mirror of
				https://github.com/meilisearch/meilisearch.git
				synced 2025-10-31 07:56:28 +00:00 
			
		
		
		
	get rids of log in milli and add logs for the bucket sort
This commit is contained in:
		
							
								
								
									
										1
									
								
								Cargo.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										1
									
								
								Cargo.lock
									
									
									
										generated
									
									
									
								
							| @@ -3813,7 +3813,6 @@ dependencies = [ | ||||
|  "json-depth-checker", | ||||
|  "levenshtein_automata", | ||||
|  "liquid", | ||||
|  "log", | ||||
|  "logging_timer", | ||||
|  "maplit", | ||||
|  "md5", | ||||
|   | ||||
| @@ -71,7 +71,6 @@ itertools = "0.11.0" | ||||
| puffin = "0.16.0" | ||||
|  | ||||
| # logging | ||||
| log = "0.4.20" | ||||
| logging_timer = "1.1.0" | ||||
| csv = "1.3.0" | ||||
| candle-core = { git = "https://github.com/huggingface/candle.git", version = "0.3.1" } | ||||
|   | ||||
| @@ -6,9 +6,9 @@ use charabia::Normalize; | ||||
| use fst::automaton::{Automaton, Str}; | ||||
| use fst::{IntoStreamer, Streamer}; | ||||
| use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA}; | ||||
| use log::error; | ||||
| use once_cell::sync::Lazy; | ||||
| use roaring::bitmap::RoaringBitmap; | ||||
| use tracing::error; | ||||
|  | ||||
| pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET}; | ||||
| pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords}; | ||||
|   | ||||
| @@ -166,6 +166,9 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>( | ||||
|             continue; | ||||
|         } | ||||
|  | ||||
|         let span = tracing::trace_span!(target: "search::bucket_sort", "next_bucket", id = ranking_rules[cur_ranking_rule_index].id()); | ||||
|         let entered = span.enter(); | ||||
|  | ||||
|         let Some(next_bucket) = ranking_rules[cur_ranking_rule_index].next_bucket( | ||||
|             ctx, | ||||
|             logger, | ||||
| @@ -175,6 +178,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>( | ||||
|             back!(); | ||||
|             continue; | ||||
|         }; | ||||
|         drop(entered); | ||||
|  | ||||
|         ranking_rule_scores.push(next_bucket.score); | ||||
|  | ||||
|   | ||||
| @@ -85,8 +85,8 @@ use charabia::normalizer::{Normalize, NormalizerOption}; | ||||
| use grenad::{CompressionType, SortAlgorithm}; | ||||
| use heed::types::{Bytes, DecodeIgnore, SerdeJson}; | ||||
| use heed::BytesEncode; | ||||
| use log::debug; | ||||
| use time::OffsetDateTime; | ||||
| use tracing::debug; | ||||
|  | ||||
| use self::incremental::FacetsUpdateIncremental; | ||||
| use super::FacetsUpdateBulk; | ||||
|   | ||||
| @@ -78,7 +78,7 @@ pub fn enrich_documents_batch<R: Read + Seek>( | ||||
|                 }, | ||||
|                 [] => return Ok(Err(UserError::NoPrimaryKeyCandidateFound)), | ||||
|                 [(field_id, name)] => { | ||||
|                     log::info!("Primary key was not specified in index. Inferred to '{name}'"); | ||||
|                     tracing::info!("Primary key was not specified in index. Inferred to '{name}'"); | ||||
|                     PrimaryKey::Flat { name, field_id: *field_id } | ||||
|                 } | ||||
|                 multiple => { | ||||
|   | ||||
| @@ -431,7 +431,7 @@ fn extract_facet_values(value: &Value, geo_field: bool) -> FilterableValues { | ||||
|                     if let Ok(float) = original.parse() { | ||||
|                         output_numbers.push(float); | ||||
|                     } else { | ||||
|                         log::warn!( | ||||
|                         tracing::warn!( | ||||
|                             "Internal error, could not parse a geofield that has been validated. Please open an issue." | ||||
|                         ) | ||||
|                     } | ||||
|   | ||||
| @@ -186,12 +186,12 @@ pub fn extract_vector_points<R: io::Read + io::Seek>( | ||||
|                         prompt.render(obkv, DelAdd::Deletion, field_id_map).unwrap_or_default(); | ||||
|                     let new_prompt = prompt.render(obkv, DelAdd::Addition, field_id_map)?; | ||||
|                     if old_prompt != new_prompt { | ||||
|                         log::trace!( | ||||
|                         tracing::trace!( | ||||
|                             "🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}" | ||||
|                         ); | ||||
|                         VectorStateDelta::NowGenerated(new_prompt) | ||||
|                     } else { | ||||
|                         log::trace!("⏭️ Prompt unmodified, skipping"); | ||||
|                         tracing::trace!("⏭️ Prompt unmodified, skipping"); | ||||
|                         VectorStateDelta::NoChange | ||||
|                     } | ||||
|                 } else { | ||||
|   | ||||
| @@ -14,8 +14,8 @@ use std::fs::File; | ||||
| use std::io::BufReader; | ||||
|  | ||||
| use crossbeam_channel::Sender; | ||||
| use log::debug; | ||||
| use rayon::prelude::*; | ||||
| use tracing::debug; | ||||
|  | ||||
| use self::extract_docid_word_positions::extract_docid_word_positions; | ||||
| use self::extract_facet_number_docids::extract_facet_number_docids; | ||||
|   | ||||
| @@ -13,11 +13,11 @@ use std::result::Result as StdResult; | ||||
| use crossbeam_channel::{Receiver, Sender}; | ||||
| use heed::types::Str; | ||||
| use heed::Database; | ||||
| use log::debug; | ||||
| use rand::SeedableRng; | ||||
| use roaring::RoaringBitmap; | ||||
| use serde::{Deserialize, Serialize}; | ||||
| use slice_group_by::GroupBy; | ||||
| use tracing::debug; | ||||
| use typed_chunk::{write_typed_chunk_into_index, TypedChunk}; | ||||
|  | ||||
| use self::enrich::enrich_documents_batch; | ||||
|   | ||||
| @@ -517,7 +517,7 @@ pub(crate) fn write_typed_chunk_into_index( | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             log::debug!("Finished vector chunk for {}", embedder_name); | ||||
|             tracing::debug!("Finished vector chunk for {}", embedder_name); | ||||
|         } | ||||
|         TypedChunk::ScriptLanguageDocids(sl_map) => { | ||||
|             let span = tracing::trace_span!(target: "indexing::write_db", "script_language_docids"); | ||||
|   | ||||
| @@ -4,7 +4,7 @@ use std::str; | ||||
| use grenad::CompressionType; | ||||
| use heed::types::Bytes; | ||||
| use heed::{BytesDecode, BytesEncode, Database}; | ||||
| use log::debug; | ||||
| use tracing::debug; | ||||
|  | ||||
| use crate::error::SerializationError; | ||||
| use crate::heed_codec::StrBEU16Codec; | ||||
|   | ||||
| @@ -73,7 +73,7 @@ impl Embedder { | ||||
|         let device = match candle_core::Device::cuda_if_available(0) { | ||||
|             Ok(device) => device, | ||||
|             Err(error) => { | ||||
|                 log::warn!("could not initialize CUDA device for Hugging Face embedder, defaulting to CPU: {}", error); | ||||
|                 tracing::warn!("could not initialize CUDA device for Hugging Face embedder, defaulting to CPU: {}", error); | ||||
|                 candle_core::Device::Cpu | ||||
|             } | ||||
|         }; | ||||
|   | ||||
| @@ -173,12 +173,16 @@ impl Embedder { | ||||
|             let retry_duration = match result { | ||||
|                 Ok(embeddings) => return Ok(embeddings), | ||||
|                 Err(retry) => { | ||||
|                     log::warn!("Failed: {}", retry.error); | ||||
|                     tracing::warn!("Failed: {}", retry.error); | ||||
|                     tokenized |= retry.must_tokenize(); | ||||
|                     retry.into_duration(attempt) | ||||
|                 } | ||||
|             }?; | ||||
|             log::warn!("Attempt #{}, retrying after {}ms.", attempt, retry_duration.as_millis()); | ||||
|             tracing::warn!( | ||||
|                 "Attempt #{}, retrying after {}ms.", | ||||
|                 attempt, | ||||
|                 retry_duration.as_millis() | ||||
|             ); | ||||
|             tokio::time::sleep(retry_duration).await; | ||||
|         } | ||||
|  | ||||
| @@ -244,7 +248,7 @@ impl Embedder { | ||||
|                         .map_err(EmbedError::openai_unexpected) | ||||
|                         .map_err(Retry::retry_later)?; | ||||
|  | ||||
|                     log::warn!("OpenAI: input was too long, retrying on tokenized version. For best performance, limit the size of your prompt."); | ||||
|                     tracing::warn!("OpenAI: input was too long, retrying on tokenized version. For best performance, limit the size of your prompt."); | ||||
|  | ||||
|                     return Err(Retry::retry_tokenized(EmbedError::openai_too_many_tokens( | ||||
|                         error_response.error, | ||||
| @@ -266,7 +270,7 @@ impl Embedder { | ||||
|         client: &reqwest::Client, | ||||
|     ) -> Result<Vec<Embeddings<f32>>, Retry> { | ||||
|         for text in texts { | ||||
|             log::trace!("Received prompt: {}", text.as_ref()) | ||||
|             tracing::trace!("Received prompt: {}", text.as_ref()) | ||||
|         } | ||||
|         let request = OpenAiRequest { | ||||
|             model: self.options.embedding_model.name(), | ||||
| @@ -289,7 +293,7 @@ impl Embedder { | ||||
|             .map_err(EmbedError::openai_unexpected) | ||||
|             .map_err(Retry::retry_later)?; | ||||
|  | ||||
|         log::trace!("response: {:?}", response.data); | ||||
|         tracing::trace!("response: {:?}", response.data); | ||||
|  | ||||
|         Ok(response | ||||
|             .data | ||||
|   | ||||
		Reference in New Issue
	
	Block a user