Compute chunk size based on the input data size ant the number of indexing threads

This commit is contained in:
ManyTheFish
2024-01-22 16:23:12 +01:00
committed by Louis Dureuil
parent 023c2d755f
commit be1b054b05
13 changed files with 991 additions and 795 deletions

View File

@ -26,7 +26,7 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
searchable_fields: &Option<HashSet<FieldId>>,
stop_words: Option<&fst::Set<&[u8]>>,
stop_words: Option<&fst::Set<Vec<u8>>>,
allowed_separators: Option<&[&str]>,
dictionary: Option<&[&str]>,
max_positions_per_attributes: Option<u32>,
@ -181,11 +181,11 @@ fn searchable_fields_changed(
/// Factorize tokenizer building.
fn tokenizer_builder<'a>(
stop_words: Option<&'a fst::Set<&[u8]>>,
stop_words: Option<&'a fst::Set<Vec<u8>>>,
allowed_separators: Option<&'a [&str]>,
dictionary: Option<&'a [&str]>,
script_language: Option<&'a HashMap<Script, Vec<Language>>>,
) -> TokenizerBuilder<'a, &'a [u8]> {
) -> TokenizerBuilder<'a, Vec<u8>> {
let mut tokenizer_builder = TokenizerBuilder::new();
if let Some(stop_words) = stop_words {
tokenizer_builder.stop_words(stop_words);
@ -211,7 +211,7 @@ fn lang_safe_tokens_from_document<'a>(
obkv: &KvReader<FieldId>,
searchable_fields: &Option<HashSet<FieldId>>,
tokenizer: &Tokenizer,
stop_words: Option<&fst::Set<&[u8]>>,
stop_words: Option<&fst::Set<Vec<u8>>>,
allowed_separators: Option<&[&str]>,
dictionary: Option<&[&str]>,
max_positions_per_attributes: u32,

View File

@ -1,15 +1,21 @@
use std::collections::BTreeSet;
use std::fs::File;
use std::io::BufReader;
use std::iter::FromIterator;
use std::{io, str};
use charabia::normalizer::{Normalize, NormalizerOption};
use heed::types::SerdeJson;
use heed::BytesEncode;
use super::helpers::{create_sorter, sorter_into_reader, try_split_array_at, GrenadParameters};
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupKeyCodec};
use crate::heed_codec::StrRefCodec;
use crate::update::del_add::{KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::helpers::merge_deladd_cbo_roaring_bitmaps;
use crate::{FieldId, Result};
use crate::heed_codec::{BEU16StrCodec, StrRefCodec};
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
use crate::update::index_documents::helpers::{
merge_deladd_btreeset_string, merge_deladd_cbo_roaring_bitmaps,
};
use crate::{FieldId, Result, MAX_FACET_VALUE_LENGTH};
/// Extracts the facet string and the documents ids where this facet string appear.
///
@ -19,10 +25,11 @@ use crate::{FieldId, Result};
pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
docid_fid_facet_string: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<BufReader<File>>> {
) -> Result<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
puffin::profile_function!();
let max_memory = indexer.max_memory_by_thread();
let options = NormalizerOption { lossy: true, ..Default::default() };
let mut facet_string_docids_sorter = create_sorter(
grenad::SortAlgorithm::Stable,
@ -30,12 +37,30 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
max_memory.map(|m| m / 2),
);
let mut normalized_facet_string_docids_sorter = create_sorter(
grenad::SortAlgorithm::Stable,
merge_deladd_btreeset_string,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory.map(|m| m / 2),
);
let mut buffer = Vec::new();
let mut cursor = docid_fid_facet_string.into_cursor()?;
while let Some((key, deladd_original_value_bytes)) = cursor.move_on_next()? {
let deladd_reader = KvReaderDelAdd::new(deladd_original_value_bytes);
// nothing to do if we delete and re-add the value.
if deladd_reader.get(DelAdd::Deletion).is_some()
&& deladd_reader.get(DelAdd::Addition).is_some()
{
continue;
}
let (field_id_bytes, bytes) = try_split_array_at(key).unwrap();
let field_id = FieldId::from_be_bytes(field_id_bytes);
@ -44,17 +69,46 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
let document_id = u32::from_be_bytes(document_id_bytes);
let normalized_value = str::from_utf8(normalized_value_bytes)?;
// Facet search normalization
{
let mut hyper_normalized_value = normalized_value.normalize(&options);
let normalized_truncated_facet: String;
if hyper_normalized_value.len() > MAX_FACET_VALUE_LENGTH {
normalized_truncated_facet = hyper_normalized_value
.char_indices()
.take_while(|(idx, _)| *idx < MAX_FACET_VALUE_LENGTH)
.map(|(_, c)| c)
.collect();
hyper_normalized_value = normalized_truncated_facet.into();
}
let set = BTreeSet::from_iter(std::iter::once(normalized_value));
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
for (deladd_key, _) in deladd_reader.iter() {
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
obkv.insert(deladd_key, val)?;
}
obkv.finish()?;
let key = (field_id, hyper_normalized_value.as_ref());
let key_bytes = BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
}
let key = FacetGroupKey { field_id, level: 0, left_bound: normalized_value };
let key_bytes = FacetGroupKeyCodec::<StrRefCodec>::bytes_encode(&key).unwrap();
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
for (deladd_key, _) in KvReaderDelAdd::new(deladd_original_value_bytes).iter() {
for (deladd_key, _) in deladd_reader.iter() {
obkv.insert(deladd_key, document_id.to_ne_bytes())?;
}
obkv.finish()?;
facet_string_docids_sorter.insert(&key_bytes, &buffer)?;
}
sorter_into_reader(facet_string_docids_sorter, indexer)
let normalized = sorter_into_reader(normalized_facet_string_docids_sorter, indexer)?;
sorter_into_reader(facet_string_docids_sorter, indexer).map(|s| (s, normalized))
}

View File

@ -15,7 +15,6 @@ use std::io::BufReader;
use crossbeam_channel::Sender;
use rayon::prelude::*;
use tracing::debug;
use self::extract_docid_word_positions::extract_docid_word_positions;
use self::extract_facet_number_docids::extract_facet_number_docids;
@ -29,10 +28,7 @@ use self::extract_vector_points::{
use self::extract_word_docids::extract_word_docids;
use self::extract_word_pair_proximity_docids::extract_word_pair_proximity_docids;
use self::extract_word_position_docids::extract_word_position_docids;
use super::helpers::{
as_cloneable_grenad, merge_deladd_cbo_roaring_bitmaps, CursorClonableMmap, GrenadParameters,
MergeFn, MergeableReader,
};
use super::helpers::{as_cloneable_grenad, CursorClonableMmap, GrenadParameters};
use super::{helpers, TypedChunk};
use crate::proximity::ProximityPrecision;
use crate::vector::EmbeddingConfigs;
@ -52,7 +48,7 @@ pub(crate) fn data_from_obkv_documents(
primary_key_id: FieldId,
geo_fields_ids: Option<(FieldId, FieldId)>,
field_id_map: FieldsIdsMap,
stop_words: Option<fst::Set<&[u8]>>,
stop_words: Option<fst::Set<Vec<u8>>>,
allowed_separators: Option<&[&str]>,
dictionary: Option<&[&str]>,
max_positions_per_attributes: Option<u32>,
@ -62,201 +58,154 @@ pub(crate) fn data_from_obkv_documents(
) -> Result<()> {
puffin::profile_function!();
original_obkv_chunks
.par_bridge()
.map(|original_documents_chunk| {
send_original_documents_data(
original_documents_chunk,
indexer,
lmdb_writer_sx.clone(),
field_id_map.clone(),
embedders.clone(),
)
})
.collect::<Result<()>>()?;
#[allow(clippy::type_complexity)]
let result: Result<(Vec<_>, (Vec<_>, (Vec<_>, (Vec<_>, (Vec<_>, Vec<_>)))))> =
flattened_obkv_chunks
.par_bridge()
.map(|flattened_obkv_chunks| {
send_and_extract_flattened_documents_data(
flattened_obkv_chunks,
indexer,
lmdb_writer_sx.clone(),
&searchable_fields,
&faceted_fields,
primary_key_id,
geo_fields_ids,
&stop_words,
&allowed_separators,
&dictionary,
max_positions_per_attributes,
)
})
.collect();
let (
docid_word_positions_chunks,
(
fid_docid_facet_numbers_chunks,
(
fid_docid_facet_strings_chunks,
(
facet_is_null_docids_chunks,
(facet_is_empty_docids_chunks, facet_exists_docids_chunks),
),
),
),
) = result?;
// merge facet_exists_docids and send them as a typed chunk
{
let lmdb_writer_sx = lmdb_writer_sx.clone();
rayon::spawn(move || {
debug!(database = "facet-id-exists-docids", "merge");
match facet_exists_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
Ok(reader) => {
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetExistsDocids(reader)));
}
Err(e) => {
let _ = lmdb_writer_sx.send(Err(e));
}
}
});
}
// merge facet_is_null_docids and send them as a typed chunk
{
let lmdb_writer_sx = lmdb_writer_sx.clone();
rayon::spawn(move || {
debug!(database = "facet-id-is-null-docids", "merge");
match facet_is_null_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
Ok(reader) => {
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsNullDocids(reader)));
}
Err(e) => {
let _ = lmdb_writer_sx.send(Err(e));
}
}
});
}
// merge facet_is_empty_docids and send them as a typed chunk
{
let lmdb_writer_sx = lmdb_writer_sx.clone();
rayon::spawn(move || {
debug!(database = "facet-id-is-empty-docids", "merge");
match facet_is_empty_docids_chunks.merge(merge_deladd_cbo_roaring_bitmaps, &indexer) {
Ok(reader) => {
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsEmptyDocids(reader)));
}
Err(e) => {
let _ = lmdb_writer_sx.send(Err(e));
}
}
});
}
if proximity_precision == ProximityPrecision::ByWord {
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
docid_word_positions_chunks.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_word_pair_proximity_docids,
merge_deladd_cbo_roaring_bitmaps,
TypedChunk::WordPairProximityDocids,
"word-pair-proximity-docids",
);
}
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
docid_word_positions_chunks.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_fid_word_count_docids,
merge_deladd_cbo_roaring_bitmaps,
TypedChunk::FieldIdWordCountDocids,
"field-id-wordcount-docids",
);
spawn_extraction_task::<
_,
_,
Vec<(
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
)>,
>(
docid_word_positions_chunks.clone(),
indexer,
lmdb_writer_sx.clone(),
move |doc_word_pos, indexer| extract_word_docids(doc_word_pos, indexer, &exact_attributes),
merge_deladd_cbo_roaring_bitmaps,
|(word_docids_reader, exact_word_docids_reader, word_fid_docids_reader)| {
TypedChunk::WordDocids {
word_docids_reader,
exact_word_docids_reader,
word_fid_docids_reader,
}
let (original_pipeline_result, flattened_pipeline_result): (Result<_>, Result<_>) = rayon::join(
|| {
original_obkv_chunks
.par_bridge()
.map(|original_documents_chunk| {
send_original_documents_data(
original_documents_chunk,
indexer,
lmdb_writer_sx.clone(),
field_id_map.clone(),
embedders.clone(),
)
})
.collect::<Result<()>>()
},
|| {
flattened_obkv_chunks
.par_bridge()
.map(|flattened_obkv_chunks| {
send_and_extract_flattened_documents_data(
flattened_obkv_chunks,
indexer,
lmdb_writer_sx.clone(),
&searchable_fields,
&faceted_fields,
primary_key_id,
geo_fields_ids,
&stop_words,
&allowed_separators,
&dictionary,
max_positions_per_attributes,
)
})
.map(|result| {
if let Ok((
ref docid_word_positions_chunk,
(ref fid_docid_facet_numbers_chunk, ref fid_docid_facet_strings_chunk),
)) = result
{
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
docid_word_positions_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_fid_word_count_docids,
TypedChunk::FieldIdWordCountDocids,
"field-id-wordcount-docids",
);
let exact_attributes = exact_attributes.clone();
run_extraction_task::<
_,
_,
(
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
grenad::Reader<BufReader<File>>,
),
>(
docid_word_positions_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
move |doc_word_pos, indexer| {
extract_word_docids(doc_word_pos, indexer, &exact_attributes)
},
|(
word_docids_reader,
exact_word_docids_reader,
word_fid_docids_reader,
)| {
TypedChunk::WordDocids {
word_docids_reader,
exact_word_docids_reader,
word_fid_docids_reader,
}
},
"word-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
docid_word_positions_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_word_position_docids,
TypedChunk::WordPositionDocids,
"word-position-docids",
);
run_extraction_task::<
_,
_,
(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>),
>(
fid_docid_facet_strings_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_facet_string_docids,
TypedChunk::FieldIdFacetStringDocids,
"field-id-facet-string-docids",
);
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
fid_docid_facet_numbers_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_facet_number_docids,
TypedChunk::FieldIdFacetNumberDocids,
"field-id-facet-number-docids",
);
if proximity_precision == ProximityPrecision::ByWord {
run_extraction_task::<_, _, grenad::Reader<BufReader<File>>>(
docid_word_positions_chunk.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_word_pair_proximity_docids,
TypedChunk::WordPairProximityDocids,
"word-pair-proximity-docids",
);
}
}
Ok(())
})
.collect::<Result<()>>()
},
"word-docids",
);
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
docid_word_positions_chunks.clone(),
indexer,
lmdb_writer_sx.clone(),
extract_word_position_docids,
merge_deladd_cbo_roaring_bitmaps,
TypedChunk::WordPositionDocids,
"word-position-docids",
);
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
fid_docid_facet_strings_chunks,
indexer,
lmdb_writer_sx.clone(),
extract_facet_string_docids,
merge_deladd_cbo_roaring_bitmaps,
TypedChunk::FieldIdFacetStringDocids,
"field-id-facet-string-docids",
);
spawn_extraction_task::<_, _, Vec<grenad::Reader<BufReader<File>>>>(
fid_docid_facet_numbers_chunks,
indexer,
lmdb_writer_sx,
extract_facet_number_docids,
merge_deladd_cbo_roaring_bitmaps,
TypedChunk::FieldIdFacetNumberDocids,
"field-id-facet-number-docids",
);
Ok(())
original_pipeline_result.and(flattened_pipeline_result)
}
/// Spawn a new task to extract data for a specific DB using extract_fn.
/// Generated grenad chunks are merged using the merge_fn.
/// The result of merged chunks is serialized as TypedChunk using the serialize_fn
/// and sent into lmdb_writer_sx.
fn spawn_extraction_task<FE, FS, M>(
chunks: Vec<grenad::Reader<CursorClonableMmap>>,
fn run_extraction_task<FE, FS, M>(
chunk: grenad::Reader<CursorClonableMmap>,
indexer: GrenadParameters,
lmdb_writer_sx: Sender<Result<TypedChunk>>,
extract_fn: FE,
merge_fn: MergeFn,
serialize_fn: FS,
name: &'static str,
) where
FE: Fn(grenad::Reader<CursorClonableMmap>, GrenadParameters) -> Result<M::Output>
FE: Fn(grenad::Reader<CursorClonableMmap>, GrenadParameters) -> Result<M>
+ Sync
+ Send
+ 'static,
FS: Fn(M::Output) -> TypedChunk + Sync + Send + 'static,
M: MergeableReader + FromParallelIterator<M::Output> + Send + 'static,
M::Output: Send,
FS: Fn(M) -> TypedChunk + Sync + Send + 'static,
M: Send,
{
let current_span = tracing::Span::current();
@ -264,25 +213,16 @@ fn spawn_extraction_task<FE, FS, M>(
let child_span =
tracing::trace_span!(target: "", parent: &current_span, "extract_multiple_chunks");
let _entered = child_span.enter();
puffin::profile_scope!("extract_multiple_chunksdexing::details, ", name);
let chunks: Result<M> =
chunks.into_par_iter().map(|chunk| extract_fn(chunk, indexer)).collect();
let current_span = tracing::Span::current();
rayon::spawn(move || match chunks {
Ok(chunks) => {
let child_span = tracing::trace_span!(target: "", parent: &current_span, "merge_multiple_chunks");
let _entered = child_span.enter();
debug!(database = name, "merge");
puffin::profile_scope!("merge_multiple_chunks", name);
let reader = chunks.merge(merge_fn, &indexer);
let _ = lmdb_writer_sx.send(reader.map(serialize_fn));
puffin::profile_scope!("extract_multiple_chunks", name);
match extract_fn(chunk, indexer) {
Ok(chunk) => {
let _ = lmdb_writer_sx.send(Ok(serialize_fn(chunk)));
}
Err(e) => {
let _ = lmdb_writer_sx.send(Err(e));
}
})
});
}
})
}
/// Extract chunked data and send it into lmdb_writer_sx sender:
@ -340,7 +280,7 @@ fn send_original_documents_data(
});
// TODO: create a custom internal error
lmdb_writer_sx.send(Ok(TypedChunk::Documents(original_documents_chunk))).unwrap();
drop(lmdb_writer_sx.send(Ok(TypedChunk::Documents(original_documents_chunk))));
Ok(())
}
@ -360,22 +300,13 @@ fn send_and_extract_flattened_documents_data(
faceted_fields: &HashSet<FieldId>,
primary_key_id: FieldId,
geo_fields_ids: Option<(FieldId, FieldId)>,
stop_words: &Option<fst::Set<&[u8]>>,
stop_words: &Option<fst::Set<Vec<u8>>>,
allowed_separators: &Option<&[&str]>,
dictionary: &Option<&[&str]>,
max_positions_per_attributes: Option<u32>,
) -> Result<(
grenad::Reader<CursorClonableMmap>,
(
grenad::Reader<CursorClonableMmap>,
(
grenad::Reader<CursorClonableMmap>,
(
grenad::Reader<BufReader<File>>,
(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>),
),
),
),
(grenad::Reader<CursorClonableMmap>, grenad::Reader<CursorClonableMmap>),
)> {
let flattened_documents_chunk =
flattened_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
@ -446,16 +377,17 @@ fn send_and_extract_flattened_documents_data(
fid_docid_facet_strings_chunk.clone(),
)));
Ok((
fid_docid_facet_numbers_chunk,
(
fid_docid_facet_strings_chunk,
(
fid_facet_is_null_docids_chunk,
(fid_facet_is_empty_docids_chunk, fid_facet_exists_docids_chunk),
),
),
))
let _ = lmdb_writer_sx
.send(Ok(TypedChunk::FieldIdFacetIsNullDocids(fid_facet_is_null_docids_chunk)));
let _ = lmdb_writer_sx.send(Ok(TypedChunk::FieldIdFacetIsEmptyDocids(
fid_facet_is_empty_docids_chunk,
)));
let _ = lmdb_writer_sx
.send(Ok(TypedChunk::FieldIdFacetExistsDocids(fid_facet_exists_docids_chunk)));
Ok((fid_docid_facet_numbers_chunk, fid_docid_facet_strings_chunk))
},
);