mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-07-29 18:04:47 +00:00
Apply a few optimisations for graph-based ranking rules
This commit is contained in:
@ -1,40 +1,54 @@
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::{Edge, RankingRuleGraph, RankingRuleGraphTrait};
|
||||
use crate::new::small_bitmap::SmallBitmap;
|
||||
use crate::new::{QueryGraph, SearchContext};
|
||||
use crate::Result;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
pub fn build(ctx: &mut SearchContext, query_graph: QueryGraph) -> Result<Self> {
|
||||
let mut ranking_rule_graph =
|
||||
Self { query_graph, all_edges: vec![], node_edges: vec![], successors: vec![] };
|
||||
let QueryGraph { nodes: graph_nodes, edges: graph_edges, .. } = &query_graph;
|
||||
|
||||
for (node_idx, node) in ranking_rule_graph.query_graph.nodes.iter().enumerate() {
|
||||
ranking_rule_graph.node_edges.push(RoaringBitmap::new());
|
||||
ranking_rule_graph.successors.push(RoaringBitmap::new());
|
||||
let new_edges = ranking_rule_graph.node_edges.last_mut().unwrap();
|
||||
let new_successors = ranking_rule_graph.successors.last_mut().unwrap();
|
||||
let mut all_edges = vec![];
|
||||
let mut node_edges = vec![];
|
||||
let mut successors = vec![];
|
||||
|
||||
for (node_idx, node) in graph_nodes.iter().enumerate() {
|
||||
node_edges.push(HashSet::new());
|
||||
successors.push(HashSet::new());
|
||||
let new_edges = node_edges.last_mut().unwrap();
|
||||
let new_successors = successors.last_mut().unwrap();
|
||||
|
||||
let Some(from_node_data) = G::build_visit_from_node(ctx, node)? else { continue };
|
||||
|
||||
for successor_idx in ranking_rule_graph.query_graph.edges[node_idx].successors.iter() {
|
||||
let to_node = &ranking_rule_graph.query_graph.nodes[successor_idx as usize];
|
||||
for successor_idx in graph_edges[node_idx].successors.iter() {
|
||||
let to_node = &graph_nodes[successor_idx as usize];
|
||||
let mut edges = G::build_visit_to_node(ctx, to_node, &from_node_data)?;
|
||||
if edges.is_empty() {
|
||||
continue;
|
||||
}
|
||||
edges.sort_by_key(|e| e.0);
|
||||
for (cost, details) in edges {
|
||||
ranking_rule_graph.all_edges.push(Some(Edge {
|
||||
from_node: node_idx as u32,
|
||||
all_edges.push(Some(Edge {
|
||||
from_node: node_idx as u16,
|
||||
to_node: successor_idx,
|
||||
cost,
|
||||
details,
|
||||
}));
|
||||
new_edges.insert(ranking_rule_graph.all_edges.len() as u32 - 1);
|
||||
new_edges.insert(all_edges.len() as u16 - 1);
|
||||
new_successors.insert(successor_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(ranking_rule_graph)
|
||||
let node_edges = node_edges
|
||||
.into_iter()
|
||||
.map(|edges| SmallBitmap::from_iter(edges.into_iter(), all_edges.len() as u16))
|
||||
.collect();
|
||||
let successors = successors
|
||||
.into_iter()
|
||||
.map(|edges| SmallBitmap::from_iter(edges.into_iter(), all_edges.len() as u16))
|
||||
.collect();
|
||||
|
||||
Ok(RankingRuleGraph { query_graph, all_edges, node_edges, successors })
|
||||
}
|
||||
}
|
||||
|
@ -2,124 +2,146 @@
|
||||
|
||||
use super::empty_paths_cache::EmptyPathsCache;
|
||||
use super::{RankingRuleGraph, RankingRuleGraphTrait};
|
||||
use crate::new::small_bitmap::SmallBitmap;
|
||||
use crate::Result;
|
||||
use std::collections::VecDeque;
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
||||
pub struct Path {
|
||||
pub edges: Vec<u32>,
|
||||
pub edges: Vec<u16>,
|
||||
pub cost: u64,
|
||||
}
|
||||
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
pub fn paths_of_cost(
|
||||
&self,
|
||||
pub fn visit_paths_of_cost(
|
||||
&mut self,
|
||||
from: usize,
|
||||
cost: u64,
|
||||
all_distances: &[Vec<u64>],
|
||||
empty_paths_cache: &EmptyPathsCache,
|
||||
) -> Vec<Vec<u32>> {
|
||||
let mut paths = vec![];
|
||||
self.paths_of_cost_rec(
|
||||
cost: u16,
|
||||
all_distances: &[Vec<u16>],
|
||||
empty_paths_cache: &mut EmptyPathsCache,
|
||||
mut visit: impl FnMut(&[u16], &mut Self, &mut EmptyPathsCache) -> Result<()>,
|
||||
) -> Result<()> {
|
||||
let _ = self.visit_paths_of_cost_rec(
|
||||
from,
|
||||
all_distances,
|
||||
cost,
|
||||
&mut vec![],
|
||||
&mut paths,
|
||||
&vec![false; self.all_edges.len()],
|
||||
all_distances,
|
||||
empty_paths_cache,
|
||||
);
|
||||
paths
|
||||
&mut visit,
|
||||
&mut vec![],
|
||||
&mut SmallBitmap::new(self.all_edges.len() as u16),
|
||||
empty_paths_cache.empty_edges.clone(),
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
pub fn paths_of_cost_rec(
|
||||
&self,
|
||||
pub fn visit_paths_of_cost_rec(
|
||||
&mut self,
|
||||
from: usize,
|
||||
all_distances: &[Vec<u64>],
|
||||
cost: u64,
|
||||
prev_edges: &mut Vec<u32>,
|
||||
paths: &mut Vec<Vec<u32>>,
|
||||
forbidden_edges: &[bool],
|
||||
empty_paths_cache: &EmptyPathsCache,
|
||||
) {
|
||||
let distances = &all_distances[from];
|
||||
if !distances.contains(&cost) {
|
||||
panic!();
|
||||
}
|
||||
let tos = &self.query_graph.edges[from].successors;
|
||||
let mut valid_edges = vec![];
|
||||
for to in tos {
|
||||
self.visit_edges::<()>(from as u32, to, |edge_idx, edge| {
|
||||
if cost >= edge.cost as u64
|
||||
&& all_distances[to as usize].contains(&(cost - edge.cost as u64))
|
||||
&& !forbidden_edges[edge_idx as usize]
|
||||
{
|
||||
valid_edges.push((edge_idx, edge.cost, to));
|
||||
}
|
||||
std::ops::ControlFlow::Continue(())
|
||||
});
|
||||
}
|
||||
cost: u16,
|
||||
// TODO: replace all_distances with a Vec<SmallBitmap> where the SmallBitmap contains true if the cost exists and false otherwise
|
||||
all_distances: &[Vec<u16>],
|
||||
empty_paths_cache: &mut EmptyPathsCache,
|
||||
visit: &mut impl FnMut(&[u16], &mut Self, &mut EmptyPathsCache) -> Result<()>,
|
||||
// replace prev edges by:
|
||||
// (1) a small bitmap representing the path
|
||||
// (2) a pointer within the EmptyPathsCache::forbidden_prefixes structure
|
||||
prev_edges: &mut Vec<u16>,
|
||||
cur_path: &mut SmallBitmap,
|
||||
mut forbidden_edges: SmallBitmap,
|
||||
) -> Result<bool> {
|
||||
let mut any_valid = false;
|
||||
|
||||
for (edge_idx, edge_cost, to) in valid_edges {
|
||||
prev_edges.push(edge_idx);
|
||||
if empty_paths_cache.empty_prefixes.contains_prefix_of_path(prev_edges) {
|
||||
let edges = self.node_edges[from].clone();
|
||||
for edge_idx in edges.iter() {
|
||||
let Some(edge) = self.all_edges[edge_idx as usize].as_ref() else { continue };
|
||||
if cost < edge.cost as u16
|
||||
|| forbidden_edges.contains(edge_idx)
|
||||
|| !all_distances[edge.to_node as usize].contains(&(cost - edge.cost as u16))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
let mut new_forbidden_edges = forbidden_edges.to_vec();
|
||||
for edge_idx in empty_paths_cache.empty_couple_edges[edge_idx as usize].iter() {
|
||||
new_forbidden_edges[*edge_idx as usize] = true;
|
||||
}
|
||||
for edge_idx in empty_paths_cache.empty_prefixes.final_edges_ater_prefix(prev_edges) {
|
||||
new_forbidden_edges[edge_idx as usize] = true;
|
||||
}
|
||||
cur_path.insert(edge_idx);
|
||||
prev_edges.push(edge_idx);
|
||||
|
||||
if to == self.query_graph.end_node {
|
||||
paths.push(prev_edges.clone());
|
||||
let mut new_forbidden_edges = forbidden_edges.clone();
|
||||
new_forbidden_edges.union(&empty_paths_cache.empty_couple_edges[edge_idx as usize]);
|
||||
empty_paths_cache.empty_prefixes.final_edges_after_prefix(prev_edges, &mut |x| {
|
||||
new_forbidden_edges.insert(x);
|
||||
});
|
||||
|
||||
let next_any_valid = if edge.to_node == self.query_graph.end_node {
|
||||
any_valid = true;
|
||||
visit(prev_edges, self, empty_paths_cache)?;
|
||||
true
|
||||
} else {
|
||||
self.paths_of_cost_rec(
|
||||
to as usize,
|
||||
self.visit_paths_of_cost_rec(
|
||||
edge.to_node as usize,
|
||||
cost - edge.cost as u16,
|
||||
all_distances,
|
||||
cost - edge_cost as u64,
|
||||
prev_edges,
|
||||
paths,
|
||||
&new_forbidden_edges,
|
||||
empty_paths_cache,
|
||||
)
|
||||
}
|
||||
visit,
|
||||
prev_edges,
|
||||
cur_path,
|
||||
new_forbidden_edges,
|
||||
)?
|
||||
};
|
||||
any_valid |= next_any_valid;
|
||||
cur_path.remove(edge_idx);
|
||||
prev_edges.pop();
|
||||
if next_any_valid {
|
||||
if empty_paths_cache.path_is_empty(prev_edges, cur_path) {
|
||||
return Ok(any_valid);
|
||||
}
|
||||
forbidden_edges.union(&empty_paths_cache.empty_edges);
|
||||
for edge in prev_edges.iter() {
|
||||
forbidden_edges.union(&empty_paths_cache.empty_couple_edges[*edge as usize]);
|
||||
}
|
||||
empty_paths_cache.empty_prefixes.final_edges_after_prefix(prev_edges, &mut |x| {
|
||||
forbidden_edges.insert(x);
|
||||
});
|
||||
}
|
||||
if next_any_valid && empty_paths_cache.path_is_empty(prev_edges, cur_path) {
|
||||
return Ok(any_valid);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(any_valid)
|
||||
}
|
||||
|
||||
pub fn initialize_distances_cheapest(&self) -> Vec<Vec<u64>> {
|
||||
let mut distances_to_end: Vec<Vec<u64>> = vec![vec![]; self.query_graph.nodes.len()];
|
||||
let mut enqueued = vec![false; self.query_graph.nodes.len()];
|
||||
pub fn initialize_distances_cheapest(&self) -> Vec<Vec<u16>> {
|
||||
let mut distances_to_end: Vec<Vec<u16>> = vec![vec![]; self.query_graph.nodes.len()];
|
||||
let mut enqueued = SmallBitmap::new(self.query_graph.nodes.len() as u16);
|
||||
|
||||
let mut node_stack = VecDeque::new();
|
||||
|
||||
distances_to_end[self.query_graph.end_node as usize] = vec![0];
|
||||
|
||||
for prev_node in
|
||||
self.query_graph.edges[self.query_graph.end_node as usize].predecessors.iter()
|
||||
{
|
||||
node_stack.push_back(prev_node as usize);
|
||||
enqueued[prev_node as usize] = true;
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
|
||||
while let Some(cur_node) = node_stack.pop_front() {
|
||||
let mut self_distances = vec![];
|
||||
for succ_node in self.query_graph.edges[cur_node].successors.iter() {
|
||||
|
||||
let cur_node_edges = &self.node_edges[cur_node];
|
||||
for edge_idx in cur_node_edges.iter() {
|
||||
let edge = self.all_edges[edge_idx as usize].as_ref().unwrap();
|
||||
let succ_node = edge.to_node;
|
||||
let succ_distances = &distances_to_end[succ_node as usize];
|
||||
let _ = self.visit_edges::<()>(cur_node as u32, succ_node, |_, edge| {
|
||||
for succ_distance in succ_distances {
|
||||
self_distances.push(edge.cost as u64 + succ_distance);
|
||||
}
|
||||
std::ops::ControlFlow::Continue(())
|
||||
});
|
||||
for succ_distance in succ_distances {
|
||||
self_distances.push(edge.cost as u16 + succ_distance);
|
||||
}
|
||||
}
|
||||
|
||||
self_distances.sort_unstable();
|
||||
self_distances.dedup();
|
||||
distances_to_end[cur_node] = self_distances;
|
||||
for prev_node in self.query_graph.edges[cur_node].predecessors.iter() {
|
||||
if !enqueued[prev_node as usize] {
|
||||
if !enqueued.contains(prev_node) {
|
||||
node_stack.push_back(prev_node as usize);
|
||||
enqueued[prev_node as usize] = true;
|
||||
enqueued.insert(prev_node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -11,9 +11,20 @@ use roaring::RoaringBitmap;
|
||||
// computing their hash and comparing them
|
||||
// which can be done...
|
||||
// by using a pointer (real, Rc, bumpalo, or in a vector)???
|
||||
//
|
||||
// But actually.... the edge details' docids are a subset of the universe at the
|
||||
// moment they were computed.
|
||||
// But the universes between two iterations of a ranking rule are completely different
|
||||
// Thus, there is no point in doing this.
|
||||
// UNLESS...
|
||||
// we compute the whole docids corresponding to the edge details (potentially expensive in time and memory
|
||||
// in the common case)
|
||||
//
|
||||
// But we could still benefit within a single iteration for requests like:
|
||||
// `a a a a a a a a a` where we have many of the same edge details, repeated
|
||||
|
||||
pub struct EdgeDocidsCache<G: RankingRuleGraphTrait> {
|
||||
pub cache: FxHashMap<u32, RoaringBitmap>,
|
||||
pub cache: FxHashMap<u16, RoaringBitmap>,
|
||||
_phantom: PhantomData<G>,
|
||||
}
|
||||
impl<G: RankingRuleGraphTrait> Default for EdgeDocidsCache<G> {
|
||||
@ -25,7 +36,7 @@ impl<G: RankingRuleGraphTrait> EdgeDocidsCache<G> {
|
||||
pub fn get_edge_docids<'s, 'search>(
|
||||
&'s mut self,
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge_index: u32,
|
||||
edge_index: u16,
|
||||
graph: &RankingRuleGraph<G>,
|
||||
// TODO: maybe universe doesn't belong here
|
||||
universe: &RoaringBitmap,
|
||||
@ -41,7 +52,7 @@ impl<G: RankingRuleGraphTrait> EdgeDocidsCache<G> {
|
||||
return Ok(BitmapOrAllRef::Bitmap(&self.cache[&edge_index]));
|
||||
}
|
||||
// TODO: maybe universe doesn't belong here
|
||||
let docids = universe & G::compute_docids(ctx, details)?;
|
||||
let docids = universe & G::compute_docids(ctx, details, universe)?;
|
||||
let _ = self.cache.insert(edge_index, docids);
|
||||
let docids = &self.cache[&edge_index];
|
||||
Ok(BitmapOrAllRef::Bitmap(docids))
|
||||
|
@ -1,60 +1,48 @@
|
||||
use crate::new::small_bitmap::SmallBitmap;
|
||||
|
||||
use super::paths_map::PathsMap;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct EmptyPathsCache {
|
||||
pub empty_edges: Vec<bool>,
|
||||
pub empty_edges: SmallBitmap,
|
||||
pub empty_prefixes: PathsMap<()>,
|
||||
pub empty_couple_edges: Vec<Vec<u32>>,
|
||||
pub empty_couple_edges: Vec<SmallBitmap>,
|
||||
}
|
||||
impl EmptyPathsCache {
|
||||
pub fn new(all_edges_len: usize) -> Self {
|
||||
pub fn new(all_edges_len: u16) -> Self {
|
||||
Self {
|
||||
empty_edges: vec![false; all_edges_len],
|
||||
empty_edges: SmallBitmap::new(all_edges_len),
|
||||
empty_prefixes: PathsMap::default(),
|
||||
empty_couple_edges: vec![vec![]; all_edges_len],
|
||||
empty_couple_edges: vec![SmallBitmap::new(all_edges_len); all_edges_len as usize],
|
||||
}
|
||||
}
|
||||
pub fn forbid_edge(&mut self, edge_idx: u32) {
|
||||
self.empty_edges[edge_idx as usize] = true;
|
||||
self.empty_couple_edges[edge_idx as usize] = vec![];
|
||||
pub fn forbid_edge(&mut self, edge_idx: u16) {
|
||||
self.empty_edges.insert(edge_idx);
|
||||
self.empty_couple_edges[edge_idx as usize].clear();
|
||||
self.empty_prefixes.remove_edge(&edge_idx);
|
||||
for edges2 in self.empty_couple_edges.iter_mut() {
|
||||
if let Some(edge2_pos) = edges2.iter().position(|e| *e == edge_idx) {
|
||||
edges2.swap_remove(edge2_pos);
|
||||
}
|
||||
edges2.remove(edge_idx);
|
||||
}
|
||||
}
|
||||
pub fn forbid_prefix(&mut self, prefix: &[u32]) {
|
||||
pub fn forbid_prefix(&mut self, prefix: &[u16]) {
|
||||
self.empty_prefixes.insert(prefix.iter().copied(), ());
|
||||
}
|
||||
pub fn forbid_couple_edges(&mut self, edge1: u32, edge2: u32) {
|
||||
assert!(!self.empty_couple_edges[edge1 as usize].contains(&edge2));
|
||||
self.empty_couple_edges[edge1 as usize].push(edge2);
|
||||
pub fn forbid_couple_edges(&mut self, edge1: u16, edge2: u16) {
|
||||
self.empty_couple_edges[edge1 as usize].insert(edge2);
|
||||
}
|
||||
pub fn path_is_empty(&self, path: &[u32]) -> bool {
|
||||
for edge in path {
|
||||
if self.empty_edges[*edge as usize] {
|
||||
pub fn path_is_empty(&self, path: &[u16], path_bitmap: &SmallBitmap) -> bool {
|
||||
if path_bitmap.intersects(&self.empty_edges) {
|
||||
return true;
|
||||
}
|
||||
for edge in path.iter() {
|
||||
let forbidden_other_edges = &self.empty_couple_edges[*edge as usize];
|
||||
if path_bitmap.intersects(forbidden_other_edges) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if self.empty_prefixes.contains_prefix_of_path(path) {
|
||||
return true;
|
||||
}
|
||||
for (edge1, edges2) in self.empty_couple_edges.iter().enumerate() {
|
||||
if let Some(pos_edge1) = path.iter().position(|e| *e == edge1 as u32) {
|
||||
if path[pos_edge1..].iter().any(|e| edges2.contains(e)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// for (edge1, edge2) in self.empty_couple_edges.iter() {
|
||||
// if path.contains(edge1) && path.contains(edge2) {
|
||||
// return true;
|
||||
// }
|
||||
// }
|
||||
// if self.empty_prefixes.contains_prefix_of_path(path) {
|
||||
// return true;
|
||||
// }
|
||||
false
|
||||
}
|
||||
}
|
||||
|
@ -4,17 +4,16 @@ mod edge_docids_cache;
|
||||
mod empty_paths_cache;
|
||||
mod paths_map;
|
||||
mod proximity;
|
||||
mod resolve_paths;
|
||||
mod typo;
|
||||
|
||||
use super::logger::SearchLogger;
|
||||
use super::small_bitmap::SmallBitmap;
|
||||
use super::{QueryGraph, QueryNode, SearchContext};
|
||||
use crate::Result;
|
||||
pub use edge_docids_cache::EdgeDocidsCache;
|
||||
pub use empty_paths_cache::EmptyPathsCache;
|
||||
pub use proximity::ProximityGraph;
|
||||
use roaring::RoaringBitmap;
|
||||
use std::ops::ControlFlow;
|
||||
pub use typo::TypoGraph;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@ -25,15 +24,15 @@ pub enum EdgeDetails<E> {
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Edge<E> {
|
||||
pub from_node: u32,
|
||||
pub to_node: u32,
|
||||
pub from_node: u16,
|
||||
pub to_node: u16,
|
||||
pub cost: u8,
|
||||
pub details: EdgeDetails<E>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct EdgePointer<'graph, E> {
|
||||
pub index: u32,
|
||||
pub index: u16,
|
||||
pub edge: &'graph Edge<E>,
|
||||
}
|
||||
|
||||
@ -95,6 +94,7 @@ pub trait RankingRuleGraphTrait: Sized {
|
||||
fn compute_docids<'search>(
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge_details: &Self::EdgeDetails,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<RoaringBitmap>;
|
||||
|
||||
/// Prepare to build the edges outgoing from `from_node`.
|
||||
@ -116,11 +116,11 @@ pub trait RankingRuleGraphTrait: Sized {
|
||||
|
||||
fn log_state(
|
||||
graph: &RankingRuleGraph<Self>,
|
||||
paths: &[Vec<u32>],
|
||||
paths: &[Vec<u16>],
|
||||
empty_paths_cache: &EmptyPathsCache,
|
||||
universe: &RoaringBitmap,
|
||||
distances: &[Vec<u64>],
|
||||
cost: u64,
|
||||
distances: &[Vec<u16>],
|
||||
cost: u16,
|
||||
logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
);
|
||||
}
|
||||
@ -130,9 +130,9 @@ pub struct RankingRuleGraph<G: RankingRuleGraphTrait> {
|
||||
// pub edges: Vec<HashMap<usize, Vec<Edge<G::EdgeDetails>>>>,
|
||||
pub all_edges: Vec<Option<Edge<G::EdgeDetails>>>,
|
||||
|
||||
pub node_edges: Vec<RoaringBitmap>,
|
||||
pub node_edges: Vec<SmallBitmap>,
|
||||
|
||||
pub successors: Vec<RoaringBitmap>,
|
||||
pub successors: Vec<SmallBitmap>,
|
||||
// TODO: to get the edges between two nodes:
|
||||
// 1. get node_outgoing_edges[from]
|
||||
// 2. get node_incoming_edges[to]
|
||||
@ -149,29 +149,7 @@ impl<G: RankingRuleGraphTrait> Clone for RankingRuleGraph<G> {
|
||||
}
|
||||
}
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
// Visit all edges between the two given nodes in order of increasing cost.
|
||||
pub fn visit_edges<'graph, O>(
|
||||
&'graph self,
|
||||
from: u32,
|
||||
to: u32,
|
||||
mut visit: impl FnMut(u32, &'graph Edge<G::EdgeDetails>) -> ControlFlow<O>,
|
||||
) -> Option<O> {
|
||||
let from_edges = &self.node_edges[from as usize];
|
||||
for edge_idx in from_edges {
|
||||
let edge = self.all_edges[edge_idx as usize].as_ref().unwrap();
|
||||
if edge.to_node == to {
|
||||
let cf = visit(edge_idx, edge);
|
||||
match cf {
|
||||
ControlFlow::Continue(_) => continue,
|
||||
ControlFlow::Break(o) => return Some(o),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
pub fn remove_edge(&mut self, edge_index: u32) {
|
||||
pub fn remove_edge(&mut self, edge_index: u16) {
|
||||
let edge_opt = &mut self.all_edges[edge_index as usize];
|
||||
let Some(edge) = &edge_opt else { return };
|
||||
let (from_node, _to_node) = (edge.from_node, edge.to_node);
|
||||
@ -180,9 +158,10 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
let from_node_edges = &mut self.node_edges[from_node as usize];
|
||||
from_node_edges.remove(edge_index);
|
||||
|
||||
let mut new_successors_from_node = RoaringBitmap::new();
|
||||
let mut new_successors_from_node = SmallBitmap::new(self.all_edges.len() as u16);
|
||||
let all_edges = &self.all_edges;
|
||||
for from_node_edge in from_node_edges.iter() {
|
||||
let Edge { to_node, .. } = &self.all_edges[from_node_edge as usize].as_ref().unwrap();
|
||||
let Edge { to_node, .. } = &all_edges[from_node_edge as usize].as_ref().unwrap();
|
||||
new_successors_from_node.insert(*to_node);
|
||||
}
|
||||
self.successors[from_node as usize] = new_successors_from_node;
|
||||
|
@ -1,9 +1,4 @@
|
||||
|
||||
|
||||
|
||||
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::new::small_bitmap::SmallBitmap;
|
||||
use super::cheapest_paths::Path;
|
||||
|
||||
// What is PathsMap used for?
|
||||
@ -13,7 +8,7 @@ use super::cheapest_paths::Path;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct PathsMap<V> {
|
||||
pub nodes: Vec<(u32, PathsMap<V>)>,
|
||||
pub nodes: Vec<(u16, PathsMap<V>)>,
|
||||
pub value: Option<V>,
|
||||
}
|
||||
impl<V> Default for PathsMap<V> {
|
||||
@ -39,7 +34,7 @@ impl<V> PathsMap<V> {
|
||||
self.nodes.is_empty() && self.value.is_none()
|
||||
}
|
||||
|
||||
pub fn insert(&mut self, mut edges: impl Iterator<Item = u32>, value: V) {
|
||||
pub fn insert(&mut self, mut edges: impl Iterator<Item = u16>, value: V) {
|
||||
match edges.next() {
|
||||
None => {
|
||||
self.value = Some(value);
|
||||
@ -57,7 +52,7 @@ impl<V> PathsMap<V> {
|
||||
}
|
||||
}
|
||||
}
|
||||
fn remove_first_rec(&mut self, cur: &mut Vec<u32>) -> (bool, V) {
|
||||
fn remove_first_rec(&mut self, cur: &mut Vec<u16>) -> (bool, V) {
|
||||
let Some((first_edge, rest)) = self.nodes.first_mut() else {
|
||||
// The PathsMap has to be correct by construction here, otherwise
|
||||
// the unwrap() will crash
|
||||
@ -72,7 +67,7 @@ impl<V> PathsMap<V> {
|
||||
(false, value)
|
||||
}
|
||||
}
|
||||
pub fn remove_first(&mut self) -> Option<(Vec<u32>, V)> {
|
||||
pub fn remove_first(&mut self) -> Option<(Vec<u16>, V)> {
|
||||
if self.is_empty() {
|
||||
return None;
|
||||
}
|
||||
@ -81,7 +76,7 @@ impl<V> PathsMap<V> {
|
||||
let (_, value) = self.remove_first_rec(&mut result);
|
||||
Some((result, value))
|
||||
}
|
||||
pub fn iterate_rec(&self, cur: &mut Vec<u32>, visit: &mut impl FnMut(&Vec<u32>, &V)) {
|
||||
pub fn iterate_rec(&self, cur: &mut Vec<u16>, visit: &mut impl FnMut(&Vec<u16>, &V)) {
|
||||
if let Some(value) = &self.value {
|
||||
visit(cur, value);
|
||||
}
|
||||
@ -91,7 +86,7 @@ impl<V> PathsMap<V> {
|
||||
cur.pop();
|
||||
}
|
||||
}
|
||||
pub fn iterate(&self, mut visit: impl FnMut(&Vec<u32>, &V)) {
|
||||
pub fn iterate(&self, mut visit: impl FnMut(&Vec<u16>, &V)) {
|
||||
self.iterate_rec(&mut vec![], &mut visit)
|
||||
}
|
||||
|
||||
@ -100,7 +95,7 @@ impl<V> PathsMap<V> {
|
||||
self.remove_prefix(prefix);
|
||||
});
|
||||
}
|
||||
pub fn remove_edges(&mut self, forbidden_edges: &RoaringBitmap) {
|
||||
pub fn remove_edges(&mut self, forbidden_edges: &SmallBitmap) {
|
||||
let mut i = 0;
|
||||
while i < self.nodes.len() {
|
||||
let should_remove = if forbidden_edges.contains(self.nodes[i].0) {
|
||||
@ -118,7 +113,7 @@ impl<V> PathsMap<V> {
|
||||
}
|
||||
}
|
||||
}
|
||||
pub fn remove_edge(&mut self, forbidden_edge: &u32) {
|
||||
pub fn remove_edge(&mut self, forbidden_edge: &u16) {
|
||||
let mut i = 0;
|
||||
while i < self.nodes.len() {
|
||||
let should_remove = if &self.nodes[i].0 == forbidden_edge {
|
||||
@ -136,7 +131,7 @@ impl<V> PathsMap<V> {
|
||||
}
|
||||
}
|
||||
}
|
||||
pub fn remove_prefix(&mut self, forbidden_prefix: &[u32]) {
|
||||
pub fn remove_prefix(&mut self, forbidden_prefix: &[u16]) {
|
||||
let [first_edge, remaining_prefix @ ..] = forbidden_prefix else {
|
||||
self.nodes.clear();
|
||||
self.value = None;
|
||||
@ -160,25 +155,23 @@ impl<V> PathsMap<V> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn final_edges_ater_prefix(&self, prefix: &[u32]) -> Vec<u32> {
|
||||
pub fn final_edges_after_prefix(&self, prefix: &[u16], visit: &mut impl FnMut(u16)) {
|
||||
let [first_edge, remaining_prefix @ ..] = prefix else {
|
||||
return self.nodes.iter().filter_map(|n| {
|
||||
if n.1.value.is_some() {
|
||||
Some(n.0)
|
||||
} else {
|
||||
None
|
||||
for node in self.nodes.iter() {
|
||||
if node.1.value.is_some() {
|
||||
visit(node.0)
|
||||
}
|
||||
}).collect();
|
||||
}
|
||||
return
|
||||
};
|
||||
for (edge, rest) in self.nodes.iter() {
|
||||
if edge == first_edge {
|
||||
return rest.final_edges_ater_prefix(remaining_prefix);
|
||||
return rest.final_edges_after_prefix(remaining_prefix, visit);
|
||||
}
|
||||
}
|
||||
vec![]
|
||||
}
|
||||
|
||||
pub fn edge_indices_after_prefix(&self, prefix: &[u32]) -> Vec<u32> {
|
||||
pub fn edge_indices_after_prefix(&self, prefix: &[u16]) -> Vec<u16> {
|
||||
let [first_edge, remaining_prefix @ ..] = prefix else {
|
||||
return self.nodes.iter().map(|n| n.0).collect();
|
||||
};
|
||||
@ -190,7 +183,7 @@ impl<V> PathsMap<V> {
|
||||
vec![]
|
||||
}
|
||||
|
||||
pub fn contains_prefix_of_path(&self, path: &[u32]) -> bool {
|
||||
pub fn contains_prefix_of_path(&self, path: &[u16]) -> bool {
|
||||
if self.value.is_some() {
|
||||
return true;
|
||||
}
|
||||
|
@ -111,6 +111,8 @@ pub fn visit_to_node<'search, 'from_data>(
|
||||
for word1 in derivations1.clone() {
|
||||
for proximity in 1..=(8 - ngram_len2) {
|
||||
let cost = (proximity + ngram_len2 - 1) as u8;
|
||||
// TODO: if we had access to the universe here, we could already check whether
|
||||
// the bitmap corresponding to this word pair is disjoint with the universe or not
|
||||
if ctx
|
||||
.get_word_prefix_pair_proximity_docids(
|
||||
word1,
|
||||
@ -183,8 +185,13 @@ pub fn visit_to_node<'search, 'from_data>(
|
||||
.flat_map(|(cost, proximity_word_pairs)| {
|
||||
let mut edges = vec![];
|
||||
for (proximity, word_pairs) in proximity_word_pairs {
|
||||
edges
|
||||
.push((cost, EdgeDetails::Data(ProximityEdge { pairs: word_pairs, proximity })))
|
||||
edges.push((
|
||||
cost,
|
||||
EdgeDetails::Data(ProximityEdge {
|
||||
pairs: word_pairs.into_boxed_slice(),
|
||||
proximity,
|
||||
}),
|
||||
))
|
||||
}
|
||||
edges
|
||||
})
|
||||
|
@ -1,14 +1,15 @@
|
||||
use super::{ProximityEdge, WordPair};
|
||||
use crate::new::SearchContext;
|
||||
use crate::{CboRoaringBitmapCodec, Result};
|
||||
use roaring::{MultiOps, RoaringBitmap};
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
pub fn compute_docids<'search>(
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge: &ProximityEdge,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<RoaringBitmap> {
|
||||
let ProximityEdge { pairs, proximity } = edge;
|
||||
let mut pair_docids = vec![];
|
||||
let mut pair_docids = RoaringBitmap::new();
|
||||
for pair in pairs.iter() {
|
||||
let bytes = match pair {
|
||||
WordPair::Words { left, right } => {
|
||||
@ -21,10 +22,11 @@ pub fn compute_docids<'search>(
|
||||
ctx.get_prefix_word_pair_proximity_docids(*left_prefix, *right, *proximity)
|
||||
}
|
||||
}?;
|
||||
let bitmap =
|
||||
bytes.map(CboRoaringBitmapCodec::deserialize_from).transpose()?.unwrap_or_default();
|
||||
pair_docids.push(bitmap);
|
||||
// TODO: deserialize bitmap within a universe, and (maybe) using a bump allocator?
|
||||
let bitmap = universe
|
||||
& bytes.map(CboRoaringBitmapCodec::deserialize_from).transpose()?.unwrap_or_default();
|
||||
pair_docids |= bitmap;
|
||||
}
|
||||
let docids = MultiOps::union(pair_docids);
|
||||
Ok(docids)
|
||||
|
||||
Ok(pair_docids)
|
||||
}
|
||||
|
@ -10,7 +10,7 @@ use crate::new::{QueryGraph, QueryNode, SearchContext};
|
||||
use crate::Result;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
// TODO: intern the strings, refer to them by their pointer?
|
||||
// TODO: intern the proximity edges as well?
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum WordPair {
|
||||
@ -21,8 +21,7 @@ pub enum WordPair {
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ProximityEdge {
|
||||
// TODO: use a list of pointers to the word pairs instead?
|
||||
pairs: Vec<WordPair>,
|
||||
pairs: Box<[WordPair]>,
|
||||
proximity: u8,
|
||||
}
|
||||
|
||||
@ -40,8 +39,9 @@ impl RankingRuleGraphTrait for ProximityGraph {
|
||||
fn compute_docids<'search>(
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge: &Self::EdgeDetails,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<roaring::RoaringBitmap> {
|
||||
compute_docids::compute_docids(ctx, edge)
|
||||
compute_docids::compute_docids(ctx, edge, universe)
|
||||
}
|
||||
|
||||
fn build_visit_from_node<'search>(
|
||||
@ -61,11 +61,11 @@ impl RankingRuleGraphTrait for ProximityGraph {
|
||||
|
||||
fn log_state(
|
||||
graph: &super::RankingRuleGraph<Self>,
|
||||
paths: &[Vec<u32>],
|
||||
paths: &[Vec<u16>],
|
||||
empty_paths_cache: &EmptyPathsCache,
|
||||
universe: &RoaringBitmap,
|
||||
distances: &[Vec<u64>],
|
||||
cost: u64,
|
||||
distances: &[Vec<u16>],
|
||||
cost: u16,
|
||||
logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
) {
|
||||
logger.log_proximity_state(
|
||||
|
@ -1,97 +0,0 @@
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
|
||||
use super::edge_docids_cache::EdgeDocidsCache;
|
||||
use super::empty_paths_cache::EmptyPathsCache;
|
||||
use super::{RankingRuleGraph, RankingRuleGraphTrait};
|
||||
use crate::new::{BitmapOrAllRef, SearchContext};
|
||||
use crate::Result;
|
||||
use roaring::{MultiOps, RoaringBitmap};
|
||||
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
// TODO: reduce the universe after computing each path
|
||||
// TODO: deserialize roaring bitmap within a universe
|
||||
pub fn resolve_paths<'search>(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge_docids_cache: &mut EdgeDocidsCache<G>,
|
||||
empty_paths_cache: &mut EmptyPathsCache,
|
||||
universe: &RoaringBitmap,
|
||||
mut paths: Vec<Vec<u32>>,
|
||||
) -> Result<RoaringBitmap> {
|
||||
paths.sort_unstable();
|
||||
// let mut needs_filtering_empty_edges = false;
|
||||
// let mut needs_filtering_empty_prefix = false;
|
||||
// let mut needs_filtering_empty_couple_edges = false;
|
||||
let mut needs_filtering = false;
|
||||
let mut path_bitmaps = vec![];
|
||||
'path_loop: loop {
|
||||
// TODO: distinguish between empty_edges, empty_prefix, and empty_couple_edges filtering
|
||||
if needs_filtering {
|
||||
for path in paths.iter_mut() {
|
||||
if empty_paths_cache.path_is_empty(path) {
|
||||
path.clear();
|
||||
}
|
||||
}
|
||||
needs_filtering = false;
|
||||
}
|
||||
let Some(edge_indexes) = paths.pop() else {
|
||||
break;
|
||||
};
|
||||
|
||||
if edge_indexes.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut path_bitmap = universe.clone();
|
||||
let mut visited_edges = vec![];
|
||||
let mut cached_edge_docids = vec![];
|
||||
'edge_loop: for edge_index in edge_indexes {
|
||||
visited_edges.push(edge_index);
|
||||
let edge_docids =
|
||||
edge_docids_cache.get_edge_docids(ctx, edge_index, self, universe)?;
|
||||
match edge_docids {
|
||||
BitmapOrAllRef::Bitmap(edge_docids) => {
|
||||
cached_edge_docids.push((edge_index, edge_docids.clone()));
|
||||
let (_, edge_docids) = cached_edge_docids.last().unwrap();
|
||||
if edge_docids.is_disjoint(universe) {
|
||||
// 1. Store in the cache that this edge is empty for this universe
|
||||
empty_paths_cache.forbid_edge(edge_index);
|
||||
// 2. remove this edge from the proximity graph
|
||||
self.remove_edge(edge_index);
|
||||
edge_docids_cache.cache.remove(&edge_index);
|
||||
needs_filtering = true;
|
||||
// needs_filtering_empty_edges = true;
|
||||
// 3. continue executing this function again on the remaining paths
|
||||
continue 'path_loop;
|
||||
} else {
|
||||
path_bitmap &= edge_docids;
|
||||
if path_bitmap.is_disjoint(universe) {
|
||||
// needs_filtering_empty_prefix = true;
|
||||
needs_filtering = true;
|
||||
empty_paths_cache.forbid_prefix(&visited_edges);
|
||||
// if the intersection between this edge and any
|
||||
// previous one is disjoint with the universe,
|
||||
// then we add these two edges to the empty_path_cache
|
||||
for (edge_index2, edge_docids2) in
|
||||
cached_edge_docids[..cached_edge_docids.len() - 1].iter()
|
||||
{
|
||||
let intersection = edge_docids & edge_docids2;
|
||||
if intersection.is_disjoint(universe) {
|
||||
// needs_filtering_empty_couple_edges = true;
|
||||
empty_paths_cache
|
||||
.forbid_couple_edges(*edge_index2, edge_index);
|
||||
}
|
||||
}
|
||||
continue 'path_loop;
|
||||
}
|
||||
}
|
||||
}
|
||||
BitmapOrAllRef::All => continue 'edge_loop,
|
||||
}
|
||||
}
|
||||
path_bitmaps.push(path_bitmap);
|
||||
}
|
||||
|
||||
Ok(MultiOps::union(path_bitmaps))
|
||||
}
|
||||
}
|
@ -31,6 +31,7 @@ impl RankingRuleGraphTrait for TypoGraph {
|
||||
fn compute_docids<'db_cache, 'search>(
|
||||
ctx: &mut SearchContext<'search>,
|
||||
edge: &Self::EdgeDetails,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<RoaringBitmap> {
|
||||
match edge {
|
||||
TypoEdge::Phrase { phrase } => resolve_phrase(ctx, *phrase),
|
||||
@ -44,14 +45,17 @@ impl RankingRuleGraphTrait for TypoGraph {
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for word in words.iter().copied() {
|
||||
let Some(bytes) = ctx.get_word_docids(word)? else { continue };
|
||||
let bitmap =
|
||||
RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding)?;
|
||||
// TODO: deserialize bitmap within a universe
|
||||
let bitmap = universe
|
||||
& RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding)?;
|
||||
docids |= bitmap;
|
||||
}
|
||||
if *nbr_typos == 0 {
|
||||
if let Some(bytes) = ctx.get_prefix_docids(derivations.original)? {
|
||||
let bitmap =
|
||||
RoaringBitmapCodec::bytes_decode(bytes).ok_or(heed::Error::Decoding)?;
|
||||
// TODO: deserialize bitmap within a universe
|
||||
let bitmap = universe
|
||||
& RoaringBitmapCodec::bytes_decode(bytes)
|
||||
.ok_or(heed::Error::Decoding)?;
|
||||
docids |= bitmap;
|
||||
}
|
||||
}
|
||||
@ -116,11 +120,11 @@ impl RankingRuleGraphTrait for TypoGraph {
|
||||
|
||||
fn log_state(
|
||||
graph: &RankingRuleGraph<Self>,
|
||||
paths: &[Vec<u32>],
|
||||
paths: &[Vec<u16>],
|
||||
empty_paths_cache: &EmptyPathsCache,
|
||||
universe: &RoaringBitmap,
|
||||
distances: &[Vec<u64>],
|
||||
cost: u64,
|
||||
distances: &[Vec<u16>],
|
||||
cost: u16,
|
||||
logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
) {
|
||||
logger.log_typo_state(graph, paths, empty_paths_cache, universe, distances.to_vec(), cost);
|
||||
|
Reference in New Issue
Block a user