Move crates under a sub folder to clean up the code

This commit is contained in:
Clément Renault
2024-10-21 08:18:43 +02:00
parent 30f3c30389
commit 9c1e54a2c8
1062 changed files with 19 additions and 20 deletions

View File

@ -0,0 +1,846 @@
use std::collections::{BTreeMap, HashMap, HashSet};
use std::fmt::Display;
use std::ops::ControlFlow;
use std::{fmt, mem};
use heed::types::Bytes;
use heed::BytesDecode;
use indexmap::IndexMap;
use roaring::RoaringBitmap;
use serde::{Deserialize, Serialize};
use crate::error::UserError;
use crate::facet::FacetType;
use crate::heed_codec::facet::{
FacetGroupKeyCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec, OrderedF64Codec,
};
use crate::heed_codec::{BytesRefCodec, StrRefCodec};
use crate::search::facet::facet_distribution_iter::{
count_iterate_over_facet_distribution, lexicographically_iterate_over_facet_distribution,
};
use crate::{FieldId, Index, Result};
/// The default number of values by facets that will
/// be fetched from the key-value store.
pub const DEFAULT_VALUES_PER_FACET: usize = 100;
/// Threshold on the number of candidates that will make
/// the system to choose between one algorithm or another.
const CANDIDATES_THRESHOLD: u64 = 3000;
/// How should we fetch the facets?
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum OrderBy {
/// By lexicographic order...
#[default]
Lexicographic,
/// Or by number of docids in common?
Count,
}
impl Display for OrderBy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
OrderBy::Lexicographic => f.write_str("alphabetically"),
OrderBy::Count => f.write_str("by count"),
}
}
}
pub struct FacetDistribution<'a> {
facets: Option<HashMap<String, OrderBy>>,
candidates: Option<RoaringBitmap>,
max_values_per_facet: usize,
default_order_by: OrderBy,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
}
impl<'a> FacetDistribution<'a> {
pub fn new(rtxn: &'a heed::RoTxn<'a>, index: &'a Index) -> FacetDistribution<'a> {
FacetDistribution {
facets: None,
candidates: None,
max_values_per_facet: DEFAULT_VALUES_PER_FACET,
default_order_by: OrderBy::default(),
rtxn,
index,
}
}
pub fn facets<I: IntoIterator<Item = (A, OrderBy)>, A: AsRef<str>>(
&mut self,
names_ordered_by: I,
) -> &mut Self {
self.facets = Some(
names_ordered_by
.into_iter()
.map(|(name, order_by)| (name.as_ref().to_string(), order_by))
.collect(),
);
self
}
pub fn max_values_per_facet(&mut self, max: usize) -> &mut Self {
self.max_values_per_facet = max;
self
}
pub fn default_order_by(&mut self, order_by: OrderBy) -> &mut Self {
self.default_order_by = order_by;
self
}
pub fn candidates(&mut self, candidates: RoaringBitmap) -> &mut Self {
self.candidates = Some(candidates);
self
}
/// There is a small amount of candidates OR we ask for facet string values so we
/// decide to iterate over the facet values of each one of them, one by one.
fn facet_distribution_from_documents(
&self,
field_id: FieldId,
facet_type: FacetType,
candidates: &RoaringBitmap,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
match facet_type {
FacetType::Number => {
let mut lexicographic_distribution = BTreeMap::new();
let mut key_buffer: Vec<_> = field_id.to_be_bytes().to_vec();
let db = self.index.field_id_docid_facet_f64s;
for docid in candidates {
key_buffer.truncate(mem::size_of::<FieldId>());
key_buffer.extend_from_slice(&docid.to_be_bytes());
let iter = db
.remap_key_type::<Bytes>()
.prefix_iter(self.rtxn, &key_buffer)?
.remap_key_type::<FieldDocIdFacetF64Codec>();
for result in iter {
let ((_, _, value), ()) = result?;
*lexicographic_distribution.entry(value.to_string()).or_insert(0) += 1;
}
}
distribution.extend(
lexicographic_distribution
.into_iter()
.take(self.max_values_per_facet.saturating_sub(distribution.len())),
);
}
FacetType::String => {
let mut normalized_distribution = BTreeMap::new();
let mut key_buffer: Vec<_> = field_id.to_be_bytes().to_vec();
let db = self.index.field_id_docid_facet_strings;
for docid in candidates {
key_buffer.truncate(mem::size_of::<FieldId>());
key_buffer.extend_from_slice(&docid.to_be_bytes());
let iter = db
.remap_key_type::<Bytes>()
.prefix_iter(self.rtxn, &key_buffer)?
.remap_key_type::<FieldDocIdFacetStringCodec>();
for result in iter {
let ((_, _, normalized_value), original_value) = result?;
let (_, count) = normalized_distribution
.entry(normalized_value)
.or_insert_with(|| (original_value, 0));
*count += 1;
// we'd like to break here if we have enough facet values, but we are collecting them by increasing docid,
// so higher ranked facets could be in later docids
}
}
let iter = normalized_distribution
.into_iter()
.take(self.max_values_per_facet.saturating_sub(distribution.len()))
.map(|(_normalized, (original, count))| (original.to_string(), count));
distribution.extend(iter);
}
}
Ok(())
}
/// There is too much documents, we use the facet levels to move throught
/// the facet values, to find the candidates and values associated.
fn facet_numbers_distribution_from_facet_levels(
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
self.rtxn,
self.index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>(),
field_id,
candidates,
|facet_key, nbr_docids, _| {
let facet_key = OrderedF64Codec::bytes_decode(facet_key).unwrap();
distribution.insert(facet_key.to_string(), nbr_docids);
if distribution.len() == self.max_values_per_facet {
Ok(ControlFlow::Break(()))
} else {
Ok(ControlFlow::Continue(()))
}
},
)
}
fn facet_strings_distribution_from_facet_levels(
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
self.rtxn,
self.index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>(),
field_id,
candidates,
|facet_key, nbr_docids, any_docid| {
let facet_key = StrRefCodec::bytes_decode(facet_key).unwrap();
let key: (FieldId, _, &str) = (field_id, any_docid, facet_key);
let original_string = self
.index
.field_id_docid_facet_strings
.get(self.rtxn, &key)?
.unwrap()
.to_owned();
distribution.insert(original_string, nbr_docids);
if distribution.len() == self.max_values_per_facet {
Ok(ControlFlow::Break(()))
} else {
Ok(ControlFlow::Continue(()))
}
},
)
}
fn facet_values(
&self,
field_id: FieldId,
order_by: OrderBy,
) -> heed::Result<IndexMap<String, u64>> {
use FacetType::{Number, String};
let mut distribution = IndexMap::new();
match (order_by, &self.candidates) {
(OrderBy::Lexicographic, Some(cnd)) if cnd.len() <= CANDIDATES_THRESHOLD => {
// Classic search, candidates were specified, we must return facet values only related
// to those candidates. We also enter here for facet strings for performance reasons.
self.facet_distribution_from_documents(field_id, Number, cnd, &mut distribution)?;
self.facet_distribution_from_documents(field_id, String, cnd, &mut distribution)?;
}
_ => {
let universe;
let candidates = match &self.candidates {
Some(cnd) => cnd,
None => {
universe = self.index.documents_ids(self.rtxn)?;
&universe
}
};
self.facet_numbers_distribution_from_facet_levels(
field_id,
candidates,
order_by,
&mut distribution,
)?;
self.facet_strings_distribution_from_facet_levels(
field_id,
candidates,
order_by,
&mut distribution,
)?;
}
};
Ok(distribution)
}
pub fn compute_stats(&self) -> Result<BTreeMap<String, (f64, f64)>> {
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
let candidates = if let Some(candidates) = self.candidates.clone() {
candidates
} else {
return Ok(Default::default());
};
let fields = match &self.facets {
Some(facets) => {
let invalid_fields: HashSet<_> = facets
.iter()
.map(|(name, _)| name)
.filter(|facet| !crate::is_faceted(facet, &filterable_fields))
.collect();
if !invalid_fields.is_empty() {
return Err(UserError::InvalidFacetsDistribution {
invalid_facets_name: invalid_fields.into_iter().cloned().collect(),
valid_facets_name: filterable_fields.into_iter().collect(),
}
.into());
} else {
facets.iter().map(|(name, _)| name).cloned().collect()
}
}
None => filterable_fields,
};
let mut distribution = BTreeMap::new();
for (fid, name) in fields_ids_map.iter() {
if crate::is_faceted(name, &fields) {
let min_value = if let Some(min_value) = crate::search::facet::facet_min_value(
self.index,
self.rtxn,
fid,
candidates.clone(),
)? {
min_value
} else {
continue;
};
let max_value = if let Some(max_value) = crate::search::facet::facet_max_value(
self.index,
self.rtxn,
fid,
candidates.clone(),
)? {
max_value
} else {
continue;
};
distribution.insert(name.to_string(), (min_value, max_value));
}
}
Ok(distribution)
}
pub fn execute(&self) -> Result<BTreeMap<String, IndexMap<String, u64>>> {
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
let fields = match self.facets {
Some(ref facets) => {
let invalid_fields: HashSet<_> = facets
.iter()
.map(|(name, _)| name)
.filter(|facet| !crate::is_faceted(facet, &filterable_fields))
.collect();
if !invalid_fields.is_empty() {
return Err(UserError::InvalidFacetsDistribution {
invalid_facets_name: invalid_fields.into_iter().cloned().collect(),
valid_facets_name: filterable_fields.into_iter().collect(),
}
.into());
} else {
facets.iter().map(|(name, _)| name).cloned().collect()
}
}
None => filterable_fields,
};
let mut distribution = BTreeMap::new();
for (fid, name) in fields_ids_map.iter() {
if crate::is_faceted(name, &fields) {
let order_by = self
.facets
.as_ref()
.and_then(|facets| facets.get(name).copied())
.unwrap_or(self.default_order_by);
let values = self.facet_values(fid, order_by)?;
distribution.insert(name.to_string(), values);
}
}
Ok(distribution)
}
}
impl fmt::Debug for FacetDistribution<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let FacetDistribution {
facets,
candidates,
max_values_per_facet,
default_order_by,
rtxn: _,
index: _,
} = self;
f.debug_struct("FacetDistribution")
.field("facets", facets)
.field("candidates", candidates)
.field("max_values_per_facet", max_values_per_facet)
.field("default_order_by", default_order_by)
.finish()
}
}
#[cfg(test)]
mod tests {
use std::iter;
use big_s::S;
use maplit::hashset;
use crate::documents::documents_batch_reader_from_objects;
use crate::index::tests::TempIndex;
use crate::{milli_snap, FacetDistribution, OrderBy};
#[test]
fn few_candidates_few_facet_values() {
// All the tests here avoid using the code in `facet_distribution_iter` because there aren't
// enough candidates.
let mut index = TempIndex::new();
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let documents = documents!([
{ "colour": "Blue" },
{ "colour": " blue" },
{ "colour": "RED" }
]);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates([0, 1, 2].iter().copied().collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates([1, 2].iter().copied().collect())
.execute()
.unwrap();
// I think it would be fine if " blue" was "Blue" instead.
// We just need to get any non-normalised string I think, even if it's not in
// the candidates
milli_snap!(format!("{map:?}"), @r###"{"colour": {" blue": 1, "RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates([2].iter().copied().collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"RED": 1}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates([0, 1, 2].iter().copied().collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::Count)))
.candidates([0, 1, 2].iter().copied().collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2}}"###);
}
#[test]
fn many_candidates_few_facet_values() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = ["Red", "RED", " red ", "Blue", "BLUE"];
let mut documents = vec![];
for i in 0..10_000 {
let document = serde_json::json!({
"colour": facet_values[i % 5],
})
.as_object()
.unwrap()
.clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..10_000).collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..5_000).collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..5_000).collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..5_000).collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::Count)))
.candidates((0..5_000).collect())
.max_values_per_facet(1)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), @r###"{"colour": {"Red": 3000}}"###);
}
#[test]
fn many_candidates_many_facet_values() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = (0..1000).map(|x| format!("{x:x}")).collect::<Vec<_>>();
let mut documents = vec![];
for i in 0..10_000 {
let document = serde_json::json!({
"colour": facet_values[i % 1000],
})
.as_object()
.unwrap()
.clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"ac9229ed5964d893af96a7076e2f8af5");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.max_values_per_facet(2)
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates_with_max_2", @r###"{"colour": {"0": 10, "1": 10}}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..10_000).collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_10_000", @"ac9229ed5964d893af96a7076e2f8af5");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..5_000).collect())
.execute()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_5_000", @"825f23a4090d05756f46176987b7d992");
}
#[test]
fn facet_stats() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = (0..1000).collect::<Vec<_>>();
let mut documents = vec![];
for i in 0..1000 {
let document = serde_json::json!({
"colour": facet_values[i % 1000],
})
.as_object()
.unwrap()
.clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 776.0)}"###);
}
#[test]
fn facet_stats_array() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = (0..1000).collect::<Vec<_>>();
let mut documents = vec![];
for i in 0..1000 {
let document = serde_json::json!({
"colour": [facet_values[i % 1000], facet_values[i % 1000] + 1000],
})
.as_object()
.unwrap()
.clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 1776.0)}"###);
}
#[test]
fn facet_stats_mixed_array() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = (0..1000).collect::<Vec<_>>();
let mut documents = vec![];
for i in 0..1000 {
let document = serde_json::json!({
"colour": [facet_values[i % 1000], format!("{}", facet_values[i % 1000] + 1000)],
})
.as_object()
.unwrap()
.clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 776.0)}"###);
}
#[test]
fn facet_mixed_values() {
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
.unwrap();
let facet_values = (0..1000).collect::<Vec<_>>();
let mut documents = vec![];
for i in 0..1000 {
let document = if i % 2 == 0 {
serde_json::json!({
"colour": [facet_values[i % 1000], facet_values[i % 1000] + 1000],
})
} else {
serde_json::json!({
"colour": format!("{}", facet_values[i % 1000] + 10000),
})
};
let document = document.as_object().unwrap().clone();
documents.push(document);
}
let documents = documents_batch_reader_from_objects(documents);
index.add_documents(documents).unwrap();
let txn = index.read_txn().unwrap();
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((0..1000).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1998.0)}"###);
let map = FacetDistribution::new(&txn, &index)
.facets(iter::once(("colour", OrderBy::default())))
.candidates((217..777).collect())
.compute_stats()
.unwrap();
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (218.0, 1776.0)}"###);
}
}

View File

@ -0,0 +1,301 @@
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::ops::ControlFlow;
use heed::Result;
use roaring::RoaringBitmap;
use super::{get_first_facet_value, get_highest_level};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupLazyValueCodec, FacetGroupValueCodec,
};
use crate::heed_codec::BytesRefCodec;
use crate::{CboRoaringBitmapCodec, DocumentId};
/// Call the given closure on the facet distribution of the candidate documents.
///
/// The arguments to the closure are:
/// - the facet value, as a byte slice
/// - the number of documents among the candidates that contain this facet value
/// - the id of a document which contains the facet value. Note that this document
/// is not necessarily from the list of candidates, it is simply *any* document which
/// contains this facet value.
///
/// The return value of the closure is a `ControlFlow<()>` which indicates whether we should
/// keep iterating over the different facet values or stop.
pub fn lexicographically_iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: &RoaringBitmap,
callback: CB,
) -> Result<()>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
let db = db.remap_data_type::<FacetGroupLazyValueCodec>();
let mut fd = LexicographicFacetDistribution { rtxn, db, field_id, callback };
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
fd.iterate(candidates, highest_level, first_bound, usize::MAX)?;
Ok(())
} else {
Ok(())
}
}
pub fn count_iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: &RoaringBitmap,
mut callback: CB,
) -> Result<()>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
/// # Important
/// The order of the fields determines the order in which the facet values will be returned.
/// This struct is inserted in a BinaryHeap and popped later on.
#[derive(Debug, PartialOrd, Ord, PartialEq, Eq)]
struct LevelEntry<'t> {
/// The number of candidates in this entry.
count: u64,
/// The key level of the entry.
level: Reverse<u8>,
/// The left bound key.
left_bound: &'t [u8],
/// The number of keys we must look for after `left_bound`.
group_size: u8,
/// Any docid in the set of matching documents. Used to find the original facet string.
any_docid: u32,
}
// Represents the list of keys that we must explore.
let mut heap = BinaryHeap::new();
let db = db.remap_data_type::<FacetGroupLazyValueCodec>();
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
// We first fill the heap with values from the highest level
let starting_key =
FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
for el in db.range(rtxn, &(&starting_key..))?.take(usize::MAX) {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
candidates,
)?;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
while let Some(LevelEntry { count, level, left_bound, group_size, any_docid }) = heap.pop()
{
if let Reverse(0) = level {
match (callback)(left_bound, count, any_docid)? {
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(()),
}
} else {
let starting_key = FacetGroupKey { field_id, level: level.0 - 1, left_bound };
for el in db.range(rtxn, &(&starting_key..))?.take(group_size as usize) {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
candidates,
)?;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
}
}
}
Ok(())
}
/// Iterate over the facets values by lexicographic order.
struct LexicographicFacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupLazyValueCodec>,
field_id: u16,
callback: CB,
}
impl<'t, CB> LexicographicFacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
fn iterate_level_0(
&mut self,
candidates: &RoaringBitmap,
starting_bound: &'t [u8],
group_size: usize,
) -> Result<ControlFlow<()>> {
let starting_key =
FacetGroupKey { field_id: self.field_id, level: 0, left_bound: starting_bound };
let iter = self.db.range(self.rtxn, &(starting_key..))?.take(group_size);
for el in iter {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != self.field_id {
return Ok(ControlFlow::Break(()));
}
let docids_in_common = CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
candidates,
)?;
if !docids_in_common.is_empty() {
let any_docid_in_common = docids_in_common.min().unwrap();
match (self.callback)(key.left_bound, docids_in_common.len(), any_docid_in_common)?
{
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(ControlFlow::Break(())),
}
}
}
Ok(ControlFlow::Continue(()))
}
fn iterate(
&mut self,
candidates: &RoaringBitmap,
level: u8,
starting_bound: &'t [u8],
group_size: usize,
) -> Result<ControlFlow<()>> {
if level == 0 {
return self.iterate_level_0(candidates, starting_bound, group_size);
}
let starting_key =
FacetGroupKey { field_id: self.field_id, level, left_bound: starting_bound };
let iter = self.db.range(self.rtxn, &(&starting_key..))?.take(group_size);
for el in iter {
let (key, value) = el?;
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != self.field_id {
return Ok(ControlFlow::Break(()));
}
let docids_in_common = CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
candidates,
)?;
if !docids_in_common.is_empty() {
let cf = self.iterate(
&docids_in_common,
level - 1,
key.left_bound,
value.size as usize,
)?;
match cf {
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(ControlFlow::Break(())),
}
}
}
Ok(ControlFlow::Continue(()))
}
}
#[cfg(test)]
mod tests {
use std::ops::ControlFlow;
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::lexicographically_iterate_over_facet_distribution;
use crate::heed_codec::facet::OrderedF64Codec;
use crate::milli_snap;
use crate::search::facet::tests::{get_random_looking_index, get_simple_index};
#[test]
fn filter_distribution_all() {
let indexes = [get_simple_index(), get_random_looking_index()];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
lexicographically_iterate_over_facet_distribution(
&txn,
index.content,
0,
&candidates,
|facet, count, _| {
let facet = OrderedF64Codec::bytes_decode(facet).unwrap();
results.push_str(&format!("{facet}: {count}\n"));
Ok(ControlFlow::Continue(()))
},
)
.unwrap();
milli_snap!(results, i);
txn.commit().unwrap();
}
}
#[test]
fn filter_distribution_all_stop_early() {
let indexes = [get_simple_index(), get_random_looking_index()];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
let mut nbr_facets = 0;
lexicographically_iterate_over_facet_distribution(
&txn,
index.content,
0,
&candidates,
|facet, count, _| {
let facet = OrderedF64Codec::bytes_decode(facet).unwrap();
if nbr_facets == 100 {
Ok(ControlFlow::Break(()))
} else {
nbr_facets += 1;
results.push_str(&format!("{facet}: {count}\n"));
Ok(ControlFlow::Continue(()))
}
},
)
.unwrap();
milli_snap!(results, i);
txn.commit().unwrap();
}
}
}

View File

@ -0,0 +1,688 @@
use std::ops::{Bound, RangeBounds};
use heed::BytesEncode;
use roaring::RoaringBitmap;
use super::{get_first_facet_value, get_highest_level, get_last_facet_value};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupLazyValueCodec, FacetGroupValueCodec,
};
use crate::heed_codec::BytesRefCodec;
use crate::{CboRoaringBitmapCodec, Result};
/// Find all the document ids for which the given field contains a value contained within
/// the two bounds.
pub fn find_docids_of_facet_within_bounds<'t, BoundCodec>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BoundCodec>, FacetGroupValueCodec>,
field_id: u16,
left: &'t Bound<<BoundCodec as BytesEncode<'t>>::EItem>,
right: &'t Bound<<BoundCodec as BytesEncode<'t>>::EItem>,
universe: Option<&RoaringBitmap>,
docids: &mut RoaringBitmap,
) -> Result<()>
where
BoundCodec: for<'a> BytesEncode<'a>,
for<'a> <BoundCodec as BytesEncode<'a>>::EItem: Sized,
{
let inner;
let left = match left {
Bound::Included(left) => {
inner = BoundCodec::bytes_encode(left).map_err(heed::Error::Encoding)?;
Bound::Included(inner.as_ref())
}
Bound::Excluded(left) => {
inner = BoundCodec::bytes_encode(left).map_err(heed::Error::Encoding)?;
Bound::Excluded(inner.as_ref())
}
Bound::Unbounded => Bound::Unbounded,
};
let inner;
let right = match right {
Bound::Included(right) => {
inner = BoundCodec::bytes_encode(right).map_err(heed::Error::Encoding)?;
Bound::Included(inner.as_ref())
}
Bound::Excluded(right) => {
inner = BoundCodec::bytes_encode(right).map_err(heed::Error::Encoding)?;
Bound::Excluded(inner.as_ref())
}
Bound::Unbounded => Bound::Unbounded,
};
let db = db.remap_types::<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupLazyValueCodec>();
let mut f = FacetRangeSearch { rtxn, db, field_id, left, right, universe, docids };
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(starting_left_bound) =
get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?
{
let rightmost_bound =
Bound::Included(get_last_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?.unwrap()); // will not fail because get_first_facet_value succeeded
let group_size = usize::MAX;
f.run(highest_level, starting_left_bound, rightmost_bound, group_size)?;
Ok(())
} else {
Ok(())
}
}
/// Fetch the document ids that have a facet with a value between the two given bounds
struct FacetRangeSearch<'t, 'b, 'bitmap> {
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupLazyValueCodec>,
field_id: u16,
left: Bound<&'b [u8]>,
right: Bound<&'b [u8]>,
/// The subset of documents ids that are useful for this search.
/// Great performance optimizations can be achieved by only fetching values matching this subset.
universe: Option<&'bitmap RoaringBitmap>,
docids: &'bitmap mut RoaringBitmap,
}
impl<'t, 'b, 'bitmap> FacetRangeSearch<'t, 'b, 'bitmap> {
fn run_level_0(&mut self, starting_left_bound: &'t [u8], group_size: usize) -> Result<()> {
let left_key =
FacetGroupKey { field_id: self.field_id, level: 0, left_bound: starting_left_bound };
let iter = self.db.range(self.rtxn, &(left_key..))?.take(group_size);
for el in iter {
let (key, value) = el?;
// the right side of the iter range is unbounded, so we need to make sure that we are not iterating
// on the next field id
if key.field_id != self.field_id {
return Ok(());
}
let should_skip = {
match self.left {
Bound::Included(left) => left > key.left_bound,
Bound::Excluded(left) => left >= key.left_bound,
Bound::Unbounded => false,
}
};
if should_skip {
continue;
}
let should_stop = {
match self.right {
Bound::Included(right) => right < key.left_bound,
Bound::Excluded(right) => right <= key.left_bound,
Bound::Unbounded => false,
}
};
if should_stop {
break;
}
if RangeBounds::<&[u8]>::contains(&(self.left, self.right), &key.left_bound) {
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(value.bitmap_bytes)?,
};
}
}
Ok(())
}
/// Recursive part of the algorithm for level > 0.
///
/// It works by visiting a slice of a level and checking whether the range asscociated
/// with each visited element is contained within the bounds.
///
/// 1. So long as the element's range is less than the left bound, we do nothing and keep iterating
/// 2. If the element's range is fully contained by the bounds, then all of its docids are added to
/// the roaring bitmap.
/// 3. If the element's range merely intersects the bounds, then we call the algorithm recursively
/// on the children of the element from the level below.
/// 4. If the element's range is greater than the right bound, we do nothing and stop iterating.
/// Note that the right bound is found through either the `left_bound` of the *next* element,
/// or from the `rightmost_bound` argument
///
/// ## Arguments
/// - `level`: the level being visited
/// - `starting_left_bound`: the left_bound of the first element to visit
/// - `rightmost_bound`: the right bound of the last element that should be visited
/// - `group_size`: the number of elements that should be visited
fn run(
&mut self,
level: u8,
starting_left_bound: &'t [u8],
rightmost_bound: Bound<&'t [u8]>,
group_size: usize,
) -> Result<()> {
if level == 0 {
return self.run_level_0(starting_left_bound, group_size);
}
let left_key =
FacetGroupKey { field_id: self.field_id, level, left_bound: starting_left_bound };
let mut iter = self.db.range(self.rtxn, &(left_key..))?.take(group_size);
// We iterate over the range while keeping in memory the previous value
let (mut previous_key, mut previous_value) = iter.next().unwrap()?;
for el in iter {
let (next_key, next_value) = el?;
// the right of the iter range is potentially unbounded (e.g. if `group_size` is usize::MAX),
// so we need to make sure that we are not iterating on the next field id
if next_key.field_id != self.field_id {
break;
}
// now, do we skip, stop, or visit?
let should_skip = {
match self.left {
Bound::Included(left) => left >= next_key.left_bound,
Bound::Excluded(left) => left >= next_key.left_bound,
Bound::Unbounded => false,
}
};
if should_skip {
previous_key = next_key;
previous_value = next_value;
continue;
}
// should we stop?
// We should if the search range doesn't include any
// element from the previous key or its successors
let should_stop = {
match self.right {
Bound::Included(right) => right < previous_key.left_bound,
Bound::Excluded(right) => right <= previous_key.left_bound,
Bound::Unbounded => false,
}
};
if should_stop {
return Ok(());
}
// should we take the whole thing, without recursing down?
let should_take_whole_group = {
let left_condition = match self.left {
Bound::Included(left) => previous_key.left_bound >= left,
Bound::Excluded(left) => previous_key.left_bound > left,
Bound::Unbounded => true,
};
let right_condition = match self.right {
Bound::Included(right) => next_key.left_bound <= right,
Bound::Excluded(right) => next_key.left_bound <= right,
Bound::Unbounded => true,
};
left_condition && right_condition
};
if should_take_whole_group {
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
previous_value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(previous_value.bitmap_bytes)?,
};
previous_key = next_key;
previous_value = next_value;
continue;
}
// from here, we should visit the children of the previous element and
// call the function recursively
let level = level - 1;
let starting_left_bound = previous_key.left_bound;
let rightmost_bound = Bound::Excluded(next_key.left_bound);
let group_size = previous_value.size as usize;
self.run(level, starting_left_bound, rightmost_bound, group_size)?;
previous_key = next_key;
previous_value = next_value;
}
// previous_key/previous_value are the last element's key/value
// now, do we skip, stop, or visit?
let should_skip = {
match (self.left, rightmost_bound) {
(Bound::Included(left), Bound::Included(right)) => left > right,
(Bound::Included(left), Bound::Excluded(right)) => left >= right,
(Bound::Excluded(left), Bound::Included(right) | Bound::Excluded(right)) => {
left >= right
}
(Bound::Unbounded, _) => false,
(_, Bound::Unbounded) => false, // should never run?
}
};
if should_skip {
return Ok(());
}
// should we stop?
// We should if the search range doesn't include any
// element from the previous key or its successors
let should_stop = {
match self.right {
Bound::Included(right) => right < previous_key.left_bound,
Bound::Excluded(right) => right <= previous_key.left_bound,
Bound::Unbounded => false,
}
};
if should_stop {
return Ok(());
}
// should we take the whole thing, without recursing down?
let should_take_whole_group = {
let left_condition = match self.left {
Bound::Included(left) => previous_key.left_bound >= left,
Bound::Excluded(left) => previous_key.left_bound > left,
Bound::Unbounded => true,
};
let right_condition = match (self.right, rightmost_bound) {
(Bound::Included(right), Bound::Included(rightmost)) => {
// we need to stay within the bound ..=right
// the element's range goes to ..=righmost
// so the element fits entirely within the bound if rightmost <= right
rightmost <= right
}
(Bound::Included(right), Bound::Excluded(rightmost)) => {
// we need to stay within the bound ..=right
// the element's range goes to ..righmost
// so the element fits entirely within the bound if rightmost <= right
rightmost <= right
}
(Bound::Excluded(right), Bound::Included(rightmost)) => {
// we need to stay within the bound ..right
// the element's range goes to ..=righmost
// so the element fits entirely within the bound if rightmost < right
rightmost < right
}
(Bound::Excluded(right), Bound::Excluded(rightmost)) => {
// we need to stay within the bound ..right
// the element's range goes to ..righmost
// so the element fits entirely within the bound if rightmost <= right
rightmost <= right
}
(Bound::Unbounded, _) => {
// we need to stay within the bound ..inf
// so the element always fits entirely within the bound
true
}
(_, Bound::Unbounded) => {
// we need to stay within a finite bound
// but the element's range goes to ..inf
// so the element never fits entirely within the bound
false
}
};
left_condition && right_condition
};
if should_take_whole_group {
*self.docids |= match self.universe {
Some(universe) => CboRoaringBitmapCodec::intersection_with_serialized(
previous_value.bitmap_bytes,
universe,
)?,
None => CboRoaringBitmapCodec::deserialize_from(previous_value.bitmap_bytes)?,
};
} else {
let level = level - 1;
let starting_left_bound = previous_key.left_bound;
let group_size = previous_value.size as usize;
self.run(level, starting_left_bound, rightmost_bound, group_size)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::ops::Bound;
use roaring::RoaringBitmap;
use super::find_docids_of_facet_within_bounds;
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::milli_snap;
use crate::search::facet::tests::{
get_random_looking_index, get_random_looking_index_with_multiple_field_ids,
get_simple_index, get_simple_index_with_multiple_field_ids,
};
use crate::snapshot_tests::display_bitmap;
#[test]
fn random_looking_index_snap() {
let index = get_random_looking_index();
milli_snap!(format!("{index}"), @"3256c76a7c1b768a013e78d5fa6e9ff9");
}
#[test]
fn random_looking_index_with_multiple_field_ids_snap() {
let index = get_random_looking_index_with_multiple_field_ids();
milli_snap!(format!("{index}"), @"c3e5fe06a8f1c404ed4935b32c90a89b");
}
#[test]
fn simple_index_snap() {
let index = get_simple_index();
milli_snap!(format!("{index}"), @"5dbfa134cc44abeb3ab6242fc182e48e");
}
#[test]
fn simple_index_with_multiple_field_ids_snap() {
let index = get_simple_index_with_multiple_field_ids();
milli_snap!(format!("{index}"), @"a4893298218f682bc76357f46777448c");
}
#[test]
fn filter_range_increasing() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
get_random_looking_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let mut results = String::new();
for i in 0..=255 {
let i = i as f64;
let start = Bound::Included(0.);
let end = Bound::Included(i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results.push_str(&format!("0 <= . <= {i} : {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("included_{i}"));
let mut results = String::new();
for i in 0..=255 {
let i = i as f64;
let start = Bound::Excluded(0.);
let end = Bound::Excluded(i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results.push_str(&format!("0 < . < {i} : {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("excluded_{i}"));
txn.commit().unwrap();
}
}
#[test]
fn filter_range_decreasing() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
get_random_looking_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let mut results = String::new();
for i in (0..=255).rev() {
let i = i as f64;
let start = Bound::Included(i);
let end = Bound::Included(255.);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
results.push_str(&format!("{i} <= . <= 255 : {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("included_{i}"));
let mut results = String::new();
for i in (0..=255).rev() {
let i = i as f64;
let start = Bound::Excluded(i);
let end = Bound::Excluded(255.);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
results.push_str(&format!("{i} < . < 255 : {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("excluded_{i}"));
txn.commit().unwrap();
}
}
#[test]
fn filter_range_pinch() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
get_random_looking_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let mut results = String::new();
for i in (0..=128).rev() {
let i = i as f64;
let start = Bound::Included(i);
let end = Bound::Included(255. - i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
results.push_str(&format!(
"{i} <= . <= {r} : {docids}\n",
r = 255. - i,
docids = display_bitmap(&docids)
));
}
milli_snap!(results, format!("included_{i}"));
let mut results = String::new();
for i in (0..=128).rev() {
let i = i as f64;
let start = Bound::Excluded(i);
let end = Bound::Excluded(255. - i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
results.push_str(&format!(
"{i} < . < {r} {docids}\n",
r = 255. - i,
docids = display_bitmap(&docids)
));
}
milli_snap!(results, format!("excluded_{i}"));
txn.commit().unwrap();
}
}
#[test]
fn filter_range_unbounded() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
get_random_looking_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let mut results = String::new();
for i in 0..=255 {
let i = i as f64;
let start = Bound::Included(i);
let end = Bound::Unbounded;
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results.push_str(&format!(">= {i}: {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("start_from_included_{i}"));
let mut results = String::new();
for i in 0..=255 {
let i = i as f64;
let start = Bound::Unbounded;
let end = Bound::Included(i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results.push_str(&format!("<= {i}: {}\n", display_bitmap(&docids)));
}
milli_snap!(results, format!("end_at_included_{i}"));
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&Bound::Unbounded,
&Bound::Unbounded,
None,
&mut docids,
)
.unwrap();
milli_snap!(
&format!("all field_id 0: {}\n", display_bitmap(&docids)),
format!("unbounded_field_id_0_{i}")
);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
1,
&Bound::Unbounded,
&Bound::Unbounded,
None,
&mut docids,
)
.unwrap();
milli_snap!(
&format!("all field_id 1: {}\n", display_bitmap(&docids)),
format!("unbounded_field_id_1_{i}")
);
drop(txn);
}
}
#[test]
fn filter_range_exact() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
get_random_looking_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let mut results_0 = String::new();
let mut results_1 = String::new();
for i in 0..=255 {
let i = i as f64;
let start = Bound::Included(i);
let end = Bound::Included(i);
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
0,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results_0.push_str(&format!("{i}: {}\n", display_bitmap(&docids)));
let mut docids = RoaringBitmap::new();
find_docids_of_facet_within_bounds::<OrderedF64Codec>(
&txn,
index.content.remap_key_type::<FacetGroupKeyCodec<OrderedF64Codec>>(),
1,
&start,
&end,
None,
&mut docids,
)
.unwrap();
#[allow(clippy::format_push_string)]
results_1.push_str(&format!("{i}: {}\n", display_bitmap(&docids)));
}
milli_snap!(results_0, format!("field_id_0_exact_{i}"));
milli_snap!(results_1, format!("field_id_1_exact_{i}"));
drop(txn);
}
}
}

View File

@ -0,0 +1,230 @@
use heed::Result;
use roaring::RoaringBitmap;
use super::{get_first_facet_value, get_highest_level};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupValue, FacetGroupValueCodec,
};
use crate::heed_codec::BytesRefCodec;
/// Return an iterator which iterates over the given candidate documents in
/// ascending order of their facet value for the given field id.
///
/// The documents returned by the iterator are grouped by the facet values that
/// determined their rank. For example, given the documents:
///
/// ```text
/// 0: { "colour": ["blue", "green"] }
/// 1: { "colour": ["blue", "red"] }
/// 2: { "colour": ["orange", "red"] }
/// 3: { "colour": ["green", "red"] }
/// 4: { "colour": ["blue", "orange", "red"] }
/// ```
/// Then calling the function on the candidates `[0, 2, 3, 4]` will return an iterator
/// over the following elements:
/// ```text
/// [0, 4] // corresponds to all the documents within the candidates that have the facet value "blue"
/// [3] // same for "green"
/// [2] // same for "orange"
/// END
/// ```
/// Note that once a document id is returned by the iterator, it is never returned again.
pub fn ascending_facet_sort<'t>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: RoaringBitmap,
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
let iter = db.range(rtxn, &(first_key..)).unwrap().take(usize::MAX);
Ok(itertools::Either::Left(AscendingFacetSort {
rtxn,
db,
field_id,
stack: vec![(candidates, iter)],
}))
} else {
Ok(itertools::Either::Right(std::iter::empty()))
}
}
struct AscendingFacetSort<'t, 'e> {
rtxn: &'t heed::RoTxn<'e>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
#[allow(clippy::type_complexity)]
stack: Vec<(
RoaringBitmap,
std::iter::Take<heed::RoRange<'t, FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>>,
)>,
}
impl<'t, 'e> Iterator for AscendingFacetSort<'t, 'e> {
type Item = Result<(RoaringBitmap, &'t [u8])>;
fn next(&mut self) -> Option<Self::Item> {
'outer: loop {
let (documents_ids, deepest_iter) = self.stack.last_mut()?;
for result in deepest_iter {
let (
FacetGroupKey { level, left_bound, field_id },
FacetGroupValue { size: group_size, mut bitmap },
) = result.unwrap();
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if field_id != self.field_id {
return None;
}
// If the last iterator found an empty set of documents it means
// that we found all the documents in the sub level iterations already,
// we can pop this level iterator.
if documents_ids.is_empty() {
// break our of the for loop into the end of the 'outer loop, which
// pops the stack
break;
}
bitmap &= &*documents_ids;
if !bitmap.is_empty() {
*documents_ids -= &bitmap;
if level == 0 {
// Since the level is 0, the left_bound is the exact value.
return Some(Ok((bitmap, left_bound)));
}
let starting_key_below =
FacetGroupKey { field_id: self.field_id, level: level - 1, left_bound };
let iter = match self.db.range(self.rtxn, &(starting_key_below..)) {
Ok(iter) => iter,
Err(e) => return Some(Err(e)),
}
.take(group_size as usize);
self.stack.push((bitmap, iter));
continue 'outer;
}
}
self.stack.pop();
}
}
}
#[cfg(test)]
mod tests {
use roaring::RoaringBitmap;
use crate::milli_snap;
use crate::search::facet::facet_sort_ascending::ascending_facet_sort;
use crate::search::facet::tests::{
get_random_looking_index, get_random_looking_string_index_with_multiple_field_ids,
get_simple_index, get_simple_string_index_with_multiple_field_ids,
};
use crate::snapshot_tests::display_bitmap;
#[test]
fn filter_sort_ascending() {
let indexes = [get_simple_index(), get_random_looking_index()];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (200..=300).collect::<RoaringBitmap>();
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 0, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, i);
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_ascending_multiple_field_ids() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (200..=300).collect::<RoaringBitmap>();
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, format!("{i}-0"));
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 1, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, format!("{i}-1"));
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_ascending_with_no_candidates() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for index in indexes {
let txn = index.env.read_txn().unwrap();
let candidates = RoaringBitmap::new();
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 1, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_ascending_with_inexisting_field_id() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for index in indexes {
let txn = index.env.read_txn().unwrap();
let candidates = RoaringBitmap::new();
let mut results = String::new();
let iter = ascending_facet_sort(&txn, index.content, 3, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
txn.commit().unwrap();
}
}
}

View File

@ -0,0 +1,244 @@
use std::ops::Bound;
use heed::Result;
use roaring::RoaringBitmap;
use super::{get_first_facet_value, get_highest_level, get_last_facet_value};
use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupValue, FacetGroupValueCodec,
};
use crate::heed_codec::BytesRefCodec;
/// See documentationg for [`ascending_facet_sort`](super::ascending_facet_sort).
///
/// This function does the same thing, but in the opposite order.
pub fn descending_facet_sort<'t>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: RoaringBitmap,
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
let highest_level = get_highest_level(rtxn, db, field_id)?;
if let Some(first_bound) = get_first_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)? {
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
let last_bound = get_last_facet_value::<BytesRefCodec, _>(rtxn, db, field_id)?.unwrap();
let last_key = FacetGroupKey { field_id, level: highest_level, left_bound: last_bound };
let iter = db.rev_range(rtxn, &(first_key..=last_key))?.take(usize::MAX);
Ok(itertools::Either::Left(DescendingFacetSort {
rtxn,
db,
field_id,
stack: vec![(candidates, iter, Bound::Included(last_bound))],
}))
} else {
Ok(itertools::Either::Right(std::iter::empty()))
}
}
struct DescendingFacetSort<'t> {
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
field_id: u16,
#[allow(clippy::type_complexity)]
stack: Vec<(
RoaringBitmap,
std::iter::Take<
heed::RoRevRange<'t, FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
>,
Bound<&'t [u8]>,
)>,
}
impl<'t> Iterator for DescendingFacetSort<'t> {
type Item = Result<(RoaringBitmap, &'t [u8])>;
fn next(&mut self) -> Option<Self::Item> {
'outer: loop {
let (documents_ids, deepest_iter, right_bound) = self.stack.last_mut()?;
for result in deepest_iter.by_ref() {
let (
FacetGroupKey { level, left_bound, field_id },
FacetGroupValue { size: group_size, mut bitmap },
) = result.unwrap();
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if field_id != self.field_id {
return None;
}
// If the last iterator found an empty set of documents it means
// that we found all the documents in the sub level iterations already,
// we can pop this level iterator.
if documents_ids.is_empty() {
break;
}
bitmap &= &*documents_ids;
if !bitmap.is_empty() {
*documents_ids -= &bitmap;
if level == 0 {
// Since we're at the level 0 the left_bound is the exact value.
return Some(Ok((bitmap, left_bound)));
}
let starting_key_below =
FacetGroupKey { field_id, level: level - 1, left_bound };
let end_key_kelow = match *right_bound {
Bound::Included(right) => Bound::Included(FacetGroupKey {
field_id,
level: level - 1,
left_bound: right,
}),
Bound::Excluded(right) => Bound::Excluded(FacetGroupKey {
field_id,
level: level - 1,
left_bound: right,
}),
Bound::Unbounded => Bound::Unbounded,
};
let prev_right_bound = *right_bound;
*right_bound = Bound::Excluded(left_bound);
let iter = match self
.db
.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>()
.rev_range(self.rtxn, &(Bound::Included(starting_key_below), end_key_kelow))
{
Ok(iter) => iter,
Err(e) => return Some(Err(e)),
}
.take(group_size as usize);
self.stack.push((bitmap, iter, prev_right_bound));
continue 'outer;
}
*right_bound = Bound::Excluded(left_bound);
}
self.stack.pop();
}
}
}
#[cfg(test)]
mod tests {
use roaring::RoaringBitmap;
use crate::heed_codec::facet::FacetGroupKeyCodec;
use crate::heed_codec::BytesRefCodec;
use crate::milli_snap;
use crate::search::facet::facet_sort_descending::descending_facet_sort;
use crate::search::facet::tests::{
get_random_looking_index, get_random_looking_string_index_with_multiple_field_ids,
get_simple_index, get_simple_index_with_multiple_field_ids,
get_simple_string_index_with_multiple_field_ids,
};
use crate::snapshot_tests::display_bitmap;
#[test]
fn filter_sort_descending() {
let indexes = [
get_simple_index(),
get_random_looking_index(),
get_simple_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (200..=300).collect::<RoaringBitmap>();
let mut results = String::new();
let db = index.content.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let iter = descending_facet_sort(&txn, db, 0, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, i);
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_descending_multiple_field_ids() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for (i, index) in indexes.iter().enumerate() {
let txn = index.env.read_txn().unwrap();
let candidates = (200..=300).collect::<RoaringBitmap>();
let mut results = String::new();
let db = index.content.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let iter = descending_facet_sort(&txn, db, 0, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, format!("{i}-0"));
let mut results = String::new();
let iter = descending_facet_sort(&txn, db, 1, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
milli_snap!(results, format!("{i}-1"));
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_ascending_with_no_candidates() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for index in indexes {
let txn = index.env.read_txn().unwrap();
let candidates = RoaringBitmap::new();
let mut results = String::new();
let iter = descending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
let mut results = String::new();
let iter = descending_facet_sort(&txn, index.content, 1, candidates).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
txn.commit().unwrap();
}
}
#[test]
fn filter_sort_ascending_with_inexisting_field_id() {
let indexes = [
get_simple_string_index_with_multiple_field_ids(),
get_random_looking_string_index_with_multiple_field_ids(),
];
for index in indexes {
let txn = index.env.read_txn().unwrap();
let candidates = RoaringBitmap::new();
let mut results = String::new();
let iter = descending_facet_sort(&txn, index.content, 3, candidates.clone()).unwrap();
for el in iter {
let (docids, _) = el.unwrap();
results.push_str(&display_bitmap(&docids));
results.push('\n');
}
assert!(results.is_empty());
txn.commit().unwrap();
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,227 @@
pub use facet_sort_ascending::ascending_facet_sort;
pub use facet_sort_descending::descending_facet_sort;
use heed::types::{Bytes, DecodeIgnore};
use heed::{BytesDecode, RoTxn};
use roaring::RoaringBitmap;
pub use self::facet_distribution::{FacetDistribution, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::filter::{BadGeoError, Filter};
pub use self::search::{FacetValueHit, SearchForFacetValues};
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::heed_codec::BytesRefCodec;
use crate::{Index, Result};
mod facet_distribution;
mod facet_distribution_iter;
mod facet_range_search;
mod facet_sort_ascending;
mod facet_sort_descending;
mod filter;
mod search;
fn facet_extreme_value<'t>(
mut extreme_it: impl Iterator<Item = heed::Result<(RoaringBitmap, &'t [u8])>> + 't,
) -> Result<Option<f64>> {
let extreme_value =
if let Some(extreme_value) = extreme_it.next() { extreme_value } else { return Ok(None) };
let (_, extreme_value) = extreme_value?;
OrderedF64Codec::bytes_decode(extreme_value)
.map(Some)
.map_err(heed::Error::Decoding)
.map_err(Into::into)
}
pub fn facet_min_value<'t>(
index: &'t Index,
rtxn: &'t heed::RoTxn<'t>,
field_id: u16,
candidates: RoaringBitmap,
) -> Result<Option<f64>> {
let db = index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let it = ascending_facet_sort(rtxn, db, field_id, candidates)?;
facet_extreme_value(it)
}
pub fn facet_max_value<'t>(
index: &'t Index,
rtxn: &'t heed::RoTxn<'t>,
field_id: u16,
candidates: RoaringBitmap,
) -> Result<Option<f64>> {
let db = index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let it = descending_facet_sort(rtxn, db, field_id, candidates)?;
facet_extreme_value(it)
}
/// Get the first facet value in the facet database
pub(crate) fn get_first_facet_value<'t, BoundCodec, DC>(
txn: &'t RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<Option<BoundCodec::DItem>>
where
BoundCodec: BytesDecode<'t>,
{
let mut level0prefix = vec![];
level0prefix.extend_from_slice(&field_id.to_be_bytes());
level0prefix.push(0);
let mut level0_iter_forward =
db.remap_types::<Bytes, DecodeIgnore>().prefix_iter(txn, level0prefix.as_slice())?;
if let Some(first) = level0_iter_forward.next() {
let (first_key, _) = first?;
let first_key = FacetGroupKeyCodec::<BoundCodec>::bytes_decode(first_key)
.map_err(heed::Error::Decoding)?;
Ok(Some(first_key.left_bound))
} else {
Ok(None)
}
}
/// Get the last facet value in the facet database
pub(crate) fn get_last_facet_value<'t, BoundCodec, DC>(
txn: &'t RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<Option<BoundCodec::DItem>>
where
BoundCodec: BytesDecode<'t>,
{
let mut level0prefix = vec![];
level0prefix.extend_from_slice(&field_id.to_be_bytes());
level0prefix.push(0);
let mut level0_iter_backward =
db.remap_types::<Bytes, DecodeIgnore>().rev_prefix_iter(txn, level0prefix.as_slice())?;
if let Some(last) = level0_iter_backward.next() {
let (last_key, _) = last?;
let last_key = FacetGroupKeyCodec::<BoundCodec>::bytes_decode(last_key)
.map_err(heed::Error::Decoding)?;
Ok(Some(last_key.left_bound))
} else {
Ok(None)
}
}
/// Get the height of the highest level in the facet database
pub(crate) fn get_highest_level<'t, DC>(
txn: &'t RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<BytesRefCodec>, DC>,
field_id: u16,
) -> heed::Result<u8> {
let field_id_prefix = &field_id.to_be_bytes();
Ok(db
.remap_types::<Bytes, DecodeIgnore>()
.rev_prefix_iter(txn, field_id_prefix)?
.next()
.map(|el| {
let (key, _) = el.unwrap();
let key = FacetGroupKeyCodec::<BytesRefCodec>::bytes_decode(key).unwrap();
key.level
})
.unwrap_or(0))
}
#[cfg(test)]
pub(crate) mod tests {
use rand::{Rng, SeedableRng};
use roaring::RoaringBitmap;
use crate::heed_codec::facet::OrderedF64Codec;
use crate::heed_codec::StrRefCodec;
use crate::update::facet::test_helpers::FacetIndex;
pub fn get_simple_index() -> FacetIndex<OrderedF64Codec> {
let index = FacetIndex::<OrderedF64Codec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
for i in 0..256u16 {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(i as u32);
index.insert(&mut txn, 0, &(i as f64), &bitmap);
}
txn.commit().unwrap();
index
}
pub fn get_random_looking_index() -> FacetIndex<OrderedF64Codec> {
let index = FacetIndex::<OrderedF64Codec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
let mut rng = rand::rngs::SmallRng::from_seed([0; 32]);
for key in std::iter::from_fn(|| Some(rng.gen_range(0..256))).take(128) {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(key);
bitmap.insert(key + 100);
index.insert(&mut txn, 0, &(key as f64), &bitmap);
}
txn.commit().unwrap();
index
}
pub fn get_simple_index_with_multiple_field_ids() -> FacetIndex<OrderedF64Codec> {
let index = FacetIndex::<OrderedF64Codec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
for fid in 0..2 {
for i in 0..256u16 {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(i as u32);
index.insert(&mut txn, fid, &(i as f64), &bitmap);
}
}
txn.commit().unwrap();
index
}
pub fn get_random_looking_index_with_multiple_field_ids() -> FacetIndex<OrderedF64Codec> {
let index = FacetIndex::<OrderedF64Codec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
let mut rng = rand::rngs::SmallRng::from_seed([0; 32]);
let keys =
std::iter::from_fn(|| Some(rng.gen_range(0..256))).take(128).collect::<Vec<u32>>();
for fid in 0..2 {
for &key in &keys {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(key);
bitmap.insert(key + 100);
index.insert(&mut txn, fid, &(key as f64), &bitmap);
}
}
txn.commit().unwrap();
index
}
pub fn get_simple_string_index_with_multiple_field_ids() -> FacetIndex<StrRefCodec> {
let index = FacetIndex::<StrRefCodec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
for fid in 0..2 {
for i in 0..256u16 {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(i as u32);
if i % 2 == 0 {
index.insert(&mut txn, fid, &format!("{i}").as_str(), &bitmap);
} else {
index.insert(&mut txn, fid, &"", &bitmap);
}
}
}
txn.commit().unwrap();
index
}
pub fn get_random_looking_string_index_with_multiple_field_ids() -> FacetIndex<StrRefCodec> {
let index = FacetIndex::<StrRefCodec>::new(4, 8, 5);
let mut txn = index.env.write_txn().unwrap();
let mut rng = rand::rngs::SmallRng::from_seed([0; 32]);
let keys =
std::iter::from_fn(|| Some(rng.gen_range(0..256))).take(128).collect::<Vec<u32>>();
for fid in 0..2 {
for &key in &keys {
let mut bitmap = RoaringBitmap::new();
bitmap.insert(key);
bitmap.insert(key + 100);
if key % 2 == 0 {
index.insert(&mut txn, fid, &format!("{key}").as_str(), &bitmap);
} else {
index.insert(&mut txn, fid, &"", &bitmap);
}
}
}
txn.commit().unwrap();
index
}
}

View File

@ -0,0 +1,358 @@
use std::cmp::{Ordering, Reverse};
use std::collections::BinaryHeap;
use std::ops::ControlFlow;
use charabia::normalizer::NormalizerOption;
use charabia::{Language, Normalize, StrDetection, Token};
use fst::automaton::{Automaton, Str};
use fst::{IntoStreamer, Streamer};
use roaring::RoaringBitmap;
use tracing::error;
use crate::error::UserError;
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupValue};
use crate::search::build_dfa;
use crate::{DocumentId, FieldId, OrderBy, Result, Search};
/// The maximum number of values per facet returned by the facet search route.
const DEFAULT_MAX_NUMBER_OF_VALUES_PER_FACET: usize = 100;
pub struct SearchForFacetValues<'a> {
query: Option<String>,
facet: String,
search_query: Search<'a>,
max_values: usize,
is_hybrid: bool,
locales: Option<Vec<Language>>,
}
impl<'a> SearchForFacetValues<'a> {
pub fn new(
facet: String,
search_query: Search<'a>,
is_hybrid: bool,
) -> SearchForFacetValues<'a> {
SearchForFacetValues {
query: None,
facet,
search_query,
max_values: DEFAULT_MAX_NUMBER_OF_VALUES_PER_FACET,
is_hybrid,
locales: None,
}
}
pub fn query(&mut self, query: impl Into<String>) -> &mut Self {
self.query = Some(query.into());
self
}
pub fn max_values(&mut self, max: usize) -> &mut Self {
self.max_values = max;
self
}
pub fn locales(&mut self, locales: Vec<Language>) -> &mut Self {
self.locales = Some(locales);
self
}
fn one_original_value_of(
&self,
field_id: FieldId,
facet_str: &str,
any_docid: DocumentId,
) -> Result<Option<String>> {
let index = self.search_query.index;
let rtxn = self.search_query.rtxn;
let key: (FieldId, _, &str) = (field_id, any_docid, facet_str);
Ok(index.field_id_docid_facet_strings.get(rtxn, &key)?.map(|v| v.to_owned()))
}
pub fn execute(&self) -> Result<Vec<FacetValueHit>> {
let index = self.search_query.index;
let rtxn = self.search_query.rtxn;
let filterable_fields = index.filterable_fields(rtxn)?;
if !filterable_fields.contains(&self.facet) {
let (valid_fields, hidden_fields) =
index.remove_hidden_fields(rtxn, filterable_fields)?;
return Err(UserError::InvalidFacetSearchFacetName {
field: self.facet.clone(),
valid_fields,
hidden_fields,
}
.into());
}
let fields_ids_map = index.fields_ids_map(rtxn)?;
let fid = match fields_ids_map.id(&self.facet) {
Some(fid) => fid,
// we return an empty list of results when the attribute has been
// set as filterable but no document contains this field (yet).
None => return Ok(Vec::new()),
};
let fst = match self.search_query.index.facet_id_string_fst.get(rtxn, &fid)? {
Some(fst) => fst,
None => return Ok(Vec::new()),
};
let search_candidates = self.search_query.execute_for_candidates(
self.is_hybrid
|| self
.search_query
.semantic
.as_ref()
.and_then(|semantic| semantic.vector.as_ref())
.is_some(),
)?;
let mut results = match index.sort_facet_values_by(rtxn)?.get(&self.facet) {
OrderBy::Lexicographic => ValuesCollection::by_lexicographic(self.max_values),
OrderBy::Count => ValuesCollection::by_count(self.max_values),
};
match self.query.as_ref() {
Some(query) => {
let query = normalize_facet_string(query, self.locales.as_deref());
let query = query.as_ref();
let authorize_typos = self.search_query.index.authorize_typos(rtxn)?;
let field_authorizes_typos =
!self.search_query.index.exact_attributes_ids(rtxn)?.contains(&fid);
if authorize_typos && field_authorizes_typos {
let exact_words_fst = self.search_query.index.exact_words(rtxn)?;
if exact_words_fst.map_or(false, |fst| fst.contains(query)) {
if fst.contains(query) {
self.fetch_original_facets_using_normalized(
fid,
query,
query,
&search_candidates,
&mut results,
)?;
}
} else {
let one_typo = self.search_query.index.min_word_len_one_typo(rtxn)?;
let two_typos = self.search_query.index.min_word_len_two_typos(rtxn)?;
let is_prefix = true;
let automaton = if query.len() < one_typo as usize {
build_dfa(query, 0, is_prefix)
} else if query.len() < two_typos as usize {
build_dfa(query, 1, is_prefix)
} else {
build_dfa(query, 2, is_prefix)
};
let mut stream = fst.search(automaton).into_stream();
while let Some(facet_value) = stream.next() {
let value = std::str::from_utf8(facet_value)?;
if self
.fetch_original_facets_using_normalized(
fid,
value,
query,
&search_candidates,
&mut results,
)?
.is_break()
{
break;
}
}
}
} else {
let automaton = Str::new(query).starts_with();
let mut stream = fst.search(automaton).into_stream();
while let Some(facet_value) = stream.next() {
let value = std::str::from_utf8(facet_value)?;
if self
.fetch_original_facets_using_normalized(
fid,
value,
query,
&search_candidates,
&mut results,
)?
.is_break()
{
break;
}
}
}
}
None => {
let prefix = FacetGroupKey { field_id: fid, level: 0, left_bound: "" };
for result in index.facet_id_string_docids.prefix_iter(rtxn, &prefix)? {
let (FacetGroupKey { left_bound, .. }, FacetGroupValue { bitmap, .. }) =
result?;
let count = search_candidates.intersection_len(&bitmap);
if count != 0 {
let value = self
.one_original_value_of(fid, left_bound, bitmap.min().unwrap())?
.unwrap_or_else(|| left_bound.to_string());
if results.insert(FacetValueHit { value, count }).is_break() {
break;
}
}
}
}
}
Ok(results.into_sorted_vec())
}
fn fetch_original_facets_using_normalized(
&self,
fid: FieldId,
value: &str,
query: &str,
search_candidates: &RoaringBitmap,
results: &mut ValuesCollection,
) -> Result<ControlFlow<()>> {
let index = self.search_query.index;
let rtxn = self.search_query.rtxn;
let database = index.facet_id_normalized_string_strings;
let key = (fid, value);
let original_strings = match database.get(rtxn, &key)? {
Some(original_strings) => original_strings,
None => {
error!("the facet value is missing from the facet database: {key:?}");
return Ok(ControlFlow::Continue(()));
}
};
for original in original_strings {
let key = FacetGroupKey { field_id: fid, level: 0, left_bound: original.as_str() };
let docids = match index.facet_id_string_docids.get(rtxn, &key)? {
Some(FacetGroupValue { bitmap, .. }) => bitmap,
None => {
error!("the facet value is missing from the facet database: {key:?}");
return Ok(ControlFlow::Continue(()));
}
};
let count = search_candidates.intersection_len(&docids);
if count != 0 {
let value = self
.one_original_value_of(fid, &original, docids.min().unwrap())?
.unwrap_or_else(|| query.to_string());
if results.insert(FacetValueHit { value, count }).is_break() {
break;
}
}
}
Ok(ControlFlow::Continue(()))
}
}
#[derive(Debug, Clone, serde::Serialize, PartialEq)]
pub struct FacetValueHit {
/// The original facet value
pub value: String,
/// The number of documents associated to this facet
pub count: u64,
}
impl PartialOrd for FacetValueHit {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for FacetValueHit {
fn cmp(&self, other: &Self) -> Ordering {
self.count.cmp(&other.count).then_with(|| self.value.cmp(&other.value))
}
}
impl Eq for FacetValueHit {}
/// A wrapper type that collects the best facet values by
/// lexicographic or number of associated values.
enum ValuesCollection {
/// Keeps the top values according to the lexicographic order.
Lexicographic { max: usize, content: Vec<FacetValueHit> },
/// Keeps the top values according to the number of values associated to them.
///
/// Note that it is a max heap and we need to move the smallest counts
/// at the top to be able to pop them when we reach the max_values limit.
Count { max: usize, content: BinaryHeap<Reverse<FacetValueHit>> },
}
impl ValuesCollection {
pub fn by_lexicographic(max: usize) -> Self {
ValuesCollection::Lexicographic { max, content: Vec::new() }
}
pub fn by_count(max: usize) -> Self {
ValuesCollection::Count { max, content: BinaryHeap::new() }
}
pub fn insert(&mut self, value: FacetValueHit) -> ControlFlow<()> {
match self {
ValuesCollection::Lexicographic { max, content } => {
if content.len() < *max {
content.push(value);
if content.len() < *max {
return ControlFlow::Continue(());
}
}
ControlFlow::Break(())
}
ValuesCollection::Count { max, content } => {
if content.len() == *max {
// Peeking gives us the worst value in the list as
// this is a max-heap and we reversed it.
let Some(mut peek) = content.peek_mut() else { return ControlFlow::Break(()) };
if peek.0.count <= value.count {
// Replace the current worst value in the heap
// with the new one we received that is better.
*peek = Reverse(value);
}
} else {
content.push(Reverse(value));
}
ControlFlow::Continue(())
}
}
}
/// Returns the list of facet values in descending order of, either,
/// count or lexicographic order of the value depending on the type.
pub fn into_sorted_vec(self) -> Vec<FacetValueHit> {
match self {
ValuesCollection::Lexicographic { content, .. } => content.into_iter().collect(),
ValuesCollection::Count { content, .. } => {
// Convert the heap into a vec of hits by removing the Reverse wrapper.
// Hits are already in the right order as they were reversed and there
// are output in ascending order.
content.into_sorted_vec().into_iter().map(|Reverse(hit)| hit).collect()
}
}
}
}
fn normalize_facet_string(facet_string: &str, locales: Option<&[Language]>) -> String {
let options = NormalizerOption { lossy: true, ..Default::default() };
let mut detection = StrDetection::new(facet_string, locales);
// Detect the language of the facet string only if several locales are explicitly provided.
let language = match locales {
Some(&[language]) => Some(language),
Some(multiple_locales) if multiple_locales.len() > 1 => detection.language(),
_ => None,
};
let token = Token {
lemma: std::borrow::Cow::Borrowed(facet_string),
script: detection.script(),
language,
..Default::default()
};
token.normalize(&options).lemma.into_owned()
}

View File

@ -0,0 +1,260 @@
---
source: milli/src/search/facet/facet_distribution_iter.rs
---
0: 1
1: 1
2: 1
3: 1
4: 1
5: 1
6: 1
7: 1
8: 1
9: 1
10: 1
11: 1
12: 1
13: 1
14: 1
15: 1
16: 1
17: 1
18: 1
19: 1
20: 1
21: 1
22: 1
23: 1
24: 1
25: 1
26: 1
27: 1
28: 1
29: 1
30: 1
31: 1
32: 1
33: 1
34: 1
35: 1
36: 1
37: 1
38: 1
39: 1
40: 1
41: 1
42: 1
43: 1
44: 1
45: 1
46: 1
47: 1
48: 1
49: 1
50: 1
51: 1
52: 1
53: 1
54: 1
55: 1
56: 1
57: 1
58: 1
59: 1
60: 1
61: 1
62: 1
63: 1
64: 1
65: 1
66: 1
67: 1
68: 1
69: 1
70: 1
71: 1
72: 1
73: 1
74: 1
75: 1
76: 1
77: 1
78: 1
79: 1
80: 1
81: 1
82: 1
83: 1
84: 1
85: 1
86: 1
87: 1
88: 1
89: 1
90: 1
91: 1
92: 1
93: 1
94: 1
95: 1
96: 1
97: 1
98: 1
99: 1
100: 1
101: 1
102: 1
103: 1
104: 1
105: 1
106: 1
107: 1
108: 1
109: 1
110: 1
111: 1
112: 1
113: 1
114: 1
115: 1
116: 1
117: 1
118: 1
119: 1
120: 1
121: 1
122: 1
123: 1
124: 1
125: 1
126: 1
127: 1
128: 1
129: 1
130: 1
131: 1
132: 1
133: 1
134: 1
135: 1
136: 1
137: 1
138: 1
139: 1
140: 1
141: 1
142: 1
143: 1
144: 1
145: 1
146: 1
147: 1
148: 1
149: 1
150: 1
151: 1
152: 1
153: 1
154: 1
155: 1
156: 1
157: 1
158: 1
159: 1
160: 1
161: 1
162: 1
163: 1
164: 1
165: 1
166: 1
167: 1
168: 1
169: 1
170: 1
171: 1
172: 1
173: 1
174: 1
175: 1
176: 1
177: 1
178: 1
179: 1
180: 1
181: 1
182: 1
183: 1
184: 1
185: 1
186: 1
187: 1
188: 1
189: 1
190: 1
191: 1
192: 1
193: 1
194: 1
195: 1
196: 1
197: 1
198: 1
199: 1
200: 1
201: 1
202: 1
203: 1
204: 1
205: 1
206: 1
207: 1
208: 1
209: 1
210: 1
211: 1
212: 1
213: 1
214: 1
215: 1
216: 1
217: 1
218: 1
219: 1
220: 1
221: 1
222: 1
223: 1
224: 1
225: 1
226: 1
227: 1
228: 1
229: 1
230: 1
231: 1
232: 1
233: 1
234: 1
235: 1
236: 1
237: 1
238: 1
239: 1
240: 1
241: 1
242: 1
243: 1
244: 1
245: 1
246: 1
247: 1
248: 1
249: 1
250: 1
251: 1
252: 1
253: 1
254: 1
255: 1

View File

@ -0,0 +1,105 @@
---
source: milli/src/search/facet/facet_distribution_iter.rs
---
3: 2
5: 2
6: 2
9: 2
10: 2
11: 2
14: 2
18: 2
19: 2
24: 2
26: 2
28: 2
29: 2
32: 2
33: 2
35: 2
36: 2
37: 2
38: 2
39: 2
41: 2
46: 2
47: 2
49: 2
52: 2
53: 2
55: 2
59: 2
61: 2
64: 2
68: 2
71: 2
74: 2
75: 2
76: 2
81: 2
83: 2
85: 2
86: 2
88: 2
90: 2
91: 2
92: 2
98: 2
99: 2
101: 2
102: 2
103: 2
107: 2
111: 2
115: 2
119: 2
123: 2
124: 2
130: 2
131: 2
133: 2
135: 2
136: 2
137: 2
139: 2
141: 2
143: 2
144: 2
147: 2
150: 2
156: 1
158: 1
160: 1
162: 1
163: 1
164: 1
167: 1
169: 1
173: 1
177: 1
178: 1
179: 1
181: 1
182: 1
186: 1
189: 1
192: 1
193: 1
195: 1
197: 1
205: 1
206: 1
207: 1
208: 1
209: 1
210: 1
216: 1
219: 1
220: 1
223: 1
226: 1
235: 1
236: 1
238: 1
243: 1

View File

@ -0,0 +1,104 @@
---
source: milli/src/search/facet/facet_distribution_iter.rs
---
0: 1
1: 1
2: 1
3: 1
4: 1
5: 1
6: 1
7: 1
8: 1
9: 1
10: 1
11: 1
12: 1
13: 1
14: 1
15: 1
16: 1
17: 1
18: 1
19: 1
20: 1
21: 1
22: 1
23: 1
24: 1
25: 1
26: 1
27: 1
28: 1
29: 1
30: 1
31: 1
32: 1
33: 1
34: 1
35: 1
36: 1
37: 1
38: 1
39: 1
40: 1
41: 1
42: 1
43: 1
44: 1
45: 1
46: 1
47: 1
48: 1
49: 1
50: 1
51: 1
52: 1
53: 1
54: 1
55: 1
56: 1
57: 1
58: 1
59: 1
60: 1
61: 1
62: 1
63: 1
64: 1
65: 1
66: 1
67: 1
68: 1
69: 1
70: 1
71: 1
72: 1
73: 1
74: 1
75: 1
76: 1
77: 1
78: 1
79: 1
80: 1
81: 1
82: 1
83: 1
84: 1
85: 1
86: 1
87: 1
88: 1
89: 1
90: 1
91: 1
92: 1
93: 1
94: 1
95: 1
96: 1
97: 1
98: 1
99: 1

View File

@ -0,0 +1,104 @@
---
source: milli/src/search/facet/facet_distribution_iter.rs
---
3: 2
5: 2
6: 2
9: 2
10: 2
11: 2
14: 2
18: 2
19: 2
24: 2
26: 2
28: 2
29: 2
32: 2
33: 2
35: 2
36: 2
37: 2
38: 2
39: 2
41: 2
46: 2
47: 2
49: 2
52: 2
53: 2
55: 2
59: 2
61: 2
64: 2
68: 2
71: 2
74: 2
75: 2
76: 2
81: 2
83: 2
85: 2
86: 2
88: 2
90: 2
91: 2
92: 2
98: 2
99: 2
101: 2
102: 2
103: 2
107: 2
111: 2
115: 2
119: 2
123: 2
124: 2
130: 2
131: 2
133: 2
135: 2
136: 2
137: 2
139: 2
141: 2
143: 2
144: 2
147: 2
150: 2
156: 1
158: 1
160: 1
162: 1
163: 1
164: 1
167: 1
169: 1
173: 1
177: 1
178: 1
179: 1
181: 1
182: 1
186: 1
189: 1
192: 1
193: 1
195: 1
197: 1
205: 1
206: 1
207: 1
208: 1
209: 1
210: 1
216: 1
219: 1
220: 1
223: 1
226: 1
235: 1
236: 1
238: 1

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
adf484f467a31ee9460dec539621938a

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
c9939aa4977fcd4bfd35852e102dbc82

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
adf484f467a31ee9460dec539621938a

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
c9939aa4977fcd4bfd35852e102dbc82

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
618738d28ff1386b6e93d171a5acb08f

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
ffb62ab3eef55c2254c13dc0f4099849

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
618738d28ff1386b6e93d171a5acb08f

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
ffb62ab3eef55c2254c13dc0f4099849

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
9c25261cec7275cb5cfd85835904d023

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
2f97f18c15e915853e4df879be6e1f63

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
9c25261cec7275cb5cfd85835904d023

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
2f97f18c15e915853e4df879be6e1f63

View File

@ -0,0 +1,260 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
0: []
1: []
2: []
3: []
4: []
5: []
6: []
7: []
8: []
9: []
10: []
11: []
12: []
13: []
14: []
15: []
16: []
17: []
18: []
19: []
20: []
21: []
22: []
23: []
24: []
25: []
26: []
27: []
28: []
29: []
30: []
31: []
32: []
33: []
34: []
35: []
36: []
37: []
38: []
39: []
40: []
41: []
42: []
43: []
44: []
45: []
46: []
47: []
48: []
49: []
50: []
51: []
52: []
53: []
54: []
55: []
56: []
57: []
58: []
59: []
60: []
61: []
62: []
63: []
64: []
65: []
66: []
67: []
68: []
69: []
70: []
71: []
72: []
73: []
74: []
75: []
76: []
77: []
78: []
79: []
80: []
81: []
82: []
83: []
84: []
85: []
86: []
87: []
88: []
89: []
90: []
91: []
92: []
93: []
94: []
95: []
96: []
97: []
98: []
99: []
100: []
101: []
102: []
103: []
104: []
105: []
106: []
107: []
108: []
109: []
110: []
111: []
112: []
113: []
114: []
115: []
116: []
117: []
118: []
119: []
120: []
121: []
122: []
123: []
124: []
125: []
126: []
127: []
128: []
129: []
130: []
131: []
132: []
133: []
134: []
135: []
136: []
137: []
138: []
139: []
140: []
141: []
142: []
143: []
144: []
145: []
146: []
147: []
148: []
149: []
150: []
151: []
152: []
153: []
154: []
155: []
156: []
157: []
158: []
159: []
160: []
161: []
162: []
163: []
164: []
165: []
166: []
167: []
168: []
169: []
170: []
171: []
172: []
173: []
174: []
175: []
176: []
177: []
178: []
179: []
180: []
181: []
182: []
183: []
184: []
185: []
186: []
187: []
188: []
189: []
190: []
191: []
192: []
193: []
194: []
195: []
196: []
197: []
198: []
199: []
200: []
201: []
202: []
203: []
204: []
205: []
206: []
207: []
208: []
209: []
210: []
211: []
212: []
213: []
214: []
215: []
216: []
217: []
218: []
219: []
220: []
221: []
222: []
223: []
224: []
225: []
226: []
227: []
228: []
229: []
230: []
231: []
232: []
233: []
234: []
235: []
236: []
237: []
238: []
239: []
240: []
241: []
242: []
243: []
244: []
245: []
246: []
247: []
248: []
249: []
250: []
251: []
252: []
253: []
254: []
255: []

View File

@ -0,0 +1,260 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
0: []
1: []
2: []
3: []
4: []
5: []
6: []
7: []
8: []
9: []
10: []
11: []
12: []
13: []
14: []
15: []
16: []
17: []
18: []
19: []
20: []
21: []
22: []
23: []
24: []
25: []
26: []
27: []
28: []
29: []
30: []
31: []
32: []
33: []
34: []
35: []
36: []
37: []
38: []
39: []
40: []
41: []
42: []
43: []
44: []
45: []
46: []
47: []
48: []
49: []
50: []
51: []
52: []
53: []
54: []
55: []
56: []
57: []
58: []
59: []
60: []
61: []
62: []
63: []
64: []
65: []
66: []
67: []
68: []
69: []
70: []
71: []
72: []
73: []
74: []
75: []
76: []
77: []
78: []
79: []
80: []
81: []
82: []
83: []
84: []
85: []
86: []
87: []
88: []
89: []
90: []
91: []
92: []
93: []
94: []
95: []
96: []
97: []
98: []
99: []
100: []
101: []
102: []
103: []
104: []
105: []
106: []
107: []
108: []
109: []
110: []
111: []
112: []
113: []
114: []
115: []
116: []
117: []
118: []
119: []
120: []
121: []
122: []
123: []
124: []
125: []
126: []
127: []
128: []
129: []
130: []
131: []
132: []
133: []
134: []
135: []
136: []
137: []
138: []
139: []
140: []
141: []
142: []
143: []
144: []
145: []
146: []
147: []
148: []
149: []
150: []
151: []
152: []
153: []
154: []
155: []
156: []
157: []
158: []
159: []
160: []
161: []
162: []
163: []
164: []
165: []
166: []
167: []
168: []
169: []
170: []
171: []
172: []
173: []
174: []
175: []
176: []
177: []
178: []
179: []
180: []
181: []
182: []
183: []
184: []
185: []
186: []
187: []
188: []
189: []
190: []
191: []
192: []
193: []
194: []
195: []
196: []
197: []
198: []
199: []
200: []
201: []
202: []
203: []
204: []
205: []
206: []
207: []
208: []
209: []
210: []
211: []
212: []
213: []
214: []
215: []
216: []
217: []
218: []
219: []
220: []
221: []
222: []
223: []
224: []
225: []
226: []
227: []
228: []
229: []
230: []
231: []
232: []
233: []
234: []
235: []
236: []
237: []
238: []
239: []
240: []
241: []
242: []
243: []
244: []
245: []
246: []
247: []
248: []
249: []
250: []
251: []
252: []
253: []
254: []
255: []

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
9c25261cec7275cb5cfd85835904d023

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
2f97f18c15e915853e4df879be6e1f63

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
e849066b0e43d5c456f086c552372afc

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
8cc5e82995b0443b660f419bb9ea2e85

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
e849066b0e43d5c456f086c552372afc

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
8cc5e82995b0443b660f419bb9ea2e85

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
73b48005dc57b04f0939bbf21a68dab6

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
3c23d35627667dcee98468bfdecf09d3

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
73b48005dc57b04f0939bbf21a68dab6

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
3c23d35627667dcee98468bfdecf09d3

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
c3f8b0b858a4820a508b25b42328cedd

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
38a42f5dc25e99d7a5312a63ce94ed30

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
c3f8b0b858a4820a508b25b42328cedd

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
38a42f5dc25e99d7a5312a63ce94ed30

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
2049930204498b323885c91de88e44ca

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
7f0ca8c0fc6494f3dba46e8eb9699045

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
2049930204498b323885c91de88e44ca

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
7f0ca8c0fc6494f3dba46e8eb9699045

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
ad8fc873747aaf1d3590e7ccab735985

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
7c6cc88697da835d33877b2df41fa1cb

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
ad8fc873747aaf1d3590e7ccab735985

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
7c6cc88697da835d33877b2df41fa1cb

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
9a8c7343b4735d37704748cabcd51ff2

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
898a7dc25a1441bc3e7e2a8a62d99090

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
9a8c7343b4735d37704748cabcd51ff2

View File

@ -0,0 +1,4 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
898a7dc25a1441bc3e7e2a8a62d99090

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 0: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, ]

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 0: [3, 5, 6, 9, 10, 11, 14, 18, 19, 24, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 41, 46, 47, 49, 52, 53, 55, 59, 61, 64, 68, 71, 74, 75, 76, 81, 83, 85, 86, 88, 90, 91, 92, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 167, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 215, 216, 219, 220, 223, 224, 226, 230, 231, 233, 235, 236, 237, 238, 239, 241, 243, 244, 247, 250, 256, 258, 260, 262, 263, 264, 267, 269, 273, 277, 278, 279, 281, 282, 286, 289, 292, 293, 295, 297, 305, 306, 307, 308, 309, 310, 316, 319, 320, 323, 326, 335, 336, 338, 343, ]

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 0: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, ]

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 0: [3, 5, 6, 9, 10, 11, 14, 18, 19, 24, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 41, 46, 47, 49, 52, 53, 55, 59, 61, 64, 68, 71, 74, 75, 76, 81, 83, 85, 86, 88, 90, 91, 92, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 167, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 215, 216, 219, 220, 223, 224, 226, 230, 231, 233, 235, 236, 237, 238, 239, 241, 243, 244, 247, 250, 256, 258, 260, 262, 263, 264, 267, 269, 273, 277, 278, 279, 281, 282, 286, 289, 292, 293, 295, 297, 305, 306, 307, 308, 309, 310, 316, 319, 320, 323, 326, 335, 336, 338, 343, ]

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 1: []

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 1: []

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, ]

View File

@ -0,0 +1,5 @@
---
source: milli/src/search/facet/facet_range_search.rs
---
all field_id 1: [3, 5, 6, 9, 10, 11, 14, 18, 19, 24, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 41, 46, 47, 49, 52, 53, 55, 59, 61, 64, 68, 71, 74, 75, 76, 81, 83, 85, 86, 88, 90, 91, 92, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 167, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 215, 216, 219, 220, 223, 224, 226, 230, 231, 233, 235, 236, 237, 238, 239, 241, 243, 244, 247, 250, 256, 258, 260, 262, 263, 264, 267, 269, 273, 277, 278, 279, 281, 282, 286, 289, 292, 293, 295, 297, 305, 306, 307, 308, 309, 310, 316, 319, 320, 323, 326, 335, 336, 338, 343, ]

View File

@ -0,0 +1,60 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[200, ]
[201, ]
[202, ]
[203, ]
[204, ]
[205, ]
[206, ]
[207, ]
[208, ]
[209, ]
[210, ]
[211, ]
[212, ]
[213, ]
[214, ]
[215, ]
[216, ]
[217, ]
[218, ]
[219, ]
[220, ]
[221, ]
[222, ]
[223, ]
[224, ]
[225, ]
[226, ]
[227, ]
[228, ]
[229, ]
[230, ]
[231, ]
[232, ]
[233, ]
[234, ]
[235, ]
[236, ]
[237, ]
[238, ]
[239, ]
[240, ]
[241, ]
[242, ]
[243, ]
[244, ]
[245, ]
[246, ]
[247, ]
[248, ]
[249, ]
[250, ]
[251, ]
[252, ]
[253, ]
[254, ]
[255, ]

View File

@ -0,0 +1,54 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[201, ]
[202, ]
[203, ]
[207, ]
[211, ]
[215, ]
[219, ]
[223, ]
[224, ]
[230, ]
[231, ]
[233, ]
[235, ]
[236, ]
[237, ]
[239, ]
[241, ]
[243, ]
[244, ]
[247, ]
[250, ]
[256, ]
[258, ]
[260, ]
[262, ]
[263, ]
[264, ]
[267, ]
[269, ]
[273, ]
[277, ]
[278, ]
[279, ]
[281, ]
[282, ]
[286, ]
[289, ]
[292, ]
[293, ]
[295, ]
[297, ]
[205, ]
[206, ]
[208, ]
[209, ]
[210, ]
[216, ]
[220, ]
[226, ]
[238, ]

View File

@ -0,0 +1,33 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, ]
[200, ]
[202, ]
[204, ]
[206, ]
[208, ]
[210, ]
[212, ]
[214, ]
[216, ]
[218, ]
[220, ]
[222, ]
[224, ]
[226, ]
[228, ]
[230, ]
[232, ]
[234, ]
[236, ]
[238, ]
[240, ]
[242, ]
[244, ]
[246, ]
[248, ]
[250, ]
[252, ]
[254, ]

View File

@ -0,0 +1,33 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, ]
[200, ]
[202, ]
[204, ]
[206, ]
[208, ]
[210, ]
[212, ]
[214, ]
[216, ]
[218, ]
[220, ]
[222, ]
[224, ]
[226, ]
[228, ]
[230, ]
[232, ]
[234, ]
[236, ]
[238, ]
[240, ]
[242, ]
[244, ]
[246, ]
[248, ]
[250, ]
[252, ]
[254, ]

View File

@ -0,0 +1,27 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[201, 203, 205, 207, 209, 211, 215, 219, 223, 231, 233, 235, 237, 239, 241, 243, 247, 263, 267, 269, 273, 277, 279, 281, 289, 293, 295, 297, ]
[202, ]
[224, ]
[230, ]
[236, ]
[244, ]
[250, ]
[256, ]
[258, ]
[260, ]
[262, ]
[264, ]
[278, ]
[282, ]
[286, ]
[292, ]
[206, ]
[208, ]
[210, ]
[216, ]
[220, ]
[226, ]
[238, ]

View File

@ -0,0 +1,27 @@
---
source: milli/src/search/facet/facet_sort_ascending.rs
---
[201, 203, 205, 207, 209, 211, 215, 219, 223, 231, 233, 235, 237, 239, 241, 243, 247, 263, 267, 269, 273, 277, 279, 281, 289, 293, 295, 297, ]
[202, ]
[224, ]
[230, ]
[236, ]
[244, ]
[250, ]
[256, ]
[258, ]
[260, ]
[262, ]
[264, ]
[278, ]
[282, ]
[286, ]
[292, ]
[206, ]
[208, ]
[210, ]
[216, ]
[220, ]
[226, ]
[238, ]

View File

@ -0,0 +1,60 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[255, ]
[254, ]
[253, ]
[252, ]
[251, ]
[250, ]
[249, ]
[248, ]
[247, ]
[246, ]
[245, ]
[244, ]
[243, ]
[242, ]
[241, ]
[240, ]
[239, ]
[238, ]
[237, ]
[236, ]
[235, ]
[234, ]
[233, ]
[232, ]
[231, ]
[230, ]
[229, ]
[228, ]
[227, ]
[226, ]
[225, ]
[224, ]
[223, ]
[222, ]
[221, ]
[220, ]
[219, ]
[218, ]
[217, ]
[216, ]
[215, ]
[214, ]
[213, ]
[212, ]
[211, ]
[210, ]
[209, ]
[208, ]
[207, ]
[206, ]
[205, ]
[204, ]
[203, ]
[202, ]
[201, ]
[200, ]

View File

@ -0,0 +1,54 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[243, ]
[238, ]
[236, ]
[235, ]
[226, ]
[223, ]
[220, ]
[219, ]
[216, ]
[210, ]
[209, ]
[208, ]
[207, ]
[206, ]
[205, ]
[297, ]
[295, ]
[293, ]
[292, ]
[289, ]
[286, ]
[282, ]
[281, ]
[279, ]
[278, ]
[277, ]
[273, ]
[269, ]
[267, ]
[264, ]
[263, ]
[262, ]
[260, ]
[258, ]
[256, ]
[250, ]
[247, ]
[244, ]
[241, ]
[239, ]
[237, ]
[233, ]
[231, ]
[230, ]
[224, ]
[215, ]
[211, ]
[203, ]
[202, ]
[201, ]

View File

@ -0,0 +1,60 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[255, ]
[254, ]
[253, ]
[252, ]
[251, ]
[250, ]
[249, ]
[248, ]
[247, ]
[246, ]
[245, ]
[244, ]
[243, ]
[242, ]
[241, ]
[240, ]
[239, ]
[238, ]
[237, ]
[236, ]
[235, ]
[234, ]
[233, ]
[232, ]
[231, ]
[230, ]
[229, ]
[228, ]
[227, ]
[226, ]
[225, ]
[224, ]
[223, ]
[222, ]
[221, ]
[220, ]
[219, ]
[218, ]
[217, ]
[216, ]
[215, ]
[214, ]
[213, ]
[212, ]
[211, ]
[210, ]
[209, ]
[208, ]
[207, ]
[206, ]
[205, ]
[204, ]
[203, ]
[202, ]
[201, ]
[200, ]

View File

@ -0,0 +1,33 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[254, ]
[252, ]
[250, ]
[248, ]
[246, ]
[244, ]
[242, ]
[240, ]
[238, ]
[236, ]
[234, ]
[232, ]
[230, ]
[228, ]
[226, ]
[224, ]
[222, ]
[220, ]
[218, ]
[216, ]
[214, ]
[212, ]
[210, ]
[208, ]
[206, ]
[204, ]
[202, ]
[200, ]
[201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, ]

View File

@ -0,0 +1,33 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[254, ]
[252, ]
[250, ]
[248, ]
[246, ]
[244, ]
[242, ]
[240, ]
[238, ]
[236, ]
[234, ]
[232, ]
[230, ]
[228, ]
[226, ]
[224, ]
[222, ]
[220, ]
[218, ]
[216, ]
[214, ]
[212, ]
[210, ]
[208, ]
[206, ]
[204, ]
[202, ]
[200, ]
[201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, ]

View File

@ -0,0 +1,27 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[238, ]
[236, ]
[226, ]
[220, ]
[216, ]
[210, ]
[208, ]
[206, ]
[292, ]
[286, ]
[282, ]
[278, ]
[264, ]
[262, ]
[260, ]
[258, ]
[256, ]
[250, ]
[244, ]
[230, ]
[224, ]
[202, ]
[201, 203, 205, 207, 209, 211, 215, 219, 223, 231, 233, 235, 237, 239, 241, 243, 247, 263, 267, 269, 273, 277, 279, 281, 289, 293, 295, 297, ]

View File

@ -0,0 +1,27 @@
---
source: milli/src/search/facet/facet_sort_descending.rs
---
[238, ]
[236, ]
[226, ]
[220, ]
[216, ]
[210, ]
[208, ]
[206, ]
[292, ]
[286, ]
[282, ]
[278, ]
[264, ]
[262, ]
[260, ]
[258, ]
[256, ]
[250, ]
[244, ]
[230, ]
[224, ]
[202, ]
[201, 203, 205, 207, 209, 211, 215, 219, 223, 231, 233, 235, 237, 239, 241, 243, 247, 263, 267, 269, 273, 277, 279, 281, 289, 293, 295, 297, ]