mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-07-27 08:41:00 +00:00
Set search_k
to max_hits * n_trees
with finite pagination
This commit is contained in:
@ -209,7 +209,7 @@ impl Search<'_> {
|
||||
terms_matching_strategy: self.terms_matching_strategy,
|
||||
scoring_strategy: ScoringStrategy::Detailed,
|
||||
words_limit: self.words_limit,
|
||||
exhaustive_number_hits: self.exhaustive_number_hits,
|
||||
is_exhaustive_pagination: self.is_exhaustive_pagination,
|
||||
max_total_hits: self.max_total_hits,
|
||||
rtxn: self.rtxn,
|
||||
index: self.index,
|
||||
|
@ -51,7 +51,7 @@ pub struct Search<'a> {
|
||||
terms_matching_strategy: TermsMatchingStrategy,
|
||||
scoring_strategy: ScoringStrategy,
|
||||
words_limit: usize,
|
||||
exhaustive_number_hits: bool,
|
||||
is_exhaustive_pagination: bool,
|
||||
max_total_hits: Option<usize>,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
@ -74,7 +74,7 @@ impl<'a> Search<'a> {
|
||||
geo_param: new::GeoSortParameter::default(),
|
||||
terms_matching_strategy: TermsMatchingStrategy::default(),
|
||||
scoring_strategy: Default::default(),
|
||||
exhaustive_number_hits: false,
|
||||
is_exhaustive_pagination: false,
|
||||
max_total_hits: None,
|
||||
words_limit: 10,
|
||||
rtxn,
|
||||
@ -162,8 +162,8 @@ impl<'a> Search<'a> {
|
||||
|
||||
/// Forces the search to exhaustively compute the number of candidates,
|
||||
/// this will increase the search time but allows finite pagination.
|
||||
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
|
||||
self.exhaustive_number_hits = exhaustive_number_hits;
|
||||
pub fn is_exhaustive_pagination(&mut self, is_exhaustive_pagination: bool) -> &mut Search<'a> {
|
||||
self.is_exhaustive_pagination = is_exhaustive_pagination;
|
||||
self
|
||||
}
|
||||
|
||||
@ -231,6 +231,13 @@ impl<'a> Search<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
let mut search_k_div_trees = None;
|
||||
if self.is_exhaustive_pagination {
|
||||
if let Some(max_total_hits) = self.max_total_hits {
|
||||
search_k_div_trees = Some(max_total_hits);
|
||||
}
|
||||
}
|
||||
|
||||
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
|
||||
let PartialSearchResult {
|
||||
located_query_terms,
|
||||
@ -250,7 +257,7 @@ impl<'a> Search<'a> {
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
self.exhaustive_number_hits,
|
||||
self.is_exhaustive_pagination,
|
||||
self.max_total_hits,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
@ -261,6 +268,7 @@ impl<'a> Search<'a> {
|
||||
embedder_name,
|
||||
embedder,
|
||||
*quantized,
|
||||
search_k_div_trees,
|
||||
self.time_budget.clone(),
|
||||
self.ranking_score_threshold,
|
||||
)?,
|
||||
@ -269,7 +277,7 @@ impl<'a> Search<'a> {
|
||||
self.query.as_deref(),
|
||||
self.terms_matching_strategy,
|
||||
self.scoring_strategy,
|
||||
self.exhaustive_number_hits,
|
||||
self.is_exhaustive_pagination,
|
||||
self.max_total_hits,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
@ -323,7 +331,7 @@ impl fmt::Debug for Search<'_> {
|
||||
terms_matching_strategy,
|
||||
scoring_strategy,
|
||||
words_limit,
|
||||
exhaustive_number_hits,
|
||||
is_exhaustive_pagination,
|
||||
max_total_hits,
|
||||
rtxn: _,
|
||||
index: _,
|
||||
@ -343,7 +351,7 @@ impl fmt::Debug for Search<'_> {
|
||||
.field("searchable_attributes", searchable_attributes)
|
||||
.field("terms_matching_strategy", terms_matching_strategy)
|
||||
.field("scoring_strategy", scoring_strategy)
|
||||
.field("exhaustive_number_hits", exhaustive_number_hits)
|
||||
.field("is_exhaustive_pagination", is_exhaustive_pagination)
|
||||
.field("max_total_hits", max_total_hits)
|
||||
.field("words_limit", words_limit)
|
||||
.field(
|
||||
|
@ -377,6 +377,7 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
quantized: bool,
|
||||
search_k_div_trees: Option<usize>,
|
||||
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
|
||||
// query graph search
|
||||
|
||||
@ -405,6 +406,7 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
embedder_name,
|
||||
embedder,
|
||||
quantized,
|
||||
search_k_div_trees,
|
||||
)?;
|
||||
ranking_rules.push(Box::new(vector_sort));
|
||||
vector = true;
|
||||
@ -637,6 +639,7 @@ pub fn execute_vector_search(
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
quantized: bool,
|
||||
search_k_div_trees: Option<usize>,
|
||||
time_budget: TimeBudget,
|
||||
ranking_score_threshold: Option<f64>,
|
||||
) -> Result<PartialSearchResult> {
|
||||
@ -653,6 +656,7 @@ pub fn execute_vector_search(
|
||||
embedder_name,
|
||||
embedder,
|
||||
quantized,
|
||||
search_k_div_trees,
|
||||
)?;
|
||||
|
||||
let mut placeholder_search_logger = logger::DefaultSearchLogger;
|
||||
|
@ -572,7 +572,7 @@ fn test_distinct_all_candidates() {
|
||||
let mut s = Search::new(&txn, &index);
|
||||
s.terms_matching_strategy(TermsMatchingStrategy::Last);
|
||||
s.sort_criteria(vec![AscDesc::Desc(Member::Field(S("rank1")))]);
|
||||
s.exhaustive_number_hits(true);
|
||||
s.is_exhaustive_pagination(true);
|
||||
|
||||
let SearchResult { documents_ids, candidates, .. } = s.execute().unwrap();
|
||||
let candidates = candidates.iter().collect::<Vec<_>>();
|
||||
|
@ -18,9 +18,11 @@ pub struct VectorSort<Q: RankingRuleQueryTrait> {
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_index: u8,
|
||||
quantized: bool,
|
||||
search_k_div_trees: Option<usize>,
|
||||
}
|
||||
|
||||
impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
ctx: &SearchContext<'_>,
|
||||
target: Vec<f32>,
|
||||
@ -29,6 +31,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
quantized: bool,
|
||||
search_k_div_trees: Option<usize>,
|
||||
) -> Result<Self> {
|
||||
let embedder_index = ctx
|
||||
.index
|
||||
@ -42,6 +45,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
vector_candidates,
|
||||
cached_sorted_docids: Default::default(),
|
||||
limit,
|
||||
search_k_div_trees,
|
||||
distribution_shift: embedder.distribution(),
|
||||
embedder_index,
|
||||
quantized,
|
||||
@ -57,7 +61,13 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
|
||||
let before = Instant::now();
|
||||
let reader = ArroyWrapper::new(ctx.index.vector_arroy, self.embedder_index, self.quantized);
|
||||
let results = reader.nns_by_vector(ctx.txn, target, self.limit, Some(vector_candidates))?;
|
||||
let results = reader.nns_by_vector(
|
||||
ctx.txn,
|
||||
target,
|
||||
self.limit,
|
||||
self.search_k_div_trees,
|
||||
Some(vector_candidates),
|
||||
)?;
|
||||
self.cached_sorted_docids = results.into_iter();
|
||||
*ctx.vector_store_stats.get_or_insert_default() += VectorStoreStats {
|
||||
total_time: before.elapsed(),
|
||||
|
@ -483,12 +483,20 @@ impl ArroyWrapper {
|
||||
rtxn: &RoTxn,
|
||||
vector: &[f32],
|
||||
limit: usize,
|
||||
search_k_div_trees: Option<usize>,
|
||||
filter: Option<&RoaringBitmap>,
|
||||
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
|
||||
if self.quantized {
|
||||
self._nns_by_vector(rtxn, self.quantized_db(), vector, limit, filter)
|
||||
self._nns_by_vector(
|
||||
rtxn,
|
||||
self.quantized_db(),
|
||||
vector,
|
||||
limit,
|
||||
search_k_div_trees,
|
||||
filter,
|
||||
)
|
||||
} else {
|
||||
self._nns_by_vector(rtxn, self.angular_db(), vector, limit, filter)
|
||||
self._nns_by_vector(rtxn, self.angular_db(), vector, limit, search_k_div_trees, filter)
|
||||
}
|
||||
}
|
||||
|
||||
@ -498,6 +506,7 @@ impl ArroyWrapper {
|
||||
db: arroy::Database<D>,
|
||||
vector: &[f32],
|
||||
limit: usize,
|
||||
search_k_div_trees: Option<usize>,
|
||||
filter: Option<&RoaringBitmap>,
|
||||
) -> Result<Vec<(ItemId, f32)>, arroy::Error> {
|
||||
let mut results = Vec::new();
|
||||
@ -509,6 +518,12 @@ impl ArroyWrapper {
|
||||
if reader.item_ids().is_disjoint(filter) {
|
||||
continue;
|
||||
}
|
||||
if let Some(mut search_k) = search_k_div_trees {
|
||||
search_k *= reader.n_trees();
|
||||
if let Ok(search_k) = search_k.try_into() {
|
||||
searcher.search_k(search_k);
|
||||
}
|
||||
}
|
||||
searcher.candidates(filter);
|
||||
}
|
||||
|
||||
|
@ -29,7 +29,7 @@ macro_rules! test_distinct {
|
||||
search.query(search::TEST_QUERY);
|
||||
search.limit($limit);
|
||||
search.offset($offset);
|
||||
search.exhaustive_number_hits($exhaustive);
|
||||
search.is_exhaustive_pagination($exhaustive);
|
||||
|
||||
search.terms_matching_strategy(TermsMatchingStrategy::default());
|
||||
|
||||
|
Reference in New Issue
Block a user