,6 @@ impl Segment {
update_documents_aggregator,
get_fetch_documents_aggregator,
post_fetch_documents_aggregator,
get_similar_aggregator,
post_similar_aggregator,
} = self;
if let Some(get_search) =
@@ -560,18 +541,6 @@ impl Segment {
{
let _ = self.batcher.push(post_fetch_documents).await;
}
if let Some(get_similar_documents) =
take(get_similar_aggregator).into_event(user, "Similar GET")
{
let _ = self.batcher.push(get_similar_documents).await;
}
if let Some(post_similar_documents) =
take(post_similar_aggregator).into_event(user, "Similar POST")
{
let _ = self.batcher.push(post_similar_documents).await;
}
let _ = self.batcher.flush().await;
}
}
@@ -1589,235 +1558,3 @@ impl DocumentsFetchAggregator {
})
}
}
#[derive(Default)]
pub struct SimilarAggregator {
timestamp: Option<OffsetDateTime>,
// context
user_agents: HashSet<String>,
// requests
total_received: usize,
total_succeeded: usize,
time_spent: BinaryHeap<usize>,
// filter
filter_with_geo_radius: bool,
filter_with_geo_bounding_box: bool,
// every time a request has a filter, this field must be incremented by the number of terms it contains
filter_sum_of_criteria_terms: usize,
// every time a request has a filter, this field must be incremented by one
filter_total_number_of_criteria: usize,
used_syntax: HashMap<String, usize>,
// Whether a non-default embedder was specified
embedder: bool,
// pagination
max_limit: usize,
max_offset: usize,
// formatting
max_attributes_to_retrieve: usize,
// scoring
show_ranking_score: bool,
show_ranking_score_details: bool,
}
impl SimilarAggregator {
#[allow(clippy::field_reassign_with_default)]
pub fn from_query(query: &SimilarQuery, request: &HttpRequest) -> Self {
let SimilarQuery {
id: _,
embedder,
offset,
limit,
attributes_to_retrieve: _,
show_ranking_score,
show_ranking_score_details,
filter,
} = query;
let mut ret = Self::default();
ret.timestamp = Some(OffsetDateTime::now_utc());
ret.total_received = 1;
ret.user_agents = extract_user_agents(request).into_iter().collect();
if let Some(ref filter) = filter {
static RE: Lazy<Regex> = Lazy::new(|| Regex::new("AND | OR").unwrap());
ret.filter_total_number_of_criteria = 1;
let syntax = match filter {
Value::String(_) => "string".to_string(),
Value::Array(values) => {
if values.iter().map(|v| v.to_string()).any(|s| RE.is_match(&s)) {
"mixed".to_string()
} else {
"array".to_string()
}
}
_ => "none".to_string(),
};
// convert the string to a HashMap
ret.used_syntax.insert(syntax, 1);
let stringified_filters = filter.to_string();
ret.filter_with_geo_radius = stringified_filters.contains("_geoRadius(");
ret.filter_with_geo_bounding_box = stringified_filters.contains("_geoBoundingBox(");
ret.filter_sum_of_criteria_terms = RE.split(&stringified_filters).count();
}
ret.max_limit = *limit;
ret.max_offset = *offset;
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
ret.embedder = embedder.is_some();
ret
}
pub fn succeed(&mut self, result: &SimilarResult) {
let SimilarResult { id: _, hits: _, processing_time_ms, hits_info: _ } = result;
self.total_succeeded = self.total_succeeded.saturating_add(1);
self.time_spent.push(*processing_time_ms as usize);
}
/// Aggregate one [SimilarAggregator] into another.
pub fn aggregate(&mut self, mut other: Self) {
let Self {
timestamp,
user_agents,
total_received,
total_succeeded,
ref mut time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
} = other;
if self.timestamp.is_none() {
self.timestamp = timestamp;
}
// context
for user_agent in user_agents.into_iter() {
self.user_agents.insert(user_agent);
}
// request
self.total_received = self.total_received.saturating_add(total_received);
self.total_succeeded = self.total_succeeded.saturating_add(total_succeeded);
self.time_spent.append(time_spent);
// filter
self.filter_with_geo_radius |= filter_with_geo_radius;
self.filter_with_geo_bounding_box |= filter_with_geo_bounding_box;
self.filter_sum_of_criteria_terms =
self.filter_sum_of_criteria_terms.saturating_add(filter_sum_of_criteria_terms);
self.filter_total_number_of_criteria =
self.filter_total_number_of_criteria.saturating_add(filter_total_number_of_criteria);
for (key, value) in used_syntax.into_iter() {
let used_syntax = self.used_syntax.entry(key).or_insert(0);
*used_syntax = used_syntax.saturating_add(value);
}
self.embedder |= embedder;
// pagination
self.max_limit = self.max_limit.max(max_limit);
self.max_offset = self.max_offset.max(max_offset);
// formatting
self.max_attributes_to_retrieve =
self.max_attributes_to_retrieve.max(max_attributes_to_retrieve);
// scoring
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
let Self {
timestamp,
user_agents,
total_received,
total_succeeded,
time_spent,
filter_with_geo_radius,
filter_with_geo_bounding_box,
filter_sum_of_criteria_terms,
filter_total_number_of_criteria,
used_syntax,
max_limit,
max_offset,
max_attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
embedder,
} = self;
if total_received == 0 {
None
} else {
// we get all the values in a sorted manner
let time_spent = time_spent.into_sorted_vec();
// the index of the 99th percentage of value
let percentile_99th = time_spent.len() * 99 / 100;
// We are only interested by the slowest value of the 99th fastest results
let time_spent = time_spent.get(percentile_99th);
let properties = json!({
"user-agent": user_agents,
"requests": {
"99th_response_time": time_spent.map(|t| format!("{:.2}", t)),
"total_succeeded": total_succeeded,
"total_failed": total_received.saturating_sub(total_succeeded), // just to be sure we never panics
"total_received": total_received,
},
"filter": {
"with_geoRadius": filter_with_geo_radius,
"with_geoBoundingBox": filter_with_geo_bounding_box,
"avg_criteria_number": format!("{:.2}", filter_sum_of_criteria_terms as f64 / filter_total_number_of_criteria as f64),
"most_used_syntax": used_syntax.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"hybrid": {
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
},
"formatting": {
"max_attributes_to_retrieve": max_attributes_to_retrieve,
},
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
},
});
Some(Track {
timestamp,
user: user.clone(),
event: event_name.to_string(),
properties,
..Default::default()
})
}
}
}

View File

@@ -47,6 +47,8 @@ pub struct RuntimeTogglableFeatures {
pub metrics: Option<bool>,
#[deserr(default)]
pub logs_route: Option<bool>,
#[deserr(default)]
pub export_puffin_reports: Option<bool>,
}
async fn patch_features(
@@ -66,13 +68,21 @@ async fn patch_features(
vector_store: new_features.0.vector_store.unwrap_or(old_features.vector_store),
metrics: new_features.0.metrics.unwrap_or(old_features.metrics),
logs_route: new_features.0.logs_route.unwrap_or(old_features.logs_route),
export_puffin_reports: new_features
.0
.export_puffin_reports
.unwrap_or(old_features.export_puffin_reports),
};
// explicitly destructure for analytics rather than using the `Serialize` implementation, because
// the it renames to camelCase, which we don't want for analytics.
// **Do not** ignore fields with `..` or `_` here, because we want to add them in the future.
let meilisearch_types::features::RuntimeTogglableFeatures { vector_store, metrics, logs_route } =
new_features;
let meilisearch_types::features::RuntimeTogglableFeatures {
vector_store,
metrics,
logs_route,
export_puffin_reports,
} = new_features;
analytics.publish(
"Experimental features Updated".to_string(),
@@ -80,6 +90,7 @@ async fn patch_features(
"vector_store": vector_store,
"metrics": metrics,
"logs_route": logs_route,
"export_puffin_reports": export_puffin_reports,
}),
Some(&req),
);

View File

@@ -81,6 +81,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
web::resource("/delete-batch").route(web::post().to(SeqHandler(delete_documents_batch))),
)
.service(web::resource("/delete").route(web::post().to(SeqHandler(delete_documents_by_filter))))
.service(web::resource("/edit").route(web::post().to(SeqHandler(edit_documents_by_function))))
.service(web::resource("/fetch").route(web::post().to(SeqHandler(documents_by_query_post))))
.service(
web::resource("/{document_id}")
@@ -553,6 +554,57 @@ pub async fn delete_documents_by_filter(
Ok(HttpResponse::Accepted().json(task))
}
#[derive(Debug, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct DocumentEditionByFunction {
#[deserr(default, error = DeserrJsonError<InvalidDocumentFilter>)]
filter: Option<Value>,
#[deserr(error = DeserrJsonError<InvalidDocumentFilter>, missing_field_error = DeserrJsonError::missing_document_filter)]
function: String,
}
pub async fn edit_documents_by_function(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_ADD }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
body: AwebJson<DocumentEditionByFunction, DeserrJsonError>,
req: HttpRequest,
opt: web::Data<Opt>,
_analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?body, "Edit documents by function");
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let index_uid = index_uid.into_inner();
let DocumentEditionByFunction { filter, function } = body.into_inner();
// analytics.delete_documents(DocumentDeletionKind::PerFilter, &req);
let engine = milli::rhai::Engine::new();
if let Err(e) = engine.compile(&function) {
return Err(ResponseError::from_msg(e.to_string(), Code::BadRequest));
}
if let Some(ref filter) = filter {
// we ensure the filter is well formed before enqueuing it
|| -> Result<_, ResponseError> {
Ok(crate::search::parse_filter(filter)?.ok_or(MeilisearchHttpError::EmptyFilter)?)
}()
// and whatever was the error, the error code should always be an InvalidDocumentFilter
.map_err(|err| ResponseError::from_msg(err.message, Code::InvalidDocumentFilter))?;
}
let task =
KindWithContent::DocumentEdition { index_uid, filter_expr: filter, edition_code: function };
let uid = get_task_id(&req, &opt)?;
let dry_run = is_dry_run(&req, &opt)?;
let task: SummarizedTaskView =
tokio::task::spawn_blocking(move || index_scheduler.register(task, uid, dry_run))
.await??
.into();
debug!(returns = ?task, "Delete documents by filter");
Ok(HttpResponse::Accepted().json(task))
}
pub async fn clear_all_documents(
index_scheduler: GuardedData<ActionPolicy<{ actions::DOCUMENTS_DELETE }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,

View File

@@ -69,7 +69,7 @@ pub async fn search(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut search_query.filter, search_rules);
add_search_rules(&mut search_query, search_rules);
}
let index = index_scheduler.index(&index_uid)?;

View File

@@ -29,7 +29,6 @@ pub mod documents;
pub mod facet_search;
pub mod search;
pub mod settings;
pub mod similar;
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
@@ -49,7 +48,6 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
.service(web::scope("/documents").configure(documents::configure))
.service(web::scope("/search").configure(search::configure))
.service(web::scope("/facet-search").configure(facet_search::configure))
.service(web::scope("/similar").configure(similar::configure))
.service(web::scope("/settings").configure(settings::configure)),
);
}

View File

@@ -196,7 +196,7 @@ pub async fn search_with_url_query(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
add_search_rules(&mut query, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);
@@ -235,7 +235,7 @@ pub async fn search_with_post(
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
add_search_rules(&mut query, search_rules);
}
let mut aggregate = SearchAggregator::from_query(&query, &req);

View File

@@ -1,171 +0,0 @@
use actix_web::web::{self, Data};
use actix_web::{HttpRequest, HttpResponse};
use deserr::actix_web::{AwebJson, AwebQueryParameter};
use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::query_params::Param;
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::{
InvalidEmbedder, InvalidSimilarAttributesToRetrieve, InvalidSimilarFilter, InvalidSimilarId,
InvalidSimilarLimit, InvalidSimilarOffset, InvalidSimilarShowRankingScore,
InvalidSimilarShowRankingScoreDetails,
};
use meilisearch_types::error::{ErrorCode as _, ResponseError};
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::keys::actions;
use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
use tracing::debug;
use super::ActionPolicy;
use crate::analytics::{Analytics, SimilarAggregator};
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_similar, SearchKind, SimilarQuery, SimilarResult,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(
web::resource("")
.route(web::get().to(SeqHandler(similar_get)))
.route(web::post().to(SeqHandler(similar_post))),
);
}
pub async fn similar_get(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebQueryParameter<SimilarQueryGet, DeserrQueryParamError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.0.try_into().map_err(|code: InvalidSimilarId| {
ResponseError::from_msg(code.to_string(), code.error_code())
})?;
let mut aggregate = SimilarAggregator::from_query(&query, &req);
debug!(parameters = ?query, "Similar get");
let similar = similar(index_scheduler, index_uid, query).await;
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.get_similar(aggregate);
let similar = similar?;
debug!(returns = ?similar, "Similar get");
Ok(HttpResponse::Ok().json(similar))
}
pub async fn similar_post(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebJson<SimilarQuery, DeserrJsonError>,
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let query = params.into_inner();
debug!(parameters = ?query, "Similar post");
let mut aggregate = SimilarAggregator::from_query(&query, &req);
let similar = similar(index_scheduler, index_uid, query).await;
if let Ok(similar) = &similar {
aggregate.succeed(similar);
}
analytics.post_similar(aggregate);
let similar = similar?;
debug!(returns = ?similar, "Similar post");
Ok(HttpResponse::Ok().json(similar))
}
async fn similar(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: IndexUid,
mut query: SimilarQuery,
) -> Result<SimilarResult, ResponseError> {
let features = index_scheduler.features();
features.check_vector("Using the similar API")?;
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
}
let index = index_scheduler.index(&index_uid)?;
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
tokio::task::spawn_blocking(move || perform_similar(&index, query, embedder_name, embedder))
.await?
}
#[derive(Debug, deserr::Deserr)]
#[deserr(error = DeserrQueryParamError, rename_all = camelCase, deny_unknown_fields)]
pub struct SimilarQueryGet {
#[deserr(error = DeserrQueryParamError<InvalidSimilarId>)]
id: Param<String>,
#[deserr(default = Param(DEFAULT_SEARCH_OFFSET()), error = DeserrQueryParamError<InvalidSimilarOffset>)]
offset: Param<usize>,
#[deserr(default = Param(DEFAULT_SEARCH_LIMIT()), error = DeserrQueryParamError<InvalidSimilarLimit>)]
limit: Param<usize>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarAttributesToRetrieve>)]
attributes_to_retrieve: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarFilter>)]
filter: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
pub embedder: Option<String>,
}
impl TryFrom<SimilarQueryGet> for SimilarQuery {
type Error = InvalidSimilarId;
fn try_from(
SimilarQueryGet {
id,
offset,
limit,
attributes_to_retrieve,
filter,
show_ranking_score,
show_ranking_score_details,
embedder,
}: SimilarQueryGet,
) -> Result<Self, Self::Error> {
let filter = match filter {
Some(f) => match serde_json::from_str(&f) {
Ok(v) => Some(v),
_ => Some(Value::String(f)),
},
None => None,
};
Ok(SimilarQuery {
id: id.0.try_into()?,
offset: offset.0,
limit: limit.0,
filter,
embedder,
attributes_to_retrieve: attributes_to_retrieve.map(|o| o.into_iter().collect()),
show_ranking_score: show_ranking_score.0,
show_ranking_score_details: show_ranking_score_details.0,
})
}
}

View File

@@ -67,7 +67,7 @@ pub async fn multi_search_with_post(
// Apply search rules from tenant token
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid)
{
add_search_rules(&mut query.filter, search_rules);
add_search_rules(&mut query, search_rules);
}
let index = index_scheduler

View File

@@ -11,7 +11,7 @@ use indexmap::IndexMap;
use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::{Code, ResponseError};
use meilisearch_types::error::ResponseError;
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
@@ -231,7 +231,7 @@ impl SearchKind {
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
}
pub(crate) fn embedder(
fn embedder(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
@@ -417,59 +417,6 @@ impl SearchQueryWithIndex {
}
}
#[derive(Debug, Clone, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct SimilarQuery {
#[deserr(error = DeserrJsonError<InvalidSimilarId>)]
pub id: ExternalDocumentId,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSimilarOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSimilarLimit>)]
pub limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidSimilarFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
}
#[derive(Debug, Clone, PartialEq, Deserr)]
#[deserr(try_from(Value) = TryFrom::try_from -> InvalidSimilarId)]
pub struct ExternalDocumentId(String);
impl AsRef<str> for ExternalDocumentId {
fn as_ref(&self) -> &str {
&self.0
}
}
impl ExternalDocumentId {
pub fn into_inner(self) -> String {
self.0
}
}
impl TryFrom<String> for ExternalDocumentId {
type Error = InvalidSimilarId;
fn try_from(value: String) -> Result<Self, Self::Error> {
serde_json::Value::String(value).try_into()
}
}
impl TryFrom<Value> for ExternalDocumentId {
type Error = InvalidSimilarId;
fn try_from(value: Value) -> Result<Self, Self::Error> {
Ok(Self(milli::documents::validate_document_id_value(value).map_err(|_| InvalidSimilarId)?))
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum MatchingStrategy {
@@ -591,16 +538,6 @@ impl fmt::Debug for SearchResult {
}
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct SimilarResult {
pub hits: Vec<SearchHit>,
pub id: String,
pub processing_time_ms: u128,
#[serde(flatten)]
pub hits_info: HitsInfo,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct SearchResultWithIndex {
@@ -633,8 +570,8 @@ pub struct FacetSearchResult {
}
/// Incorporate search rules in search query
pub fn add_search_rules(filter: &mut Option<Value>, rules: IndexSearchRules) {
*filter = match (filter.take(), rules.filter) {
pub fn add_search_rules(query: &mut SearchQuery, rules: IndexSearchRules) {
query.filter = match (query.filter.take(), rules.filter) {
(None, rules_filter) => rules_filter,
(filter, None) => filter,
(Some(filter), Some(rules_filter)) => {
@@ -782,52 +719,131 @@ pub fn perform_search(
SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?,
};
let SearchQuery {
q,
vector: _,
hybrid: _,
// already computed from prepare_search
offset: _,
limit,
page,
hits_per_page,
attributes_to_retrieve,
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_matches_position,
show_ranking_score,
show_ranking_score_details,
filter: _,
sort,
facets,
highlight_pre_tag,
highlight_post_tag,
crop_marker,
matching_strategy: _,
attributes_to_search_on: _,
} = query;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let format = AttributesFormat {
attributes_to_retrieve,
attributes_to_highlight,
attributes_to_crop,
crop_length,
crop_marker,
highlight_pre_tag,
highlight_post_tag,
show_matches_position,
sort,
show_ranking_score,
show_ranking_score_details,
let displayed_ids = index
.displayed_fields_ids(&rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
if attr == "*" {
ids = displayed_ids.clone();
break;
}
if let Some(id) = fields_ids_map.id(attr) {
ids.insert(id);
}
}
ids
};
let documents =
make_hits(index, &rtxn, format, matching_words, documents_ids, document_scores)?;
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
// but these attributes must be also be present
// - in the fields_ids_map
// - in the displayed attributes
let to_retrieve_ids: BTreeSet<_> = query
.attributes_to_retrieve
.as_ref()
.map(fids)
.unwrap_or_else(|| displayed_ids.clone())
.intersection(&displayed_ids)
.cloned()
.collect();
let attr_to_highlight = query.attributes_to_highlight.unwrap_or_default();
let attr_to_crop = query.attributes_to_crop.unwrap_or_default();
// Attributes in `formatted_options` correspond to the attributes that will be in `_formatted`
// These attributes are:
// - the attributes asked to be highlighted or cropped (with `attributesToCrop` or `attributesToHighlight`)
// - the attributes asked to be retrieved: these attributes will not be highlighted/cropped
// But these attributes must be also present in displayed attributes
let formatted_options = compute_formatted_options(
&attr_to_highlight,
&attr_to_crop,
query.crop_length,
&to_retrieve_ids,
&fields_ids_map,
&displayed_ids,
);
let mut tokenizer_builder = TokenizerBuilder::default();
tokenizer_builder.create_char_map(true);
let script_lang_map = index.script_language(&rtxn)?;
if !script_lang_map.is_empty() {
tokenizer_builder.allow_list(&script_lang_map);
}
let separators = index.allowed_separators(&rtxn)?;
let separators: Option<Vec<_>> =
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref separators) = separators {
tokenizer_builder.separators(separators);
}
let dictionary = index.dictionary(&rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref dictionary) = dictionary {
tokenizer_builder.words_dict(dictionary);
}
let mut formatter_builder = MatcherBuilder::new(matching_words, tokenizer_builder.build());
formatter_builder.crop_marker(query.crop_marker);
formatter_builder.highlight_prefix(query.highlight_pre_tag);
formatter_builder.highlight_suffix(query.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let mut document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
let (matches_position, formatted) = format_fields(
&displayed_document,
&fields_ids_map,
&formatter_builder,
&formatted_options,
query.show_matches_position,
&displayed_ids,
)?;
if let Some(sort) = query.sort.as_ref() {
insert_geo_distance(sort, &mut document);
}
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}
let number_of_hits = min(candidates.len() as usize, max_total_hits);
let hits_info = if is_finite_pagination {
let hits_per_page = hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
let hits_per_page = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
// If hit_per_page is 0, then pages can't be computed and so we respond 0.
let total_pages = (number_of_hits + hits_per_page.saturating_sub(1))
.checked_div(hits_per_page)
@@ -835,15 +851,15 @@ pub fn perform_search(
HitsInfo::Pagination {
hits_per_page,
page: page.unwrap_or(1),
page: query.page.unwrap_or(1),
total_pages,
total_hits: number_of_hits,
}
} else {
HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits }
HitsInfo::OffsetLimit { limit: query.limit, offset, estimated_total_hits: number_of_hits }
};
let (facet_distribution, facet_stats) = match facets {
let (facet_distribution, facet_stats) = match query.facets {
Some(ref fields) => {
let mut facet_distribution = index.facets_distribution(&rtxn);
@@ -880,7 +896,7 @@ pub fn perform_search(
let result = SearchResult {
hits: documents,
hits_info,
query: q.unwrap_or_default(),
query: query.q.unwrap_or_default(),
processing_time_ms: before_search.elapsed().as_millis(),
facet_distribution,
facet_stats,
@@ -891,130 +907,6 @@ pub fn perform_search(
Ok(result)
}
struct AttributesFormat {
attributes_to_retrieve: Option<BTreeSet<String>>,
attributes_to_highlight: Option<HashSet<String>>,
attributes_to_crop: Option<Vec<String>>,
crop_length: usize,
crop_marker: String,
highlight_pre_tag: String,
highlight_post_tag: String,
show_matches_position: bool,
sort: Option<Vec<String>>,
show_ranking_score: bool,
show_ranking_score_details: bool,
}
fn make_hits(
index: &Index,
rtxn: &RoTxn<'_>,
format: AttributesFormat,
matching_words: milli::MatchingWords,
documents_ids: Vec<u32>,
document_scores: Vec<Vec<ScoreDetails>>,
) -> Result<Vec<SearchHit>, MeilisearchHttpError> {
let fields_ids_map = index.fields_ids_map(rtxn).unwrap();
let displayed_ids = index
.displayed_fields_ids(rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
if attr == "*" {
ids.clone_from(&displayed_ids);
break;
}
if let Some(id) = fields_ids_map.id(attr) {
ids.insert(id);
}
}
ids
};
let to_retrieve_ids: BTreeSet<_> = format
.attributes_to_retrieve
.as_ref()
.map(fids)
.unwrap_or_else(|| displayed_ids.clone())
.intersection(&displayed_ids)
.cloned()
.collect();
let attr_to_highlight = format.attributes_to_highlight.unwrap_or_default();
let attr_to_crop = format.attributes_to_crop.unwrap_or_default();
let formatted_options = compute_formatted_options(
&attr_to_highlight,
&attr_to_crop,
format.crop_length,
&to_retrieve_ids,
&fields_ids_map,
&displayed_ids,
);
let mut tokenizer_builder = TokenizerBuilder::default();
tokenizer_builder.create_char_map(true);
let script_lang_map = index.script_language(rtxn)?;
if !script_lang_map.is_empty() {
tokenizer_builder.allow_list(&script_lang_map);
}
let separators = index.allowed_separators(rtxn)?;
let separators: Option<Vec<_>> =
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref separators) = separators {
tokenizer_builder.separators(separators);
}
let dictionary = index.dictionary(rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
if let Some(ref dictionary) = dictionary {
tokenizer_builder.words_dict(dictionary);
}
let mut formatter_builder = MatcherBuilder::new(matching_words, tokenizer_builder.build());
formatter_builder.crop_marker(format.crop_marker);
formatter_builder.highlight_prefix(format.highlight_pre_tag);
formatter_builder.highlight_suffix(format.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let mut document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
let (matches_position, formatted) = format_fields(
&displayed_document,
&fields_ids_map,
&formatter_builder,
&formatted_options,
format.show_matches_position,
&displayed_ids,
)?;
if let Some(sort) = format.sort.as_ref() {
insert_geo_distance(sort, &mut document);
}
let ranking_score =
format.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
format.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}
Ok(documents)
}
pub fn perform_facet_search(
index: &Index,
search_query: SearchQuery,
@@ -1049,95 +941,6 @@ pub fn perform_facet_search(
})
}
pub fn perform_similar(
index: &Index,
query: SimilarQuery,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Result<SimilarResult, ResponseError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let SimilarQuery {
id,
offset,
limit,
filter: _,
embedder: _,
attributes_to_retrieve,
show_ranking_score,
show_ranking_score_details,
} = query;
// using let-else rather than `?` so that the borrow checker identifies we're always returning here,
// preventing a use-after-move
let Some(internal_id) = index.external_documents_ids().get(&rtxn, &id)? else {
return Err(ResponseError::from_msg(
MeilisearchHttpError::DocumentNotFound(id.into_inner()).to_string(),
Code::NotFoundSimilarId,
));
};
let mut similar =
milli::Similar::new(internal_id, offset, limit, index, &rtxn, embedder_name, embedder);
if let Some(ref filter) = query.filter {
if let Some(facets) = parse_filter(filter)
// inject InvalidSimilarFilter code
.map_err(|e| ResponseError::from_msg(e.to_string(), Code::InvalidSimilarFilter))?
{
similar.filter(facets);
}
}
let milli::SearchResult {
documents_ids,
matching_words: _,
candidates,
document_scores,
degraded: _,
used_negative_operator: _,
} = similar.execute().map_err(|err| match err {
milli::Error::UserError(milli::UserError::InvalidFilter(_)) => {
ResponseError::from_msg(err.to_string(), Code::InvalidSimilarFilter)
}
err => err.into(),
})?;
let format = AttributesFormat {
attributes_to_retrieve,
attributes_to_highlight: None,
attributes_to_crop: None,
crop_length: DEFAULT_CROP_LENGTH(),
crop_marker: DEFAULT_CROP_MARKER(),
highlight_pre_tag: DEFAULT_HIGHLIGHT_PRE_TAG(),
highlight_post_tag: DEFAULT_HIGHLIGHT_POST_TAG(),
show_matches_position: false,
sort: None,
show_ranking_score,
show_ranking_score_details,
};
let hits = make_hits(index, &rtxn, format, Default::default(), documents_ids, document_scores)?;
let max_total_hits = index
.pagination_max_total_hits(&rtxn)
.map_err(milli::Error::from)?
.map(|x| x as usize)
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
let number_of_hits = min(candidates.len() as usize, max_total_hits);
let hits_info = HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits };
let result = SimilarResult {
hits,
hits_info,
id: id.into_inner(),
processing_time_ms: before_search.elapsed().as_millis(),
};
Ok(result)
}
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
lazy_static::lazy_static! {
static ref GEO_REGEX: Regex =

View File

@@ -85,13 +85,8 @@ impl SearchQueue {
},
search_request = receive_new_searches.recv() => {
let search_request = match search_request {
Some(search_request) => search_request,
// This should never happen while actix-web is running, but it's not a reason to crash
// and it can generate a lot of noise in the tests.
None => continue,
};
// this unwrap is safe because we're sure the `SearchQueue` still lives somewhere in actix-web
let search_request = search_request.unwrap();
if searches_running < usize::from(parallelism) && queue.is_empty() {
searches_running += 1;
// if the search requests die it's not a hard error on our side

View File

@@ -380,43 +380,6 @@ impl Index<'_> {
self.service.get(url).await
}
/// Performs both GET and POST similar queries
pub async fn similar(
&self,
query: Value,
test: impl Fn(Value, StatusCode) + UnwindSafe + Clone,
) {
let post = self.similar_post(query.clone()).await;
let query = yaup::to_string(&query).unwrap();
let get = self.similar_get(&query).await;
insta::allow_duplicates! {
let (response, code) = post;
let t = test.clone();
if let Err(e) = catch_unwind(move || t(response, code)) {
eprintln!("Error with post search");
resume_unwind(e);
}
let (response, code) = get;
if let Err(e) = catch_unwind(move || test(response, code)) {
eprintln!("Error with get search");
resume_unwind(e);
}
}
}
pub async fn similar_post(&self, query: Value) -> (Value, StatusCode) {
let url = format!("/indexes/{}/similar", urlencode(self.uid.as_ref()));
self.service.post_encoded(url, query, self.encoder).await
}
pub async fn similar_get(&self, query: &str) -> (Value, StatusCode) {
let url = format!("/indexes/{}/similar?{}", urlencode(self.uid.as_ref()), query);
self.service.get(url).await
}
pub async fn facet_search(&self, query: Value) -> (Value, StatusCode) {
let url = format!("/indexes/{}/facet-search", urlencode(self.uid.as_ref()));
self.service.post_encoded(url, query, self.encoder).await

View File

@@ -1859,7 +1859,8 @@ async fn import_dump_v6_containing_experimental_features() {
{
"vectorStore": false,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);

View File

@@ -20,7 +20,8 @@ async fn experimental_features() {
{
"vectorStore": false,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -31,7 +32,8 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -42,7 +44,8 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -54,7 +57,8 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -66,7 +70,8 @@ async fn experimental_features() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
}
@@ -85,7 +90,8 @@ async fn experimental_feature_metrics() {
{
"vectorStore": false,
"metrics": true,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -140,7 +146,7 @@ async fn errors() {
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Unknown field `NotAFeature`: expected one of `vectorStore`, `metrics`, `logsRoute`",
"message": "Unknown field `NotAFeature`: expected one of `vectorStore`, `metrics`, `logsRoute`, `exportPuffinReports`",
"code": "bad_request",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#bad_request"

View File

@@ -8,7 +8,6 @@ mod index;
mod logs;
mod search;
mod settings;
mod similar;
mod snapshot;
mod stats;
mod swap_indexes;

View File

@@ -5,10 +5,7 @@ use crate::common::index::Index;
use crate::common::{Server, Value};
use crate::json;
async fn index_with_documents_user_provided<'a>(
server: &'a Server,
documents: &Value,
) -> Index<'a> {
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
@@ -18,7 +15,8 @@ async fn index_with_documents_user_provided<'a>(
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);
@@ -36,38 +34,7 @@ async fn index_with_documents_user_provided<'a>(
index
}
async fn index_with_documents_hf<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({ "embedders": {"default": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.title}}, {{doc.desc}}"
}}} ))
.await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
let (response, code) = index.add_documents(documents.clone(), None).await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
index
}
static SIMPLE_SEARCH_DOCUMENTS_VEC: Lazy<Value> = Lazy::new(|| {
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
@@ -89,7 +56,7 @@ static SIMPLE_SEARCH_DOCUMENTS_VEC: Lazy<Value> = Lazy::new(|| {
}])
});
static SINGLE_DOCUMENT_VEC: Lazy<Value> = Lazy::new(|| {
static SINGLE_DOCUMENT: Lazy<Value> = Lazy::new(|| {
json!([{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
@@ -98,29 +65,10 @@ static SINGLE_DOCUMENT_VEC: Lazy<Value> = Lazy::new(|| {
}])
});
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
},
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
}])
});
#[actix_rt::test]
async fn simple_search() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(
@@ -137,8 +85,8 @@ async fn simple_search() {
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"2");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"1");
let (response, code) = index
.search_post(
@@ -150,59 +98,10 @@ async fn simple_search() {
snapshot!(response["semanticHitCount"], @"3");
}
#[actix_rt::test]
async fn simple_search_hf() {
let server = Server::new().await;
let index = index_with_documents_hf(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) =
index.search_post(json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}})).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index
.search_post(
// disable ranking score as the vectors between architectures are not equal
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.55}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"}]"###);
snapshot!(response["semanticHitCount"], @"1");
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.8}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"}]"###);
snapshot!(response["semanticHitCount"], @"3");
let (response, code) = index
.search_post(
json!({"q": "Movie World", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"}]"###);
snapshot!(response["semanticHitCount"], @"3");
let (response, code) = index
.search_post(
json!({"q": "Wonder replacement", "hybrid": {"semanticRatio": 0.2}, "showRankingScore": false}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"}]"###);
snapshot!(response["semanticHitCount"], @"3");
}
#[actix_rt::test]
async fn distribution_shift() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}});
let (response, code) = index.search_post(search.clone()).await;
@@ -234,7 +133,7 @@ async fn distribution_shift() {
#[actix_rt::test]
async fn highlighter() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
@@ -285,7 +184,7 @@ async fn highlighter() {
#[actix_rt::test]
async fn invalid_semantic_ratio() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(
@@ -357,7 +256,7 @@ async fn invalid_semantic_ratio() {
#[actix_rt::test]
async fn single_document() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SINGLE_DOCUMENT_VEC).await;
let index = index_with_documents(&server, &SINGLE_DOCUMENT).await;
let (response, code) = index
.search_post(
@@ -373,7 +272,7 @@ async fn single_document() {
#[actix_rt::test]
async fn query_combination() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index
@@ -432,7 +331,7 @@ async fn query_combination() {
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.8848484848484849}]"###);
snapshot!(response["semanticHitCount"], @"null");
// query + vector, no hybrid keyword =>
@@ -475,6 +374,6 @@ async fn query_combination() {
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848}]"###);
snapshot!(response["semanticHitCount"], @"0");
}

View File

@@ -680,26 +680,6 @@ async fn search_facet_distribution() {
},
)
.await;
index.update_settings(json!({"filterableAttributes": ["doggos.name"]})).await;
index.wait_task(5).await;
index
.search(
json!({
"facets": ["doggos.name"]
}),
|response, code| {
assert_eq!(code, 200, "{}", response);
let dist = response["facetDistribution"].as_object().unwrap();
assert_eq!(dist.len(), 1);
assert_eq!(
dist["doggos.name"],
json!({ "bobby": 1, "buddy": 1, "gros bill": 1, "turbo": 1, "fast": 1})
);
},
)
.await;
}
#[actix_rt::test]
@@ -915,9 +895,9 @@ async fn test_score_details() {
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
-100,
231,
32
]
},
"_rankingScoreDetails": {
@@ -941,7 +921,7 @@ async fn test_score_details() {
"order": 3,
"attributeRankingOrderScore": 1.0,
"queryWordDistanceScore": 0.8095238095238095,
"score": 0.8095238095238095
"score": 0.9727891156462584
},
"exactness": {
"order": 4,
@@ -1116,9 +1096,9 @@ async fn experimental_feature_vector_store() {
"id": "287947",
"_vectors": {
"manual": [
1.0,
2.0,
3.0
1,
2,
3
]
},
"_rankingScore": 1.0
@@ -1128,9 +1108,9 @@ async fn experimental_feature_vector_store() {
"id": "299537",
"_vectors": {
"manual": [
1.0,
2.0,
54.0
1,
2,
54
]
},
"_rankingScore": 0.9129111766815186
@@ -1140,9 +1120,9 @@ async fn experimental_feature_vector_store() {
"id": "450465",
"_vectors": {
"manual": [
-100.0,
340.0,
90.0
-100,
340,
90
]
},
"_rankingScore": 0.8106412887573242
@@ -1152,9 +1132,9 @@ async fn experimental_feature_vector_store() {
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
-100,
231,
32
]
},
"_rankingScore": 0.7412010431289673
@@ -1164,9 +1144,9 @@ async fn experimental_feature_vector_store() {
"id": "522681",
"_vectors": {
"manual": [
10.0,
-23.0,
32.0
10,
-23,
32
]
},
"_rankingScore": 0.6972063183784485
@@ -1425,9 +1405,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
-100,
231,
32
]
}
}
@@ -1446,9 +1426,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
-100,
231,
32
]
}
}
@@ -1467,9 +1447,9 @@ async fn simple_search_with_strange_synonyms() {
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
-100,
231,
32
]
}
}

View File

@@ -75,9 +75,9 @@ async fn simple_search_single_index() {
"id": "450465",
"_vectors": {
"manual": [
-100.0,
340.0,
90.0
-100,
340,
90
]
}
}
@@ -96,9 +96,9 @@ async fn simple_search_single_index() {
"id": "299537",
"_vectors": {
"manual": [
1.0,
2.0,
54.0
1,
2,
54
]
}
}
@@ -194,9 +194,9 @@ async fn simple_search_two_indexes() {
"id": "450465",
"_vectors": {
"manual": [
-100.0,
340.0,
90.0
-100,
340,
90
]
}
}
@@ -227,9 +227,9 @@ async fn simple_search_two_indexes() {
"cattos": "pésti",
"_vectors": {
"manual": [
1.0,
2.0,
3.0
1,
2,
3
]
}
},
@@ -249,9 +249,9 @@ async fn simple_search_two_indexes() {
],
"_vectors": {
"manual": [
1.0,
2.0,
54.0
1,
2,
54
]
}
}

View File

@@ -285,10 +285,10 @@ async fn attributes_ranking_rule_order() {
@r###"
[
{
"id": "1"
"id": "2"
},
{
"id": "2"
"id": "1"
}
]
"###

View File

@@ -98,7 +98,8 @@ async fn secrets_are_hidden_in_settings() {
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
"logsRoute": false,
"exportPuffinReports": false
}
"###);

View File

@@ -1,696 +0,0 @@
use meili_snap::*;
use super::DOCUMENTS;
use crate::common::Server;
use crate::json;
#[actix_rt::test]
async fn similar_unexisting_index() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let expected_response = json!({
"message": "Index `test` not found.",
"code": "index_not_found",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#index_not_found"
});
index
.similar(json!({"id": 287947}), |response, code| {
assert_eq!(code, 404);
assert_eq!(response, expected_response);
})
.await;
}
#[actix_rt::test]
async fn similar_unexisting_parameter() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
index
.similar(json!({"id": 287947, "marin": "hello"}), |response, code| {
assert_eq!(code, 400, "{}", response);
assert_eq!(response["code"], "bad_request");
})
.await;
}
#[actix_rt::test]
async fn similar_feature_not_enabled() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"id": 287947})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Using the similar API requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": ["doggo"]})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_invalid_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "http://invalid-docid/"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value at `.id`: the value of `id` is invalid. A document identifier can be of type integer or string, only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_).",
"code": "invalid_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_not_found_id() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": "definitely-doesnt-exist"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Document `definitely-doesnt-exist` not found.",
"code": "not_found_similar_id",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#not_found_similar_id"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_offset() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "offset": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.offset`: expected a positive integer, but found a string: `\"doggo\"`",
"code": "invalid_similar_offset",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_offset"
}
"###);
let (response, code) = index.similar_get("id=287947&offset=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `offset`: could not parse `doggo` as a positive integer",
"code": "invalid_similar_offset",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_offset"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_limit() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index.similar_post(json!({"id": 287947, "limit": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.limit`: expected a positive integer, but found a string: `\"doggo\"`",
"code": "invalid_similar_limit",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_limit"
}
"###);
let (response, code) = index.similar_get("id=287946&limit=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `limit`: could not parse `doggo` as a positive integer",
"code": "invalid_similar_limit",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_limit"
}
"###);
}
#[actix_rt::test]
async fn similar_bad_filter() {
// Since a filter is deserialized as a json Value it will never fail to deserialize.
// Thus the error message is not generated by deserr but written by us.
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
snapshot!(code, @"202 Accepted");
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (response, code) = index.similar_post(json!({ "id": 287947, "filter": true })).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid syntax for the filter parameter: `expected String, Array, found: true`.",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
}
"###);
// Can't make the `filter` fail with a get search since it'll accept anything as a strings.
}
#[actix_rt::test]
async fn filter_invalid_syntax_object() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "title & Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_syntax_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Was expecting an operation `=`, `!=`, `>=`, `>`, `<=`, `<`, `IN`, `NOT IN`, `TO`, `EXISTS`, `NOT EXISTS`, `IS NULL`, `IS NOT NULL`, `IS EMPTY`, `IS NOT EMPTY`, `_geoRadius`, or `_geoBoundingBox` at `title & Glass`.\n1:14 title & Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["title & Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_syntax_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Found unexpected characters at the end of the filter: `XOR title = Glass`. You probably forgot an `OR` or an `AND` rule.\n15:32 title = Glass XOR title = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(
json!({"id": 287947, "filter": "title = Glass XOR title = Glass"}),
|response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
},
)
.await;
}
#[actix_rt::test]
async fn filter_invalid_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Attribute `many` is not filterable. Available filterable attributes are: `title`.\n1:5 many = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["many = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_invalid_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "Attribute `many` is not filterable. Available filterable attributes are: `title`.\n1:5 many = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "many = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geo` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:13 _geo = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geo = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geo` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:13 _geo = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geo = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_attribute_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoDistance` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:21 _geoDistance = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoDistance = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_attribute_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoDistance` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:21 _geoDistance = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoDistance = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_point_array() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoPoint` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:18 _geoPoint = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": ["_geoPoint = Glass"]}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}
#[actix_rt::test]
async fn filter_reserved_geo_point_string() {
let server = Server::new().await;
let index = server.index("test");
server.set_features(json!({"vectorStore": true})).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let expected_response = json!({
"message": "`_geoPoint` is a reserved keyword and thus can't be used as a filter expression. Use the `_geoRadius(latitude, longitude, distance)` or `_geoBoundingBox([latitude, longitude], [latitude, longitude])` built-in rules to filter on `_geo` coordinates.\n1:18 _geoPoint = Glass",
"code": "invalid_similar_filter",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_filter"
});
index
.similar(json!({"id": 287947, "filter": "_geoPoint = Glass"}), |response, code| {
assert_eq!(response, expected_response);
assert_eq!(code, 400);
})
.await;
}

View File

@@ -1,373 +0,0 @@
mod errors;
use meili_snap::{json_string, snapshot};
use once_cell::sync::Lazy;
use crate::common::{Server, Value};
use crate::json;
static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
// Three semantic properties:
// 1. magic, anything that reminds you of magic
// 2. authority, anything that inspires command
// 3. horror, anything that inspires fear or dread
"_vectors": { "manual": [0.8, 0.4, -0.5]},
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": { "manual": [0.6, 0.8, -0.2] },
},
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": { "manual": [0.1, 0.6, 0.8] },
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": { "manual": [0.7, 0.7, -0.4] },
},
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": { "manual": [-0.5, 0.3, 0.85] },
}
])
});
#[actix_rt::test]
async fn basic() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
},
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": "299537"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
},
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
},
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
}
}
]
"###);
})
.await;
}
#[actix_rt::test]
async fn filter() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title", "release_year"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 522681, "filter": "release_year = 2019"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": 522681, "filter": "release_year < 2000"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
}
}
]
"###);
})
.await;
}
#[actix_rt::test]
async fn limit_and_offset() {
let server = Server::new().await;
let index = server.index("test");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
"filterableAttributes": ["title"]}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = DOCUMENTS.clone();
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "limit": 1}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Escape Room",
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
}
}
]
"###);
})
.await;
index
.similar(json!({"id": 143, "limit": 1, "offset": 1}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
}
]
"###);
})
.await;
}

View File

@@ -1,5 +1,6 @@
use std::time::Duration;
use actix_rt::time::sleep;
use meili_snap::{json_string, snapshot};
use meilisearch::option::ScheduleSnapshot;
use meilisearch::Opt;
@@ -52,29 +53,11 @@ async fn perform_snapshot() {
index.load_test_set().await;
let (task, code) = server.index("test1").create(Some("prim")).await;
meili_snap::snapshot!(code, @"202 Accepted");
server.index("test1").create(Some("prim")).await;
index.wait_task(task.uid()).await;
index.wait_task(2).await;
// wait for the _next task_ to process, aka the snapshot that should be enqueued at some point
println!("waited for the next task to finish");
let now = std::time::Instant::now();
let next_task = task.uid() + 1;
loop {
let (value, code) = index.get_task(next_task).await;
dbg!(&value);
if code != 404 && value["status"].as_str() == Some("succeeded") {
break;
}
if now.elapsed() > Duration::from_secs(30) {
panic!("The snapshot didn't schedule in 30s even though it was supposed to be scheduled every 2s: {}",
serde_json::to_string_pretty(&value).unwrap()
);
}
}
sleep(Duration::from_secs(2)).await;
let temp = tempfile::tempdir().unwrap();

View File

@@ -80,7 +80,9 @@ fn main() -> anyhow::Result<()> {
/// Clears the task queue located at `db_path`.
fn clear_task_queue(db_path: PathBuf) -> anyhow::Result<()> {
let path = db_path.join("tasks");
let env = unsafe { EnvOpenOptions::new().max_dbs(100).open(&path) }
let env = EnvOpenOptions::new()
.max_dbs(100)
.open(&path)
.with_context(|| format!("While trying to open {:?}", path.display()))?;
eprintln!("Deleting tasks from the database...");
@@ -191,7 +193,9 @@ fn export_a_dump(
FileStore::new(db_path.join("update_files")).context("While opening the FileStore")?;
let index_scheduler_path = db_path.join("tasks");
let env = unsafe { EnvOpenOptions::new().max_dbs(100).open(&index_scheduler_path) }
let env = EnvOpenOptions::new()
.max_dbs(100)
.open(&index_scheduler_path)
.with_context(|| format!("While trying to open {:?}", index_scheduler_path.display()))?;
eprintln!("Dumping the keys...");

View File

@@ -30,7 +30,7 @@ grenad = { version = "0.4.6", default-features = false, features = [
"rayon",
"tempfile",
] }
heed = { version = "0.20.1", default-features = false, features = [
heed = { version = "0.20.0-alpha.9", default-features = false, features = [
"serde-json",
"serde-bincode",
"read-txn-no-tls",
@@ -67,6 +67,9 @@ filter-parser = { path = "../filter-parser" }
# documents words self-join
itertools = "0.11.0"
# profiling
puffin = "0.16.0"
csv = "1.3.0"
candle-core = { version = "0.4.1" }
candle-transformers = { version = "0.4.1" }
@@ -79,11 +82,12 @@ hf-hub = { git = "https://github.com/dureuill/hf-hub.git", branch = "rust_tls",
] }
tiktoken-rs = "0.5.8"
liquid = "0.26.4"
arroy = "0.3.1"
arroy = "0.2.0"
rand = "0.8.5"
tracing = "0.1.40"
ureq = { version = "2.9.7", features = ["json"] }
url = "2.5.0"
rhai = { version = "1.18.0", features = ["serde", "no_module", "no_custom_syntax"] }
[dev-dependencies]
mimalloc = { version = "0.1.39", default-features = false }

View File

@@ -48,8 +48,8 @@ fn main() -> Result<(), Box<dyn Error>> {
let start = Instant::now();
let mut ctx = SearchContext::new(&index, &txn)?;
let universe = filtered_universe(ctx.index, ctx.txn, &None)?;
let mut ctx = SearchContext::new(&index, &txn);
let universe = filtered_universe(&ctx, &None)?;
let docs = execute_search(
&mut ctx,

View File

@@ -1,3 +0,0 @@
target
corpus
artifacts

View File

@@ -12,10 +12,7 @@ use bimap::BiHashMap;
pub use builder::DocumentsBatchBuilder;
pub use enriched::{EnrichedDocument, EnrichedDocumentsBatchCursor, EnrichedDocumentsBatchReader};
use obkv::KvReader;
pub use primary_key::{
validate_document_id_value, DocumentIdExtractionError, FieldIdMapper, PrimaryKey,
DEFAULT_PRIMARY_KEY,
};
pub use primary_key::{DocumentIdExtractionError, FieldIdMapper, PrimaryKey, DEFAULT_PRIMARY_KEY};
pub use reader::{DocumentsBatchCursor, DocumentsBatchCursorError, DocumentsBatchReader};
use serde::{Deserialize, Serialize};

View File

@@ -60,7 +60,7 @@ impl<'a> PrimaryKey<'a> {
Some(document_id_bytes) => {
let document_id = serde_json::from_slice(document_id_bytes)
.map_err(InternalError::SerdeJson)?;
match validate_document_id_value(document_id) {
match validate_document_id_value(document_id)? {
Ok(document_id) => Ok(Ok(document_id)),
Err(user_error) => {
Ok(Err(DocumentIdExtractionError::InvalidDocumentId(user_error)))
@@ -88,7 +88,7 @@ impl<'a> PrimaryKey<'a> {
}
match matching_documents_ids.pop() {
Some(document_id) => match validate_document_id_value(document_id) {
Some(document_id) => match validate_document_id_value(document_id)? {
Ok(document_id) => Ok(Ok(document_id)),
Err(user_error) => {
Ok(Err(DocumentIdExtractionError::InvalidDocumentId(user_error)))
@@ -159,14 +159,14 @@ fn validate_document_id(document_id: &str) -> Option<&str> {
}
}
pub fn validate_document_id_value(document_id: Value) -> StdResult<String, UserError> {
pub fn validate_document_id_value(document_id: Value) -> Result<StdResult<String, UserError>> {
match document_id {
Value::String(string) => match validate_document_id(&string) {
Some(s) if s.len() == string.len() => Ok(string),
Some(s) => Ok(s.to_string()),
None => Err(UserError::InvalidDocumentId { document_id: Value::String(string) }),
Some(s) if s.len() == string.len() => Ok(Ok(string)),
Some(s) => Ok(Ok(s.to_string())),
None => Ok(Err(UserError::InvalidDocumentId { document_id: Value::String(string) })),
},
Value::Number(number) if number.is_i64() => Ok(number.to_string()),
content => Err(UserError::InvalidDocumentId { document_id: content }),
Value::Number(number) if number.is_i64() => Ok(Ok(number.to_string())),
content => Ok(Err(UserError::InvalidDocumentId { document_id: content })),
}
}

View File

@@ -32,8 +32,6 @@ pub enum InternalError {
DatabaseClosing,
#[error("Missing {} in the {db_name} database.", key.unwrap_or("key"))]
DatabaseMissingEntry { db_name: &'static str, key: Option<&'static str> },
#[error("Missing {key} in the fieldids weights mapping.")]
FieldidsWeightsMapMissingEntry { key: FieldId },
#[error(transparent)]
FieldIdMapMissingEntry(#[from] FieldIdMapMissingEntry),
#[error("Missing {key} in the field id mapping.")]
@@ -48,6 +46,8 @@ pub enum InternalError {
GrenadInvalidFormatVersion,
#[error("Invalid merge while processing {process}")]
IndexingMergingKeys { process: &'static str },
#[error("{}", HeedError::InvalidDatabaseTyping)]
InvalidDatabaseTyping,
#[error(transparent)]
RayonThreadPool(#[from] ThreadPoolBuildError),
#[error(transparent)]
@@ -117,8 +117,10 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
InvalidGeoField(#[from] GeoError),
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
InvalidVectorDimensions { expected: usize, found: usize },
#[error("The `_vectors.{subfield}` field in the document with id: `{document_id}` is not an array. Was expecting an array of floats or an array of arrays of floats but instead got `{value}`.")]
InvalidVectorsType { document_id: Value, value: Value, subfield: String },
#[error("The `_vectors` field in the document with id: `{document_id}` is not an object. Was expecting an object with a key for each embedder with manually provided vectors, but instead got `{value}`")]
InvalidVectorsMapType { document_id: String, value: Value },
InvalidVectorsMapType { document_id: Value, value: Value },
#[error("{0}")]
InvalidFilter(String),
#[error("Invalid type for filter subexpression: expected: {}, found: {1}.", .0.join(", "))]
@@ -425,6 +427,7 @@ impl From<HeedError> for Error {
// TODO use the encoding
HeedError::Encoding(_) => InternalError(Serialization(Encoding { db_name: None })),
HeedError::Decoding(_) => InternalError(Serialization(Decoding { db_name: None })),
HeedError::InvalidDatabaseTyping => InternalError(InvalidDatabaseTyping),
HeedError::DatabaseClosing => InternalError(DatabaseClosing),
HeedError::BadOpenOptions { .. } => UserError(InvalidLmdbOpenOptions),
}

View File

@@ -1,48 +0,0 @@
//! The fieldids weights map is in charge of storing linking the searchable fields with their weights.
use std::collections::HashMap;
use serde::{Deserialize, Serialize};
use crate::{FieldId, FieldsIdsMap, Weight};
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct FieldidsWeightsMap {
map: HashMap<FieldId, Weight>,
}
impl FieldidsWeightsMap {
/// Insert a field id -> weigth into the map.
/// If the map did not have this key present, `None` is returned.
/// If the map did have this key present, the value is updated, and the old value is returned.
pub fn insert(&mut self, fid: FieldId, weight: Weight) -> Option<Weight> {
self.map.insert(fid, weight)
}
/// Create the map from the fields ids maps.
/// Should only be called in the case there are NO searchable attributes.
/// All the fields will be inserted in the order of the fields ids map with a weight of 0.
pub fn from_field_id_map_without_searchable(fid_map: &FieldsIdsMap) -> Self {
FieldidsWeightsMap { map: fid_map.ids().map(|fid| (fid, 0)).collect() }
}
/// Removes a field id from the map, returning the associated weight previously in the map.
pub fn remove(&mut self, fid: FieldId) -> Option<Weight> {
self.map.remove(&fid)
}
/// Returns weight corresponding to the key.
pub fn weight(&self, fid: FieldId) -> Option<Weight> {
self.map.get(&fid).copied()
}
/// Returns highest weight contained in the map if any.
pub fn max_weight(&self) -> Option<Weight> {
self.map.values().copied().max()
}
/// Return an iterator visiting all field ids in arbitrary order.
pub fn ids(&self) -> impl Iterator<Item = FieldId> + '_ {
self.map.keys().copied()
}
}

View File

@@ -195,7 +195,7 @@ mod tests {
fn merge_cbo_roaring_bitmaps() {
let mut buffer = Vec::new();
let small_data = [
let small_data = vec![
RoaringBitmap::from_sorted_iter(1..4).unwrap(),
RoaringBitmap::from_sorted_iter(2..5).unwrap(),
RoaringBitmap::from_sorted_iter(4..6).unwrap(),
@@ -209,7 +209,7 @@ mod tests {
let expected = RoaringBitmap::from_sorted_iter(1..6).unwrap();
assert_eq!(bitmap, expected);
let medium_data = [
let medium_data = vec![
RoaringBitmap::from_sorted_iter(1..4).unwrap(),
RoaringBitmap::from_sorted_iter(2..5).unwrap(),
RoaringBitmap::from_sorted_iter(4..8).unwrap(),

View File

@@ -1,6 +1,5 @@
use std::borrow::Cow;
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
use std::convert::TryInto;
use std::fs::File;
use std::path::Path;
@@ -23,12 +22,11 @@ use crate::heed_codec::{
};
use crate::order_by_map::OrderByMap;
use crate::proximity::ProximityPrecision;
use crate::vector::{Embedding, EmbeddingConfig};
use crate::vector::EmbeddingConfig;
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldIdWordCountCodec,
FieldidsWeightsMap, GeoPoint, ObkvCodec, Result, RoaringBitmapCodec, RoaringBitmapLenCodec,
Search, U8StrStrCodec, Weight, BEU16, BEU32, BEU64,
FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec,
Result, RoaringBitmapCodec, RoaringBitmapLenCodec, Search, U8StrStrCodec, BEU16, BEU32, BEU64,
};
pub const DEFAULT_MIN_WORD_LEN_ONE_TYPO: u8 = 5;
@@ -44,7 +42,6 @@ pub mod main_key {
pub const SORTABLE_FIELDS_KEY: &str = "sortable-fields";
pub const FIELD_DISTRIBUTION_KEY: &str = "fields-distribution";
pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map";
pub const FIELDIDS_WEIGHTS_MAP_KEY: &str = "fieldids-weights-map";
pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids";
pub const GEO_RTREE_KEY: &str = "geo-rtree";
pub const PRIMARY_KEY_KEY: &str = "primary-key";
@@ -184,7 +181,7 @@ impl Index {
options.max_dbs(25);
let env = unsafe { options.open(path) }?;
let env = options.open(path)?;
let mut wtxn = env.write_txn()?;
let main = env.database_options().name(MAIN).create(&mut wtxn)?;
let word_docids = env.create_database(&mut wtxn, Some(WORD_DOCIDS))?;
@@ -294,11 +291,6 @@ impl Index {
self.env.read_txn()
}
/// Create a static read transaction to be able to read the index without keeping a reference to it.
pub fn static_read_txn(&self) -> heed::Result<RoTxn<'static>> {
self.env.clone().static_read_txn()
}
/// Returns the canonicalized path where the heed `Env` of this `Index` lives.
pub fn path(&self) -> &Path {
self.env.path()
@@ -422,65 +414,6 @@ impl Index {
.unwrap_or_default())
}
/* fieldids weights map */
// This maps the fields ids to their weights.
// Their weights is defined by the ordering of the searchable attributes.
/// Writes the fieldids weights map which associates the field ids to their weights
pub(crate) fn put_fieldids_weights_map(
&self,
wtxn: &mut RwTxn,
map: &FieldidsWeightsMap,
) -> heed::Result<()> {
self.main.remap_types::<Str, SerdeJson<_>>().put(
wtxn,
main_key::FIELDIDS_WEIGHTS_MAP_KEY,
map,
)
}
/// Get the fieldids weights map which associates the field ids to their weights
pub fn fieldids_weights_map(&self, rtxn: &RoTxn) -> heed::Result<FieldidsWeightsMap> {
self.main
.remap_types::<Str, SerdeJson<_>>()
.get(rtxn, main_key::FIELDIDS_WEIGHTS_MAP_KEY)?
.map(Ok)
.unwrap_or_else(|| {
Ok(FieldidsWeightsMap::from_field_id_map_without_searchable(
&self.fields_ids_map(rtxn)?,
))
})
}
/// Delete the fieldsids weights map
pub fn delete_fieldids_weights_map(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
self.main.remap_key_type::<Str>().delete(wtxn, main_key::FIELDIDS_WEIGHTS_MAP_KEY)
}
pub fn searchable_fields_and_weights<'a>(
&self,
rtxn: &'a RoTxn,
) -> Result<Vec<(Cow<'a, str>, FieldId, Weight)>> {
let fid_map = self.fields_ids_map(rtxn)?;
let weight_map = self.fieldids_weights_map(rtxn)?;
let searchable = self.searchable_fields(rtxn)?;
searchable
.into_iter()
.map(|field| -> Result<_> {
let fid = fid_map.id(&field).ok_or_else(|| FieldIdMapMissingEntry::FieldName {
field_name: field.to_string(),
process: "searchable_fields_and_weights",
})?;
let weight = weight_map
.weight(fid)
.ok_or(InternalError::FieldidsWeightsMapMissingEntry { key: fid })?;
Ok((field, fid, weight))
})
.collect()
}
/* geo rtree */
/// Writes the provided `rtree` which associates coordinates to documents ids.
@@ -645,42 +578,33 @@ impl Index {
wtxn: &mut RwTxn,
user_fields: &[&str],
fields_ids_map: &FieldsIdsMap,
) -> Result<()> {
) -> heed::Result<()> {
// We can write the user defined searchable fields as-is.
self.put_user_defined_searchable_fields(wtxn, user_fields)?;
let mut weights = FieldidsWeightsMap::default();
// Now we generate the real searchable fields:
// 1. Take the user defined searchable fields as-is to keep the priority defined by the attributes criterion.
// 2. Iterate over the user defined searchable fields.
// 3. If a user defined field is a subset of a field defined in the fields_ids_map
// (ie doggo.name is a subset of doggo) right after doggo and with the same weight.
let mut real_fields = Vec::new();
// (ie doggo.name is a subset of doggo) then we push it at the end of the fields.
let mut real_fields = user_fields.to_vec();
for (id, field_from_map) in fields_ids_map.iter() {
for (weight, user_field) in user_fields.iter().enumerate() {
for field_from_map in fields_ids_map.names() {
for user_field in user_fields {
if crate::is_faceted_by(field_from_map, user_field)
&& !real_fields.contains(&field_from_map)
&& !user_fields.contains(&field_from_map)
{
real_fields.push(field_from_map);
let weight: u16 =
weight.try_into().map_err(|_| UserError::AttributeLimitReached)?;
weights.insert(id, weight);
}
}
}
self.put_searchable_fields(wtxn, &real_fields)?;
self.put_fieldids_weights_map(wtxn, &weights)?;
Ok(())
self.put_searchable_fields(wtxn, &real_fields)
}
pub(crate) fn delete_all_searchable_fields(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
let did_delete_searchable = self.delete_searchable_fields(wtxn)?;
let did_delete_user_defined = self.delete_user_defined_searchable_fields(wtxn)?;
self.delete_fieldids_weights_map(wtxn)?;
Ok(did_delete_searchable || did_delete_user_defined)
}
@@ -699,31 +623,28 @@ impl Index {
}
/// Returns the searchable fields, those are the fields that are indexed,
pub fn searchable_fields<'t>(&self, rtxn: &'t RoTxn) -> heed::Result<Vec<Cow<'t, str>>> {
/// if the searchable fields aren't there it means that **all** the fields are indexed.
pub fn searchable_fields<'t>(&self, rtxn: &'t RoTxn) -> heed::Result<Option<Vec<&'t str>>> {
self.main
.remap_types::<Str, SerdeBincode<Vec<&'t str>>>()
.get(rtxn, main_key::SEARCHABLE_FIELDS_KEY)?
.map(|fields| Ok(fields.into_iter().map(Cow::Borrowed).collect()))
.unwrap_or_else(|| {
Ok(self
.fields_ids_map(rtxn)?
.names()
.map(|field| Cow::Owned(field.to_string()))
.collect())
})
.get(rtxn, main_key::SEARCHABLE_FIELDS_KEY)
}
/// Identical to `searchable_fields`, but returns the ids instead.
pub fn searchable_fields_ids(&self, rtxn: &RoTxn) -> Result<Vec<FieldId>> {
let fields = self.searchable_fields(rtxn)?;
let fields_ids_map = self.fields_ids_map(rtxn)?;
let mut fields_ids = Vec::new();
for name in fields {
if let Some(field_id) = fields_ids_map.id(&name) {
fields_ids.push(field_id);
pub fn searchable_fields_ids(&self, rtxn: &RoTxn) -> Result<Option<Vec<FieldId>>> {
match self.searchable_fields(rtxn)? {
Some(fields) => {
let fields_ids_map = self.fields_ids_map(rtxn)?;
let mut fields_ids = Vec::new();
for name in fields {
if let Some(field_id) = fields_ids_map.id(name) {
fields_ids.push(field_id);
}
}
Ok(Some(fields_ids))
}
None => Ok(None),
}
Ok(fields_ids)
}
/// Writes the searchable fields, when this list is specified, only these are indexed.
@@ -1595,22 +1516,6 @@ impl Index {
.unwrap_or_default())
}
pub fn arroy_readers<'a>(
&'a self,
rtxn: &'a RoTxn<'a>,
embedder_id: u8,
) -> impl Iterator<Item = Result<arroy::Reader<arroy::distances::Angular>>> + 'a {
crate::vector::arroy_db_range_for_embedder(embedder_id).map_while(move |k| {
arroy::Reader::open(rtxn, k, self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e.into()),
})
.transpose()
})
}
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
}
@@ -1622,44 +1527,6 @@ impl Index {
pub(crate) fn delete_search_cutoff(&self, wtxn: &mut RwTxn<'_>) -> heed::Result<bool> {
self.main.remap_key_type::<Str>().delete(wtxn, main_key::SEARCH_CUTOFF)
}
pub fn embeddings(
&self,
rtxn: &RoTxn<'_>,
docid: DocumentId,
) -> Result<BTreeMap<String, Vec<Embedding>>> {
let mut res = BTreeMap::new();
for row in self.embedder_category_id.iter(rtxn)? {
let (embedder_name, embedder_id) = row?;
let embedder_id = (embedder_id as u16) << 8;
let mut embeddings = Vec::new();
'vectors: for i in 0..=u8::MAX {
let reader = arroy::Reader::open(rtxn, embedder_id | (i as u16), self.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e),
})
.transpose();
let Some(reader) = reader else {
break 'vectors;
};
let embedding = reader?.item_vector(rtxn, docid)?;
if let Some(embedding) = embedding {
embeddings.push(embedding)
} else {
break 'vectors;
}
}
if !embeddings.is_empty() {
res.insert(embedder_name.to_owned(), embeddings);
}
}
Ok(res)
}
}
#[cfg(test)]
@@ -1843,14 +1710,10 @@ pub(crate) mod tests {
]))
.unwrap();
db_snap!(index, field_distribution, @r###"
age 1 |
id 2 |
name 2 |
"###);
db_snap!(index, field_distribution, 1);
db_snap!(index, word_docids,
@r###"
@r###"
1 [0, ]
2 [1, ]
20 [1, ]
@@ -1859,6 +1722,18 @@ pub(crate) mod tests {
"###
);
db_snap!(index, field_distribution);
db_snap!(index, field_distribution,
@r###"
age 1 |
id 2 |
name 2 |
"###
);
// snapshot_index!(&index, "1", include: "^field_distribution$");
// we add all the documents a second time. we are supposed to get the same
// field_distribution in the end
index
@@ -1945,7 +1820,7 @@ pub(crate) mod tests {
// ensure we get the right real searchable fields + user defined searchable fields
let rtxn = index.read_txn().unwrap();
let real = index.searchable_fields(&rtxn).unwrap();
let real = index.searchable_fields(&rtxn).unwrap().unwrap();
assert_eq!(real, &["doggo", "name", "doggo.name", "doggo.age"]);
let user_defined = index.user_defined_searchable_fields(&rtxn).unwrap().unwrap();
@@ -1965,7 +1840,7 @@ pub(crate) mod tests {
// ensure we get the right real searchable fields + user defined searchable fields
let rtxn = index.read_txn().unwrap();
let real = index.searchable_fields(&rtxn).unwrap();
let real = index.searchable_fields(&rtxn).unwrap().unwrap();
assert_eq!(real, &["doggo", "name"]);
let user_defined = index.user_defined_searchable_fields(&rtxn).unwrap().unwrap();
assert_eq!(user_defined, &["doggo", "name"]);
@@ -1981,7 +1856,7 @@ pub(crate) mod tests {
// ensure we get the right real searchable fields + user defined searchable fields
let rtxn = index.read_txn().unwrap();
let real = index.searchable_fields(&rtxn).unwrap();
let real = index.searchable_fields(&rtxn).unwrap().unwrap();
assert_eq!(real, &["doggo", "name", "doggo.name", "doggo.age"]);
let user_defined = index.user_defined_searchable_fields(&rtxn).unwrap().unwrap();
@@ -2520,14 +2395,6 @@ pub(crate) mod tests {
11 0
4 1
"###);
db_snap!(index, fields_ids_map, @r###"
0 primary_key |
"###);
db_snap!(index, searchable_fields, @r###"["primary_key"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
"###);
index
.add_documents(documents!([
@@ -2543,16 +2410,6 @@ pub(crate) mod tests {
11 0
4 1
"###);
db_snap!(index, fields_ids_map, @r###"
0 primary_key |
1 a |
"###);
db_snap!(index, searchable_fields, @r###"["primary_key", "a"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
1 0 |
"###);
index.delete_documents(Default::default());
@@ -2563,16 +2420,6 @@ pub(crate) mod tests {
11 0
4 1
"###);
db_snap!(index, fields_ids_map, @r###"
0 primary_key |
1 a |
"###);
db_snap!(index, searchable_fields, @r###"["primary_key", "a"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
1 0 |
"###);
index
.add_documents(documents!([
@@ -2588,16 +2435,6 @@ pub(crate) mod tests {
11 0
4 1
"###);
db_snap!(index, fields_ids_map, @r###"
0 primary_key |
1 a |
"###);
db_snap!(index, searchable_fields, @r###"["primary_key", "a"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
1 0 |
"###);
let rtxn = index.read_txn().unwrap();
let search = Search::new(&rtxn, &index);
@@ -2683,104 +2520,4 @@ pub(crate) mod tests {
db_snap!(index, geo_faceted_documents_ids); // ensure that no documents were inserted
}
#[test]
fn swapping_searchable_attributes() {
// See https://github.com/meilisearch/meilisearch/issues/4484
let index = TempIndex::new();
index
.update_settings(|settings| {
settings.set_searchable_fields(vec![S("name")]);
settings.set_filterable_fields(HashSet::from([S("age")]));
})
.unwrap();
index
.add_documents(documents!({ "id": 1, "name": "Many", "age": 28, "realName": "Maxime" }))
.unwrap();
db_snap!(index, fields_ids_map, @r###"
0 name |
1 id |
2 age |
3 realName |
"###);
db_snap!(index, searchable_fields, @r###"["name"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
"###);
index
.update_settings(|settings| {
settings.set_searchable_fields(vec![S("name"), S("realName")]);
settings.set_filterable_fields(HashSet::from([S("age")]));
})
.unwrap();
// The order of the field id map shouldn't change
db_snap!(index, fields_ids_map, @r###"
0 name |
1 id |
2 age |
3 realName |
"###);
db_snap!(index, searchable_fields, @r###"["name", "realName"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
0 0 |
3 1 |
"###);
}
#[test]
fn attribute_weights_after_swapping_searchable_attributes() {
// See https://github.com/meilisearch/meilisearch/issues/4484
let index = TempIndex::new();
index
.update_settings(|settings| {
settings.set_searchable_fields(vec![S("name"), S("beverage")]);
})
.unwrap();
index
.add_documents(documents!([
{ "id": 0, "name": "kefir", "beverage": "water" },
{ "id": 1, "name": "tamo", "beverage": "kefir" }
]))
.unwrap();
let rtxn = index.read_txn().unwrap();
let mut search = index.search(&rtxn);
let results = search.query("kefir").execute().unwrap();
// We should find kefir the dog first
insta::assert_debug_snapshot!(results.documents_ids, @r###"
[
0,
1,
]
"###);
index
.update_settings(|settings| {
settings.set_searchable_fields(vec![S("beverage"), S("name")]);
})
.unwrap();
let rtxn = index.read_txn().unwrap();
let mut search = index.search(&rtxn);
let results = search.query("kefir").execute().unwrap();
// We should find tamo first
insta::assert_debug_snapshot!(results.documents_ids, @r###"
[
1,
0,
]
"###);
}
}

View File

@@ -28,7 +28,6 @@ pub mod vector;
#[cfg(test)]
#[macro_use]
pub mod snapshot_tests;
mod fieldids_weights_map;
use std::collections::{BTreeMap, HashMap};
use std::convert::{TryFrom, TryInto};
@@ -45,7 +44,7 @@ pub use search::new::{
};
use serde_json::Value;
pub use thread_pool_no_abort::{PanicCatched, ThreadPoolNoAbort, ThreadPoolNoAbortBuilder};
pub use {charabia as tokenizer, heed};
pub use {charabia as tokenizer, heed, rhai};
pub use self::asc_desc::{AscDesc, AscDescError, Member, SortError};
pub use self::criterion::{default_criteria, Criterion, CriterionError};
@@ -53,7 +52,6 @@ pub use self::error::{
Error, FieldIdMapMissingEntry, InternalError, SerializationError, UserError,
};
pub use self::external_documents_ids::ExternalDocumentsIds;
pub use self::fieldids_weights_map::FieldidsWeightsMap;
pub use self::fields_ids_map::FieldsIdsMap;
pub use self::heed_codec::{
BEU16StrCodec, BEU32StrCodec, BoRoaringBitmapCodec, BoRoaringBitmapLenCodec,
@@ -63,7 +61,6 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
pub use self::search::similar::Similar;
pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
@@ -80,7 +77,6 @@ pub type FastMap4<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher32>>;
pub type FastMap8<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher64>>;
pub type FieldDistribution = BTreeMap<String, u64>;
pub type FieldId = u16;
pub type Weight = u16;
pub type Object = serde_json::Map<String, serde_json::Value>;
pub type Position = u32;
pub type RelativePosition = u16;
@@ -355,13 +351,43 @@ pub fn is_faceted(field: &str, faceted_fields: impl IntoIterator<Item = impl AsR
/// assert!(!is_faceted_by("animaux.chien", "animaux.chie"));
/// ```
pub fn is_faceted_by(field: &str, facet: &str) -> bool {
field.starts_with(facet) && field[facet.len()..].chars().next().map_or(true, |c| c == '.')
field.starts_with(facet)
&& field[facet.len()..].chars().next().map(|c| c == '.').unwrap_or(true)
}
pub fn normalize_facet(original: &str) -> String {
CompatibilityDecompositionNormalizer.normalize_str(original.trim()).to_lowercase()
}
/// Represents either a vector or an array of multiple vectors.
#[derive(serde::Serialize, serde::Deserialize, Debug)]
#[serde(transparent)]
pub struct VectorOrArrayOfVectors {
#[serde(with = "either::serde_untagged_optional")]
inner: Option<either::Either<Vec<f32>, Vec<Vec<f32>>>>,
}
impl VectorOrArrayOfVectors {
pub fn into_array_of_vectors(self) -> Option<Vec<Vec<f32>>> {
match self.inner? {
either::Either::Left(vector) => Some(vec![vector]),
either::Either::Right(vectors) => Some(vectors),
}
}
}
/// Normalize a vector by dividing the dimensions by the length of it.
pub fn normalize_vector(mut vector: Vec<f32>) -> Vec<f32> {
let squared: f32 = vector.iter().map(|x| x * x).sum();
let length = squared.sqrt();
if length <= f32::EPSILON {
vector
} else {
vector.iter_mut().for_each(|x| *x /= length);
vector
}
}
#[cfg(test)]
mod tests {
use serde_json::json;

View File

@@ -24,7 +24,6 @@ pub mod facet;
mod fst_utils;
pub mod hybrid;
pub mod new;
pub mod similar;
#[derive(Debug, Clone)]
pub struct SemanticSearch {
@@ -148,21 +147,21 @@ impl<'a> Search<'a> {
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
if has_vector_search {
let ctx = SearchContext::new(self.index, self.rtxn)?;
filtered_universe(ctx.index, ctx.txn, &self.filter)
let ctx = SearchContext::new(self.index, self.rtxn);
filtered_universe(&ctx, &self.filter)
} else {
Ok(self.execute()?.candidates)
}
}
pub fn execute(&self) -> Result<SearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn)?;
let mut ctx = SearchContext::new(self.index, self.rtxn);
if let Some(searchable_attributes) = self.searchable_attributes {
ctx.attributes_to_search_on(searchable_attributes)?;
ctx.searchable_attributes(searchable_attributes)?;
}
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
let universe = filtered_universe(&ctx, &self.filter)?;
let PartialSearchResult {
located_query_terms,
candidates,

View File

@@ -101,7 +101,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
let mut ranking_rule_universes: Vec<RoaringBitmap> =
vec![RoaringBitmap::default(); ranking_rules_len];
ranking_rule_universes[0].clone_from(universe);
ranking_rule_universes[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
/// Finish iterating over the current ranking rule, yielding
@@ -232,7 +232,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
}
cur_ranking_rule_index += 1;
ranking_rule_universes[cur_ranking_rule_index].clone_from(&next_bucket.candidates);
ranking_rule_universes[cur_ranking_rule_index] = next_bucket.candidates.clone();
logger.start_iteration_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index].as_ref(),

View File

@@ -163,7 +163,7 @@ impl<'ctx> SearchContext<'ctx> {
Some(restricted_fids) => {
let interned = self.word_interner.get(word).as_str();
let keys: Vec<_> =
restricted_fids.tolerant.iter().map(|(fid, _)| (interned, *fid)).collect();
restricted_fids.tolerant.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
@@ -192,7 +192,7 @@ impl<'ctx> SearchContext<'ctx> {
Some(restricted_fids) => {
let interned = self.word_interner.get(word).as_str();
let keys: Vec<_> =
restricted_fids.exact.iter().map(|(fid, _)| (interned, *fid)).collect();
restricted_fids.exact.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
@@ -242,7 +242,7 @@ impl<'ctx> SearchContext<'ctx> {
Some(restricted_fids) => {
let interned = self.word_interner.get(prefix).as_str();
let keys: Vec<_> =
restricted_fids.tolerant.iter().map(|(fid, _)| (interned, *fid)).collect();
restricted_fids.tolerant.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
@@ -271,7 +271,7 @@ impl<'ctx> SearchContext<'ctx> {
Some(restricted_fids) => {
let interned = self.word_interner.get(prefix).as_str();
let keys: Vec<_> =
restricted_fids.exact.iter().map(|(fid, _)| (interned, *fid)).collect();
restricted_fids.exact.iter().map(|fid| (interned, *fid)).collect();
DatabaseCache::get_value_from_keys::<_, _, CboRoaringBitmapCodec>(
self.txn,
@@ -315,7 +315,11 @@ impl<'ctx> SearchContext<'ctx> {
.map_err(heed::Error::Decoding)?
} else {
// Compute the distance at the attribute level and store it in the cache.
let fids = self.index.searchable_fields_ids(self.txn)?;
let fids = if let Some(fids) = self.index.searchable_fields_ids(self.txn)? {
fids
} else {
self.index.fields_ids_map(self.txn)?.ids().collect()
};
let mut docids = RoaringBitmap::new();
for fid in fids {
// for each field, intersect left word bitmap and right word bitmap,
@@ -404,7 +408,11 @@ impl<'ctx> SearchContext<'ctx> {
let prefix_docids = match proximity_precision {
ProximityPrecision::ByAttribute => {
// Compute the distance at the attribute level and store it in the cache.
let fids = self.index.searchable_fields_ids(self.txn)?;
let fids = if let Some(fids) = self.index.searchable_fields_ids(self.txn)? {
fids
} else {
self.index.fields_ids_map(self.txn)?.ids().collect()
};
let mut prefix_docids = RoaringBitmap::new();
// for each field, intersect left word bitmap and right word bitmap,
// then merge the result in a global bitmap before storing it in the cache.

View File

@@ -184,7 +184,13 @@ impl State {
return Ok(State::Empty(query_graph.clone()));
}
let searchable_fields_ids = ctx.index.searchable_fields_ids(ctx.txn)?;
let searchable_fields_ids = {
if let Some(fids) = ctx.index.searchable_fields_ids(ctx.txn)? {
fids
} else {
ctx.index.fields_ids_map(ctx.txn)?.ids().collect()
}
};
let mut candidates_per_attribute = Vec::with_capacity(searchable_fields_ids.len());
// then check that there exists at least one attribute that has all of the terms

View File

@@ -258,7 +258,7 @@ pub(crate) mod tests {
fn matching_words() {
let temp_index = temp_index_with_documents();
let rtxn = temp_index.read_txn().unwrap();
let mut ctx = SearchContext::new(&temp_index, &rtxn).unwrap();
let mut ctx = SearchContext::new(&temp_index, &rtxn);
let mut builder = TokenizerBuilder::default();
let tokenizer = builder.build();
let tokens = tokenizer.tokenize("split this world");

View File

@@ -506,8 +506,8 @@ mod tests {
impl<'a> MatcherBuilder<'a> {
fn new_test(rtxn: &'a heed::RoTxn, index: &'a TempIndex, query: &str) -> Self {
let mut ctx = SearchContext::new(index, rtxn).unwrap();
let universe = filtered_universe(ctx.index, ctx.txn, &None).unwrap();
let mut ctx = SearchContext::new(index, rtxn);
let universe = filtered_universe(&ctx, &None).unwrap();
let crate::search::PartialSearchResult { located_query_terms, .. } = execute_search(
&mut ctx,
Some(query),

View File

@@ -49,12 +49,13 @@ pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use self::vector_sort::VectorSort;
use crate::error::FieldIdMapMissingEntry;
use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::search::new::distinct::apply_distinct_rule;
use crate::vector::Embedder;
use crate::{
AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, TimeBudget,
UserError, Weight,
UserError,
};
/// A structure used throughout the execution of a search query.
@@ -70,21 +71,8 @@ pub struct SearchContext<'ctx> {
}
impl<'ctx> SearchContext<'ctx> {
pub fn new(index: &'ctx Index, txn: &'ctx RoTxn<'ctx>) -> Result<Self> {
let searchable_fids = index.searchable_fields_and_weights(txn)?;
let exact_attributes_ids = index.exact_attributes_ids(txn)?;
let mut exact = Vec::new();
let mut tolerant = Vec::new();
for (_name, fid, weight) in searchable_fids {
if exact_attributes_ids.contains(&fid) {
exact.push((fid, weight));
} else {
tolerant.push((fid, weight));
}
}
Ok(Self {
pub fn new(index: &'ctx Index, txn: &'ctx RoTxn<'ctx>) -> Self {
Self {
index,
txn,
db_cache: <_>::default(),
@@ -93,39 +81,42 @@ impl<'ctx> SearchContext<'ctx> {
term_interner: <_>::default(),
phrase_docids: <_>::default(),
restricted_fids: None,
})
}
}
pub fn attributes_to_search_on(
&mut self,
attributes_to_search_on: &'ctx [String],
) -> Result<()> {
let user_defined_searchable = self.index.user_defined_searchable_fields(self.txn)?;
let searchable_fields_weights = self.index.searchable_fields_and_weights(self.txn)?;
pub fn searchable_attributes(&mut self, searchable_attributes: &'ctx [String]) -> Result<()> {
let fids_map = self.index.fields_ids_map(self.txn)?;
let searchable_names = self.index.searchable_fields(self.txn)?;
let exact_attributes_ids = self.index.exact_attributes_ids(self.txn)?;
let mut wildcard = false;
let mut restricted_fids = RestrictedFids::default();
for field_name in attributes_to_search_on {
let mut contains_wildcard = false;
for field_name in searchable_attributes {
if field_name == "*" {
wildcard = true;
// we cannot early exit as we want to returns error in case of unknown fields
contains_wildcard = true;
continue;
}
let searchable_weight =
searchable_fields_weights.iter().find(|(name, _, _)| name == field_name);
let (fid, weight) = match searchable_weight {
let searchable_contains_name =
searchable_names.as_ref().map(|sn| sn.iter().any(|name| name == field_name));
let fid = match (fids_map.id(field_name), searchable_contains_name) {
// The Field id exist and the field is searchable
Some((_name, fid, weight)) => (*fid, *weight),
// The field is not searchable but the user didn't define any searchable attributes
None if user_defined_searchable.is_none() => continue,
(Some(fid), Some(true)) | (Some(fid), None) => fid,
// The field is searchable but the Field id doesn't exist => Internal Error
(None, Some(true)) => {
return Err(FieldIdMapMissingEntry::FieldName {
field_name: field_name.to_string(),
process: "search",
}
.into())
}
// The field is not searchable, but the searchableAttributes are set to * => ignore field
(None, None) => continue,
// The field is not searchable => User error
None => {
let (valid_fields, hidden_fields) = self.index.remove_hidden_fields(
self.txn,
searchable_fields_weights.iter().map(|(name, _, _)| name),
)?;
(_fid, Some(false)) => {
let (valid_fields, hidden_fields) = match searchable_names {
Some(sn) => self.index.remove_hidden_fields(self.txn, sn)?,
None => self.index.remove_hidden_fields(self.txn, fids_map.names())?,
};
let field = field_name.to_string();
return Err(UserError::InvalidSearchableAttribute {
@@ -138,17 +129,13 @@ impl<'ctx> SearchContext<'ctx> {
};
if exact_attributes_ids.contains(&fid) {
restricted_fids.exact.push((fid, weight));
restricted_fids.exact.push(fid);
} else {
restricted_fids.tolerant.push((fid, weight));
restricted_fids.tolerant.push(fid);
};
}
if wildcard {
self.restricted_fids = None;
} else {
self.restricted_fids = Some(restricted_fids);
}
self.restricted_fids = (!contains_wildcard).then_some(restricted_fids);
Ok(())
}
@@ -171,13 +158,13 @@ impl Word {
#[derive(Debug, Clone, Default)]
pub struct RestrictedFids {
pub tolerant: Vec<(FieldId, Weight)>,
pub exact: Vec<(FieldId, Weight)>,
pub tolerant: Vec<FieldId>,
pub exact: Vec<FieldId>,
}
impl RestrictedFids {
pub fn contains(&self, fid: &FieldId) -> bool {
self.tolerant.iter().any(|(id, _)| id == fid) || self.exact.iter().any(|(id, _)| id == fid)
self.tolerant.contains(fid) || self.exact.contains(fid)
}
}
@@ -543,15 +530,11 @@ fn resolve_sort_criteria<'ctx, Query: RankingRuleQueryTrait>(
Ok(())
}
pub fn filtered_universe(
index: &Index,
txn: &RoTxn<'_>,
filters: &Option<Filter>,
) -> Result<RoaringBitmap> {
pub fn filtered_universe(ctx: &SearchContext, filters: &Option<Filter>) -> Result<RoaringBitmap> {
Ok(if let Some(filters) = filters {
filters.evaluate(txn, index)?
filters.evaluate(ctx.txn, ctx.index)?
} else {
index.documents_ids(txn)?
ctx.index.documents_ids(ctx.txn)?
})
}

View File

@@ -366,7 +366,7 @@ mod tests {
let tokens = tokenizer.tokenize(".");
let index = temp_index_with_documents();
let rtxn = index.read_txn()?;
let mut ctx = SearchContext::new(&index, &rtxn)?;
let mut ctx = SearchContext::new(&index, &rtxn);
// panics with `attempt to add with overflow` before <https://github.com/meilisearch/meilisearch/issues/3785>
let ExtractedTokens { query_terms, .. } =
located_query_terms_from_tokens(&mut ctx, tokens, None)?;

View File

@@ -7,12 +7,12 @@ use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_field_id;
use crate::search::new::SearchContext;
use crate::{FieldId, InternalError, Result};
use crate::Result;
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct FidCondition {
term: LocatedQueryTermSubset,
fid: Option<FieldId>,
fid: u16,
}
pub enum FidGraph {}
@@ -26,15 +26,13 @@ impl RankingRuleGraphTrait for FidGraph {
universe: &RoaringBitmap,
) -> Result<ComputedCondition> {
let FidCondition { term, .. } = condition;
let docids = if let Some(fid) = condition.fid {
// maybe compute_query_term_subset_docids_within_field_id should accept a universe as argument
let docids =
compute_query_term_subset_docids_within_field_id(ctx, &term.term_subset, fid)?;
docids & universe
} else {
RoaringBitmap::new()
};
// maybe compute_query_term_subset_docids_within_field_id should accept a universe as argument
let mut docids = compute_query_term_subset_docids_within_field_id(
ctx,
&term.term_subset,
condition.fid,
)?;
docids &= universe;
Ok(ComputedCondition {
docids,
@@ -70,29 +68,34 @@ impl RankingRuleGraphTrait for FidGraph {
all_fields.extend(fields);
}
let weights_map = ctx.index.fieldids_weights_map(ctx.txn)?;
let mut edges = vec![];
for fid in all_fields.iter().copied() {
let weight = weights_map
.weight(fid)
.ok_or(InternalError::FieldidsWeightsMapMissingEntry { key: fid })?;
edges.push((
weight as u32 * term.term_ids.len() as u32,
conditions_interner.insert(FidCondition { term: term.clone(), fid: Some(fid) }),
fid as u32 * term.term_ids.len() as u32,
conditions_interner.insert(FidCondition { term: term.clone(), fid }),
));
}
// always lookup the max_fid if we don't already and add an artificial condition for max scoring
let max_weight: Option<u16> = weights_map.max_weight();
let max_fid: Option<u16> = {
if let Some(max_fid) = ctx
.index
.searchable_fields_ids(ctx.txn)?
.map(|field_ids| field_ids.into_iter().max())
{
max_fid
} else {
ctx.index.fields_ids_map(ctx.txn)?.ids().max()
}
};
if let Some(max_weight) = max_weight {
if !all_fields.contains(&max_weight) {
if let Some(max_fid) = max_fid {
if !all_fields.contains(&max_fid) {
edges.push((
max_weight as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
max_fid as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
conditions_interner.insert(FidCondition {
term: term.clone(), // TODO remove this ugly clone
fid: None,
fid: max_fid,
}),
));
}

View File

@@ -1,5 +1,5 @@
use crate::index::tests::TempIndex;
use crate::{db_snap, Criterion, Search, SearchResult, TermsMatchingStrategy};
use crate::{Criterion, Search, SearchResult, TermsMatchingStrategy};
fn create_index() -> TempIndex {
let index = TempIndex::new();
@@ -131,19 +131,6 @@ fn test_attribute_fid_simple() {
#[test]
fn test_attribute_fid_ngrams() {
let index = create_index();
db_snap!(index, fields_ids_map, @r###"
0 id |
1 title |
2 description |
3 plot |
"###);
db_snap!(index, searchable_fields, @r###"["title", "description", "plot"]"###);
db_snap!(index, fieldids_weights_map, @r###"
fid weight
1 0 |
2 1 |
3 2 |
"###);
let txn = index.read_txn().unwrap();

View File

@@ -1,244 +0,0 @@
---
source: milli/src/search/new/tests/attribute_fid.rs
expression: "format!(\"{document_ids_scores:#?}\")"
---
[
(
2,
[
Fid(
Rank {
rank: 19,
max_rank: 19,
},
),
Position(
Rank {
rank: 91,
max_rank: 91,
},
),
],
),
(
6,
[
Fid(
Rank {
rank: 15,
max_rank: 19,
},
),
Position(
Rank {
rank: 81,
max_rank: 91,
},
),
],
),
(
5,
[
Fid(
Rank {
rank: 14,
max_rank: 19,
},
),
Position(
Rank {
rank: 79,
max_rank: 91,
},
),
],
),
(
4,
[
Fid(
Rank {
rank: 13,
max_rank: 19,
},
),
Position(
Rank {
rank: 77,
max_rank: 91,
},
),
],
),
(
3,
[
Fid(
Rank {
rank: 12,
max_rank: 19,
},
),
Position(
Rank {
rank: 83,
max_rank: 91,
},
),
],
),
(
9,
[
Fid(
Rank {
rank: 11,
max_rank: 19,
},
),
Position(
Rank {
rank: 75,
max_rank: 91,
},
),
],
),
(
8,
[
Fid(
Rank {
rank: 10,
max_rank: 19,
},
),
Position(
Rank {
rank: 79,
max_rank: 91,
},
),
],
),
(
7,
[
Fid(
Rank {
rank: 10,
max_rank: 19,
},
),
Position(
Rank {
rank: 73,
max_rank: 91,
},
),
],
),
(
11,
[
Fid(
Rank {
rank: 7,
max_rank: 19,
},
),
Position(
Rank {
rank: 77,
max_rank: 91,
},
),
],
),
(
10,
[
Fid(
Rank {
rank: 6,
max_rank: 19,
},
),
Position(
Rank {
rank: 81,
max_rank: 91,
},
),
],
),
(
13,
[
Fid(
Rank {
rank: 6,
max_rank: 19,
},
),
Position(
Rank {
rank: 81,
max_rank: 91,
},
),
],
),
(
12,
[
Fid(
Rank {
rank: 6,
max_rank: 19,
},
),
Position(
Rank {
rank: 78,
max_rank: 91,
},
),
],
),
(
14,
[
Fid(
Rank {
rank: 5,
max_rank: 19,
},
),
Position(
Rank {
rank: 75,
max_rank: 91,
},
),
],
),
(
0,
[
Fid(
Rank {
rank: 1,
max_rank: 19,
},
),
Position(
Rank {
rank: 91,
max_rank: 91,
},
),
],
),
]

View File

@@ -49,8 +49,19 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
ctx: &mut SearchContext<'_>,
vector_candidates: &RoaringBitmap,
) -> Result<()> {
let readers: std::result::Result<Vec<_>, _> =
ctx.index.arroy_readers(ctx.txn, self.embedder_index).collect();
let writer_index = (self.embedder_index as u16) << 8;
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
.map_while(|k| {
arroy::Reader::open(ctx.txn, writer_index | (k as u16), ctx.index.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e),
})
.transpose()
})
.collect();
let readers = readers?;
let target = &self.target;

View File

@@ -1,111 +0,0 @@
use std::sync::Arc;
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use crate::score_details::{self, ScoreDetails};
use crate::vector::Embedder;
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
pub struct Similar<'a> {
id: DocumentId,
// this should be linked to the String in the query
filter: Option<Filter<'a>>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
embedder_name: String,
embedder: Arc<Embedder>,
}
impl<'a> Similar<'a> {
pub fn new(
id: DocumentId,
offset: usize,
limit: usize,
index: &'a Index,
rtxn: &'a heed::RoTxn<'a>,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Self {
Self { id, filter: None, offset, limit, rtxn, index, embedder_name, embedder }
}
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
self.filter = Some(filter);
self
}
pub fn execute(&self) -> Result<SearchResult> {
let universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
let embedder_index =
self.index
.embedder_category_id
.get(self.rtxn, &self.embedder_name)?
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
let readers: std::result::Result<Vec<_>, _> =
self.index.arroy_readers(self.rtxn, embedder_index).collect();
let readers = readers?;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_item = reader.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
None,
Some(&universe),
)?;
if let Some(mut nns_by_item) = nns_by_item {
results.append(&mut nns_by_item);
} else {
break;
}
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
let mut documents_ids = Vec::with_capacity(self.limit);
let mut document_scores = Vec::with_capacity(self.limit);
// list of documents we've already seen, so that we don't return the same document multiple times.
// initialized to the target document, that we never want to return.
let mut documents_seen = RoaringBitmap::new();
documents_seen.insert(self.id);
for (docid, distance) in results
.into_iter()
// skip documents we've already seen & mark that we saw the current document
.filter(|(docid, _)| documents_seen.insert(*docid))
.skip(self.offset)
// take **after** filter and skip so that we get exactly limit elements if available
.take(self.limit)
{
documents_ids.push(docid);
let score = 1.0 - distance;
let score = self
.embedder
.distribution()
.map(|distribution| distribution.shift(score))
.unwrap_or(score);
let score = ScoreDetails::Vector(score_details::Vector { similarity: Some(score) });
document_scores.push(vec![score]);
}
Ok(SearchResult {
matching_words: Default::default(),
candidates: universe,
documents_ids,
document_scores,
degraded: false,
used_negative_operator: false,
})
}
}

View File

@@ -308,25 +308,6 @@ pub fn snap_fields_ids_map(index: &Index) -> String {
}
snap
}
pub fn snap_fieldids_weights_map(index: &Index) -> String {
let rtxn = index.read_txn().unwrap();
let weights_map = index.fieldids_weights_map(&rtxn).unwrap();
let mut snap = String::new();
writeln!(&mut snap, "fid weight").unwrap();
let mut field_ids: Vec<_> = weights_map.ids().collect();
field_ids.sort();
for field_id in field_ids {
let weight = weights_map.weight(field_id).unwrap();
writeln!(&mut snap, "{field_id:<3} {weight:<3} |").unwrap();
}
snap
}
pub fn snap_searchable_fields(index: &Index) -> String {
let rtxn = index.read_txn().unwrap();
let searchable_fields = index.searchable_fields(&rtxn).unwrap();
format!("{searchable_fields:?}")
}
pub fn snap_geo_faceted_documents_ids(index: &Index) -> String {
let rtxn = index.read_txn().unwrap();
let geo_faceted_documents_ids = index.geo_faceted_documents_ids(&rtxn).unwrap();
@@ -488,12 +469,6 @@ macro_rules! full_snap_of_db {
($index:ident, fields_ids_map) => {{
$crate::snapshot_tests::snap_fields_ids_map(&$index)
}};
($index:ident, fieldids_weights_map) => {{
$crate::snapshot_tests::snap_fieldids_weights_map(&$index)
}};
($index:ident, searchable_fields) => {{
$crate::snapshot_tests::snap_searchable_fields(&$index)
}};
($index:ident, geo_faceted_documents_ids) => {{
$crate::snapshot_tests::snap_geo_faceted_documents_ids(&$index)
}};

View File

@@ -21,6 +21,8 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
name = "clear_documents"
)]
pub fn execute(self) -> Result<u64> {
puffin::profile_function!();
self.index.set_updated_at(self.wtxn, &OffsetDateTime::now_utc())?;
let Index {
env: _env,

View File

@@ -379,7 +379,7 @@ pub(crate) mod test_helpers {
let mut options = heed::EnvOpenOptions::new();
let options = options.map_size(4096 * 4 * 1000 * 100);
let tempdir = tempfile::TempDir::new().unwrap();
let env = unsafe { options.open(tempdir.path()) }.unwrap();
let env = options.open(tempdir.path()).unwrap();
let mut wtxn = env.write_txn().unwrap();
let content = env.create_database(&mut wtxn, None).unwrap();
wtxn.commit().unwrap();

View File

@@ -29,6 +29,8 @@ pub fn enrich_documents_batch<R: Read + Seek>(
autogenerate_docids: bool,
reader: DocumentsBatchReader<R>,
) -> Result<StdResult<EnrichedDocumentsBatchReader<R>, UserError>> {
puffin::profile_function!();
let (mut cursor, mut documents_batch_index) = reader.into_cursor_and_fields_index();
let mut external_ids = tempfile::tempfile().map(BufWriter::new).map(grenad::Writer::new)?;

View File

@@ -29,6 +29,8 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
settings_diff: &InnerIndexSettingsDiff,
max_positions_per_attributes: Option<u32>,
) -> Result<(grenad::Reader<BufReader<File>>, ScriptLanguageDocidsMap)> {
puffin::profile_function!();
let max_positions_per_attributes = max_positions_per_attributes
.map_or(MAX_POSITION_PER_ATTRIBUTE, |max| max.min(MAX_POSITION_PER_ATTRIBUTE));
let max_memory = indexer.max_memory_by_thread();
@@ -184,7 +186,7 @@ fn searchable_fields_changed(
) -> bool {
let searchable_fields = &settings_diff.new.searchable_fields_ids;
for (field_id, field_bytes) in obkv.iter() {
if searchable_fields.contains(&field_id) {
if searchable_fields.as_ref().map_or(true, |sf| sf.contains(&field_id)) {
let del_add = KvReaderDelAdd::new(field_bytes);
match (del_add.get(DelAdd::Deletion), del_add.get(DelAdd::Addition)) {
// if both fields are None, check the next field.
@@ -296,7 +298,7 @@ fn lang_safe_tokens_from_document<'a>(
/// Extract words mapped with their positions of a document.
fn tokens_from_document<'a>(
obkv: &KvReader<FieldId>,
searchable_fields: &[FieldId],
searchable_fields: &Option<Vec<FieldId>>,
tokenizer: &Tokenizer,
max_positions_per_attributes: u32,
del_add: DelAdd,
@@ -307,7 +309,7 @@ fn tokens_from_document<'a>(
let mut document_writer = KvWriterU16::new(&mut buffers.obkv_buffer);
for (field_id, field_bytes) in obkv.iter() {
// if field is searchable.
if searchable_fields.as_ref().contains(&field_id) {
if searchable_fields.as_ref().map_or(true, |sf| sf.contains(&field_id)) {
// extract deletion or addition only.
if let Some(field_bytes) = KvReaderDelAdd::new(field_bytes).get(del_add) {
// parse json.

View File

@@ -23,6 +23,8 @@ pub fn extract_facet_number_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut facet_number_docids_sorter = create_sorter(

View File

@@ -28,6 +28,8 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let options = NormalizerOption { lossy: true, ..Default::default() };

View File

@@ -47,6 +47,8 @@ pub fn extract_fid_docid_facet_values<R: io::Read + io::Seek>(
settings_diff: &InnerIndexSettingsDiff,
geo_fields_ids: Option<(FieldId, FieldId)>,
) -> Result<ExtractedFacetValues> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut fid_docid_facet_numbers_sorter = create_sorter(

View File

@@ -26,6 +26,8 @@ pub fn extract_fid_word_count_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut fid_word_count_docids_sorter = create_sorter(

View File

@@ -20,6 +20,8 @@ pub fn extract_geo_points<R: io::Read + io::Seek>(
primary_key_id: FieldId,
(lat_fid, lng_fid): (FieldId, FieldId),
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let mut writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,

View File

@@ -10,16 +10,16 @@ use bytemuck::cast_slice;
use grenad::Writer;
use itertools::EitherOrBoth;
use ordered_float::OrderedFloat;
use serde_json::Value;
use serde_json::{from_slice, Value};
use super::helpers::{create_writer, writer_into_reader, GrenadParameters};
use crate::error::UserError;
use crate::prompt::Prompt;
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::helpers::try_split_at;
use crate::update::settings::InnerIndexSettingsDiff;
use crate::vector::parsed_vectors::{ParsedVectorsDiff, RESERVED_VECTORS_FIELD_NAME};
use crate::vector::Embedder;
use crate::{DocumentId, Result, ThreadPoolNoAbort};
use crate::{DocumentId, InternalError, Result, ThreadPoolNoAbort, VectorOrArrayOfVectors};
/// The length of the elements that are always in the buffer when inserting new values.
const TRUNCATE_SIZE: usize = size_of::<DocumentId>();
@@ -31,10 +31,6 @@ pub struct ExtractedVectorPoints {
pub remove_vectors: grenad::Reader<BufReader<File>>,
// docid -> prompt
pub prompts: grenad::Reader<BufReader<File>>,
// embedder
pub embedder_name: String,
pub embedder: Arc<Embedder>,
}
enum VectorStateDelta {
@@ -69,19 +65,6 @@ impl VectorStateDelta {
}
}
struct EmbedderVectorExtractor {
embedder_name: String,
embedder: Arc<Embedder>,
prompt: Arc<Prompt>,
// (docid, _index) -> KvWriterDelAdd -> Vector
manual_vectors_writer: Writer<BufWriter<File>>,
// (docid) -> (prompt)
prompts_writer: Writer<BufWriter<File>>,
// (docid) -> ()
remove_vectors_writer: Writer<BufWriter<File>>,
}
/// Extracts the embedding vector contained in each document under the `_vectors` field.
///
/// Returns the generated grenad reader containing the docid as key associated to the Vec<f32>
@@ -90,52 +73,34 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
) -> Result<Vec<ExtractedVectorPoints>> {
let reindex_vectors = settings_diff.reindex_vectors();
prompt: &Prompt,
embedder_name: &str,
) -> Result<ExtractedVectorPoints> {
puffin::profile_function!();
let old_fields_ids_map = &settings_diff.old.fields_ids_map;
let new_fields_ids_map = &settings_diff.new.fields_ids_map;
// the vector field id may have changed
let old_vectors_fid = old_fields_ids_map.id(RESERVED_VECTORS_FIELD_NAME);
// filter the old vector fid if the settings has been changed forcing reindexing.
let old_vectors_fid = old_vectors_fid.filter(|_| !reindex_vectors);
let new_vectors_fid = new_fields_ids_map.id(RESERVED_VECTORS_FIELD_NAME);
// (docid, _index) -> KvWriterDelAdd -> Vector
let mut manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut extractors = Vec::new();
for (embedder_name, (embedder, prompt)) in
settings_diff.new.embedding_configs.clone().into_iter()
{
// (docid, _index) -> KvWriterDelAdd -> Vector
let manual_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let mut prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> (prompt)
let prompts_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
// (docid) -> ()
let remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
extractors.push(EmbedderVectorExtractor {
embedder_name,
embedder,
prompt,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
});
}
// (docid) -> ()
let mut remove_vectors_writer = create_writer(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
tempfile::tempfile()?,
);
let mut key_buffer = Vec::new();
let mut cursor = obkv_documents.into_cursor()?;
@@ -149,138 +114,152 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
key_buffer.clear();
key_buffer.extend_from_slice(docid_bytes);
// since we only need the primary key when we throw an error we create this getter to
// since we only needs the primary key when we throw an error we create this getter to
// lazily get it when needed
let document_id = || -> Value { from_utf8(external_id_bytes).unwrap().into() };
let mut parsed_vectors = ParsedVectorsDiff::new(obkv, old_vectors_fid, new_vectors_fid)
.map_err(|error| error.to_crate_error(document_id().to_string()))?;
// the vector field id may have changed
let old_vectors_fid = old_fields_ids_map.id("_vectors");
// filter the old vector fid if the settings has been changed forcing reindexing.
let old_vectors_fid = old_vectors_fid.filter(|_| !settings_diff.reindex_vectors());
for EmbedderVectorExtractor {
embedder_name,
embedder: _,
prompt,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
} in extractors.iter_mut()
{
let delta = match parsed_vectors.remove(embedder_name) {
(Some(old), Some(new)) => {
// no autogeneration
let del_vectors = old.into_array_of_vectors();
let add_vectors = new.into_array_of_vectors();
let new_vectors_fid = new_fields_ids_map.id("_vectors");
let vectors_field = {
let del = old_vectors_fid
.and_then(|vectors_fid| obkv.get(vectors_fid))
.map(KvReaderDelAdd::new)
.map(|obkv| to_vector_map(obkv, DelAdd::Deletion, &document_id))
.transpose()?
.flatten();
let add = new_vectors_fid
.and_then(|vectors_fid| obkv.get(vectors_fid))
.map(KvReaderDelAdd::new)
.map(|obkv| to_vector_map(obkv, DelAdd::Addition, &document_id))
.transpose()?
.flatten();
(del, add)
};
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
let (del_map, add_map) = vectors_field;
VectorStateDelta::ManualDelta(del_vectors, add_vectors)
let del_value = del_map.and_then(|mut map| map.remove(embedder_name));
let add_value = add_map.and_then(|mut map| map.remove(embedder_name));
let delta = match (del_value, add_value) {
(Some(old), Some(new)) => {
// no autogeneration
let del_vectors = extract_vectors(old, document_id, embedder_name)?;
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
(Some(_old), None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// becomes autogenerated
VectorStateDelta::NowGenerated(prompt.render(
obkv,
DelAdd::Addition,
new_fields_ids_map,
)?)
VectorStateDelta::ManualDelta(del_vectors, add_vectors)
}
(Some(_old), None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// becomes autogenerated
VectorStateDelta::NowGenerated(prompt.render(
obkv,
DelAdd::Addition,
new_fields_ids_map,
)?)
} else {
VectorStateDelta::NowRemoved
}
}
(None, Some(new)) => {
// was possibly autogenerated, remove all vectors for that document
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
VectorStateDelta::WasGeneratedNowManual(add_vectors)
}
(None, None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// Don't give up if the old prompt was failing
let old_prompt = Some(prompt)
// TODO: this filter works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
.filter(|_| !settings_diff.reindex_vectors())
.map(|p| {
p.render(obkv, DelAdd::Deletion, old_fields_ids_map).unwrap_or_default()
});
let new_prompt = prompt.render(obkv, DelAdd::Addition, new_fields_ids_map)?;
if old_prompt.as_ref() != Some(&new_prompt) {
let old_prompt = old_prompt.unwrap_or_default();
tracing::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
);
VectorStateDelta::NowGenerated(new_prompt)
} else {
VectorStateDelta::NowRemoved
tracing::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
}
} else {
VectorStateDelta::NowRemoved
}
(None, Some(new)) => {
// was possibly autogenerated, remove all vectors for that document
let add_vectors = new.into_array_of_vectors();
if add_vectors.len() > usize::from(u8::MAX) {
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
document_id().to_string(),
add_vectors.len(),
)));
}
}
};
VectorStateDelta::WasGeneratedNowManual(add_vectors)
}
(None, None) => {
// Do we keep this document?
let document_is_kept = obkv
.iter()
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// Don't give up if the old prompt was failing
let old_prompt = Some(&prompt)
// TODO: this filter works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
.filter(|_| !settings_diff.reindex_vectors())
.map(|p| {
p.render(obkv, DelAdd::Deletion, old_fields_ids_map)
.unwrap_or_default()
});
let new_prompt =
prompt.render(obkv, DelAdd::Addition, new_fields_ids_map)?;
if old_prompt.as_ref() != Some(&new_prompt) {
let old_prompt = old_prompt.unwrap_or_default();
tracing::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
);
VectorStateDelta::NowGenerated(new_prompt)
} else {
tracing::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
}
} else {
VectorStateDelta::NowRemoved
}
}
};
// and we finally push the unique vectors into the writer
push_vectors_diff(
remove_vectors_writer,
prompts_writer,
manual_vectors_writer,
&mut key_buffer,
delta,
reindex_vectors,
)?;
}
// and we finally push the unique vectors into the writer
push_vectors_diff(
&mut remove_vectors_writer,
&mut prompts_writer,
&mut manual_vectors_writer,
&mut key_buffer,
delta,
settings_diff,
)?;
}
let mut results = Vec::new();
Ok(ExtractedVectorPoints {
// docid, _index -> KvWriterDelAdd -> Vector
manual_vectors: writer_into_reader(manual_vectors_writer)?,
// docid -> ()
remove_vectors: writer_into_reader(remove_vectors_writer)?,
// docid -> prompt
prompts: writer_into_reader(prompts_writer)?,
})
}
for EmbedderVectorExtractor {
embedder_name,
embedder,
prompt: _,
manual_vectors_writer,
prompts_writer,
remove_vectors_writer,
} in extractors
{
results.push(ExtractedVectorPoints {
// docid, _index -> KvWriterDelAdd -> Vector
manual_vectors: writer_into_reader(manual_vectors_writer)?,
// docid -> ()
remove_vectors: writer_into_reader(remove_vectors_writer)?,
// docid -> prompt
prompts: writer_into_reader(prompts_writer)?,
embedder,
embedder_name,
})
}
Ok(results)
fn to_vector_map(
obkv: KvReaderDelAdd,
side: DelAdd,
document_id: &impl Fn() -> Value,
) -> Result<Option<serde_json::Map<String, Value>>> {
Ok(if let Some(value) = obkv.get(side) {
let Ok(value) = from_slice(value) else {
let value = from_slice(value).map_err(InternalError::SerdeJson)?;
return Err(crate::Error::UserError(UserError::InvalidVectorsMapType {
document_id: document_id(),
value,
}));
};
Some(value)
} else {
None
})
}
/// Computes the diff between both Del and Add numbers and
@@ -291,13 +270,14 @@ fn push_vectors_diff(
manual_vectors_writer: &mut Writer<BufWriter<File>>,
key_buffer: &mut Vec<u8>,
delta: VectorStateDelta,
reindex_vectors: bool,
settings_diff: &InnerIndexSettingsDiff,
) -> Result<()> {
puffin::profile_function!();
let (must_remove, prompt, (mut del_vectors, mut add_vectors)) = delta.into_values();
if must_remove
// TODO: the below condition works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
&& !reindex_vectors
&& !settings_diff.reindex_vectors()
{
key_buffer.truncate(TRUNCATE_SIZE);
remove_vectors_writer.insert(&key_buffer, [])?;
@@ -328,7 +308,7 @@ fn push_vectors_diff(
EitherOrBoth::Left(vector) => {
// TODO: the below condition works because we erase the vec database when a embedding setting changes.
// When vector pipeline will be optimized, this should be removed.
if !reindex_vectors {
if !settings_diff.reindex_vectors() {
// We insert only the Del part of the Obkv to inform
// that we only want to remove all those vectors.
let mut obkv = KvWriterDelAdd::memory();
@@ -356,6 +336,26 @@ fn compare_vectors(a: &[f32], b: &[f32]) -> Ordering {
a.iter().copied().map(OrderedFloat).cmp(b.iter().copied().map(OrderedFloat))
}
/// Extracts the vectors from a JSON value.
fn extract_vectors(
value: Value,
document_id: impl Fn() -> Value,
name: &str,
) -> Result<Vec<Vec<f32>>> {
// FIXME: ugly clone of the vectors here
match serde_json::from_value(value.clone()) {
Ok(vectors) => {
Ok(VectorOrArrayOfVectors::into_array_of_vectors(vectors).unwrap_or_default())
}
Err(_) => Err(UserError::InvalidVectorsType {
document_id: document_id(),
value,
subfield: name.to_owned(),
}
.into()),
}
}
#[tracing::instrument(level = "trace", skip_all, target = "indexing::extract")]
pub fn extract_embeddings<R: io::Read + io::Seek>(
// docid, prompt
@@ -364,6 +364,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
embedder: Arc<Embedder>,
request_threads: &ThreadPoolNoAbort,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
let n_vectors_per_chunk = embedder.prompt_count_in_chunk_hint(); // number of vectors in a single chunk

View File

@@ -36,6 +36,8 @@ pub fn extract_word_docids<R: io::Read + io::Seek>(
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
)> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut word_fid_docids_sorter = create_sorter(
@@ -165,6 +167,8 @@ fn words_into_sorter(
add_words: &BTreeSet<Vec<u8>>,
word_fid_docids_sorter: &mut grenad::Sorter<MergeFn>,
) -> Result<()> {
puffin::profile_function!();
use itertools::merge_join_by;
use itertools::EitherOrBoth::{Both, Left, Right};

View File

@@ -26,6 +26,7 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let any_deletion = settings_diff.old.proximity_precision == ProximityPrecision::ByWord;
let any_addition = settings_diff.new.proximity_precision == ProximityPrecision::ByWord;
@@ -70,6 +71,8 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
// if we change document, we fill the sorter
if current_document_id.map_or(false, |id| id != document_id) {
puffin::profile_scope!("Document into sorter");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "document_into_sorter");
let _entered = span.enter();
@@ -160,6 +163,7 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
}
if let Some(document_id) = current_document_id {
puffin::profile_scope!("Final document into sorter");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "final_document_into_sorter");
let _entered = span.enter();
@@ -172,6 +176,7 @@ pub fn extract_word_pair_proximity_docids<R: io::Read + io::Seek>(
)?;
}
{
puffin::profile_scope!("sorter_into_reader");
// FIXME: span inside of a hot loop might degrade performance and create big reports
let span = tracing::trace_span!(target: "indexing::details", "sorter_into_reader");
let _entered = span.enter();

View File

@@ -25,6 +25,8 @@ pub fn extract_word_position_docids<R: io::Read + io::Seek>(
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let mut word_position_docids_sorter = create_sorter(
@@ -102,6 +104,8 @@ fn words_position_into_sorter(
add_word_positions: &BTreeSet<(u16, Vec<u8>)>,
word_position_docids_sorter: &mut grenad::Sorter<MergeFn>,
) -> Result<()> {
puffin::profile_function!();
use itertools::merge_join_by;
use itertools::EitherOrBoth::{Both, Left, Right};

View File

@@ -47,6 +47,8 @@ pub(crate) fn data_from_obkv_documents(
settings_diff: Arc<InnerIndexSettingsDiff>,
max_positions_per_attributes: Option<u32>,
) -> Result<()> {
puffin::profile_function!();
let (original_pipeline_result, flattened_pipeline_result): (Result<_>, Result<_>) = rayon::join(
|| {
original_obkv_chunks
@@ -88,6 +90,7 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_fid_word_count_docids,
TypedChunk::FieldIdWordCountDocids,
"field-id-wordcount-docids",
);
run_extraction_task::<
_,
@@ -114,6 +117,7 @@ pub(crate) fn data_from_obkv_documents(
word_fid_docids_reader,
}
},
"word-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -123,6 +127,7 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_word_position_docids,
TypedChunk::WordPositionDocids,
"word-position-docids",
);
run_extraction_task::<
@@ -136,6 +141,7 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_facet_string_docids,
TypedChunk::FieldIdFacetStringDocids,
"field-id-facet-string-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -145,6 +151,7 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_facet_number_docids,
TypedChunk::FieldIdFacetNumberDocids,
"field-id-facet-number-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
@@ -154,6 +161,7 @@ pub(crate) fn data_from_obkv_documents(
lmdb_writer_sx.clone(),
extract_word_pair_proximity_docids,
TypedChunk::WordPairProximityDocids,
"word-pair-proximity-docids",
);
}
@@ -177,6 +185,7 @@ fn run_extraction_task<FE, FS, M>(
lmdb_writer_sx: Sender<Result<TypedChunk>>,
extract_fn: FE,
serialize_fn: FS,
name: &'static str,
) where
FE: Fn(
grenad::Reader<CursorClonableMmap>,
@@ -194,7 +203,7 @@ fn run_extraction_task<FE, FS, M>(
rayon::spawn(move || {
let child_span = tracing::trace_span!(target: "indexing::extract::details", parent: &current_span, "extract_multiple_chunks");
let _entered = child_span.enter();
puffin::profile_scope!("extract_multiple_chunks", name);
match extract_fn(chunk, indexer, &settings_diff) {
Ok(chunk) => {
let _ = lmdb_writer_sx.send(Ok(serialize_fn(chunk)));
@@ -217,31 +226,27 @@ fn send_original_documents_data(
let original_documents_chunk =
original_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
let documents_chunk_cloned = original_documents_chunk.clone();
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
let request_threads = ThreadPoolNoAbortBuilder::new()
.num_threads(crate::vector::REQUEST_PARALLELISM)
.thread_name(|index| format!("embedding-request-{index}"))
.build()?;
let index_vectors = (settings_diff.reindex_vectors() || !settings_diff.settings_update_only())
// no point in indexing vectors without embedders
&& (!settings_diff.new.embedding_configs.inner_as_ref().is_empty());
if index_vectors {
if settings_diff.reindex_vectors() || !settings_diff.settings_update_only() {
let settings_diff = settings_diff.clone();
let original_documents_chunk = original_documents_chunk.clone();
let lmdb_writer_sx = lmdb_writer_sx.clone();
rayon::spawn(move || {
match extract_vector_points(original_documents_chunk.clone(), indexer, &settings_diff) {
Ok(extracted_vectors) => {
for ExtractedVectorPoints {
manual_vectors,
remove_vectors,
prompts,
embedder_name,
embedder,
} in extracted_vectors
{
for (name, (embedder, prompt)) in settings_diff.new.embedding_configs.clone() {
let result = extract_vector_points(
documents_chunk_cloned.clone(),
indexer,
&settings_diff,
&prompt,
&name,
);
match result {
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
let embeddings = match extract_embeddings(
prompts,
indexer,
@@ -250,26 +255,28 @@ fn send_original_documents_data(
) {
Ok(results) => Some(results),
Err(error) => {
let _ = lmdb_writer_sx.send(Err(error));
let _ = lmdb_writer_sx_cloned.send(Err(error));
None
}
};
if !(remove_vectors.is_empty()
&& manual_vectors.is_empty()
&& embeddings.as_ref().map_or(true, |e| e.is_empty()))
{
let _ = lmdb_writer_sx.send(Ok(TypedChunk::VectorPoints {
let _ = lmdb_writer_sx_cloned.send(Ok(TypedChunk::VectorPoints {
remove_vectors,
embeddings,
expected_dimension: embedder.dimensions(),
manual_vectors,
embedder_name,
embedder_name: name,
}));
}
}
}
Err(error) => {
let _ = lmdb_writer_sx.send(Err(error));
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));
}
}
}
});

Some files were not shown because too many files have changed in this diff Show More