mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-08-01 03:10:04 +00:00
Add some documentation and use bitmaps instead of hashmaps when possible
This commit is contained in:
@ -1,10 +1,11 @@
|
||||
use std::collections::{BTreeSet, HashMap, HashSet};
|
||||
|
||||
use heed::RoTxn;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::{Edge, RankingRuleGraph, RankingRuleGraphTrait};
|
||||
use crate::new::db_cache::DatabaseCache;
|
||||
use crate::new::QueryGraph;
|
||||
use crate::new::{NodeIndex, QueryGraph};
|
||||
use crate::{Index, Result};
|
||||
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
@ -14,29 +15,38 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
query_graph: QueryGraph,
|
||||
) -> Result<Self> {
|
||||
let mut ranking_rule_graph = Self { query_graph, all_edges: vec![], node_edges: vec![] };
|
||||
let mut ranking_rule_graph =
|
||||
Self { query_graph, all_edges: vec![], node_edges: vec![], successors: vec![] };
|
||||
|
||||
for (node_idx, node) in ranking_rule_graph.query_graph.nodes.iter().enumerate() {
|
||||
ranking_rule_graph.node_edges.push(BTreeSet::new());
|
||||
ranking_rule_graph.node_edges.push(RoaringBitmap::new());
|
||||
ranking_rule_graph.successors.push(RoaringBitmap::new());
|
||||
let new_edges = ranking_rule_graph.node_edges.last_mut().unwrap();
|
||||
let new_successors = ranking_rule_graph.successors.last_mut().unwrap();
|
||||
|
||||
let Some(from_node_data) = G::build_visit_from_node(index, txn, db_cache, node)? else { continue };
|
||||
|
||||
for &successor_idx in ranking_rule_graph.query_graph.edges[node_idx].outgoing.iter() {
|
||||
let to_node = &ranking_rule_graph.query_graph.nodes[successor_idx];
|
||||
let Some(edges) = G::build_visit_to_node(index, txn, db_cache, to_node, &from_node_data)? else { continue };
|
||||
for successor_idx in ranking_rule_graph.query_graph.edges[node_idx].successors.iter() {
|
||||
let to_node = &ranking_rule_graph.query_graph.nodes[successor_idx as usize];
|
||||
let mut edges =
|
||||
G::build_visit_to_node(index, txn, db_cache, to_node, &from_node_data)?;
|
||||
if edges.is_empty() {
|
||||
continue;
|
||||
}
|
||||
edges.sort_by_key(|e| e.0);
|
||||
for (cost, details) in edges {
|
||||
ranking_rule_graph.all_edges.push(Some(Edge {
|
||||
from_node: node_idx,
|
||||
to_node: successor_idx,
|
||||
from_node: NodeIndex(node_idx as u32),
|
||||
to_node: NodeIndex(successor_idx),
|
||||
cost,
|
||||
details,
|
||||
}));
|
||||
new_edges.insert(ranking_rule_graph.all_edges.len() - 1);
|
||||
new_edges.insert(ranking_rule_graph.all_edges.len() as u32 - 1);
|
||||
new_successors.insert(successor_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ranking_rule_graph.simplify();
|
||||
// ranking_rule_graph.simplify();
|
||||
|
||||
Ok(ranking_rule_graph)
|
||||
}
|
||||
|
@ -1,6 +1,9 @@
|
||||
use std::collections::{BTreeMap, HashSet};
|
||||
|
||||
use itertools::Itertools;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::new::NodeIndex;
|
||||
|
||||
use super::{
|
||||
empty_paths_cache::EmptyPathsCache, paths_map::PathsMap, Edge, EdgeIndex, RankingRuleGraph,
|
||||
@ -14,18 +17,11 @@ pub struct Path {
|
||||
}
|
||||
|
||||
struct DijkstraState {
|
||||
unvisited: HashSet<usize>, // should be a small bitset
|
||||
distances: Vec<u64>, // or binary heap (f64, usize)
|
||||
unvisited: RoaringBitmap, // should be a small bitset?
|
||||
distances: Vec<u64>, // or binary heap, or btreemap? (f64, usize)
|
||||
edges: Vec<EdgeIndex>,
|
||||
edge_costs: Vec<u8>,
|
||||
paths: Vec<Option<usize>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct PathEdgeId<Id> {
|
||||
pub from: usize,
|
||||
pub to: usize,
|
||||
pub id: Id,
|
||||
paths: Vec<Option<NodeIndex>>,
|
||||
}
|
||||
|
||||
pub struct KCheapestPathsState {
|
||||
@ -127,9 +123,10 @@ impl KCheapestPathsState {
|
||||
// for all the paths already found that share a common prefix with the root path
|
||||
// we delete the edge from the spur node to the next one
|
||||
for edge_index_to_remove in self.cheapest_paths.edge_indices_after_prefix(root_path) {
|
||||
let was_removed = graph.node_edges[*spur_node].remove(&edge_index_to_remove.0);
|
||||
let was_removed =
|
||||
graph.node_edges[spur_node.0 as usize].remove(edge_index_to_remove.0 as u32);
|
||||
if was_removed {
|
||||
tmp_removed_edges.push(edge_index_to_remove.0);
|
||||
tmp_removed_edges.push(edge_index_to_remove.0 as u32);
|
||||
}
|
||||
}
|
||||
|
||||
@ -137,7 +134,7 @@ impl KCheapestPathsState {
|
||||
// we will combine it with the root path to get a potential kth cheapest path
|
||||
let spur_path = graph.cheapest_path_to_end(*spur_node);
|
||||
// restore the temporarily removed edges
|
||||
graph.node_edges[*spur_node].extend(tmp_removed_edges);
|
||||
graph.node_edges[spur_node.0 as usize].extend(tmp_removed_edges);
|
||||
|
||||
let Some(spur_path) = spur_path else { continue; };
|
||||
let total_cost = root_cost + spur_path.cost;
|
||||
@ -182,68 +179,73 @@ impl KCheapestPathsState {
|
||||
}
|
||||
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
fn cheapest_path_to_end(&self, from: usize) -> Option<Path> {
|
||||
fn cheapest_path_to_end(&self, from: NodeIndex) -> Option<Path> {
|
||||
let mut dijkstra = DijkstraState {
|
||||
unvisited: (0..self.query_graph.nodes.len()).collect(),
|
||||
unvisited: (0..self.query_graph.nodes.len() as u32).collect(),
|
||||
distances: vec![u64::MAX; self.query_graph.nodes.len()],
|
||||
edges: vec![EdgeIndex(usize::MAX); self.query_graph.nodes.len()],
|
||||
edge_costs: vec![u8::MAX; self.query_graph.nodes.len()],
|
||||
paths: vec![None; self.query_graph.nodes.len()],
|
||||
};
|
||||
dijkstra.distances[from] = 0;
|
||||
dijkstra.distances[from.0 as usize] = 0;
|
||||
|
||||
// TODO: could use a binary heap here to store the distances
|
||||
while let Some(&cur_node) =
|
||||
dijkstra.unvisited.iter().min_by_key(|&&n| dijkstra.distances[n])
|
||||
// TODO: could use a binary heap here to store the distances, or a btreemap
|
||||
while let Some(cur_node) =
|
||||
dijkstra.unvisited.iter().min_by_key(|&n| dijkstra.distances[n as usize])
|
||||
{
|
||||
let cur_node_dist = dijkstra.distances[cur_node];
|
||||
let cur_node_dist = dijkstra.distances[cur_node as usize];
|
||||
if cur_node_dist == u64::MAX {
|
||||
return None;
|
||||
}
|
||||
if cur_node == self.query_graph.end_node {
|
||||
if cur_node == self.query_graph.end_node.0 {
|
||||
break;
|
||||
}
|
||||
|
||||
let succ_cur_node: HashSet<_> = self.node_edges[cur_node]
|
||||
.iter()
|
||||
.map(|e| self.all_edges[*e].as_ref().unwrap().to_node)
|
||||
.collect();
|
||||
// this is expensive, but shouldn't
|
||||
// ideally I could quickly get a bitmap of all a node's successors
|
||||
// then take the intersection with unvisited
|
||||
let succ_cur_node: &RoaringBitmap = &self.successors[cur_node as usize];
|
||||
// .iter()
|
||||
// .map(|e| self.all_edges[e as usize].as_ref().unwrap().to_node.0)
|
||||
// .collect();
|
||||
// TODO: this intersection may be slow but shouldn't be,
|
||||
// can use a bitmap intersection instead
|
||||
let unvisited_succ_cur_node = succ_cur_node.intersection(&dijkstra.unvisited);
|
||||
for &succ in unvisited_succ_cur_node {
|
||||
let Some((cheapest_edge, cheapest_edge_cost)) = self.cheapest_edge(cur_node, succ) else {
|
||||
let unvisited_succ_cur_node = succ_cur_node & &dijkstra.unvisited;
|
||||
for succ in unvisited_succ_cur_node {
|
||||
// cheapest_edge() is also potentially too expensive
|
||||
let Some((cheapest_edge, cheapest_edge_cost)) = self.cheapest_edge(NodeIndex(cur_node), NodeIndex(succ)) else {
|
||||
continue
|
||||
};
|
||||
|
||||
// println!("cur node dist {cur_node_dist}");
|
||||
let old_dist_succ = &mut dijkstra.distances[succ];
|
||||
let old_dist_succ = &mut dijkstra.distances[succ as usize];
|
||||
let new_potential_distance = cur_node_dist + cheapest_edge_cost as u64;
|
||||
if new_potential_distance < *old_dist_succ {
|
||||
*old_dist_succ = new_potential_distance;
|
||||
dijkstra.edges[succ] = cheapest_edge;
|
||||
dijkstra.edge_costs[succ] = cheapest_edge_cost;
|
||||
dijkstra.paths[succ] = Some(cur_node);
|
||||
dijkstra.edges[succ as usize] = cheapest_edge;
|
||||
dijkstra.edge_costs[succ as usize] = cheapest_edge_cost;
|
||||
dijkstra.paths[succ as usize] = Some(NodeIndex(cur_node));
|
||||
}
|
||||
}
|
||||
dijkstra.unvisited.remove(&cur_node);
|
||||
dijkstra.unvisited.remove(cur_node);
|
||||
}
|
||||
|
||||
let mut cur = self.query_graph.end_node;
|
||||
// let mut edge_costs = vec![];
|
||||
// let mut distances = vec![];
|
||||
let mut path_edges = vec![];
|
||||
while let Some(n) = dijkstra.paths[cur] {
|
||||
path_edges.push(dijkstra.edges[cur]);
|
||||
while let Some(n) = dijkstra.paths[cur.0 as usize] {
|
||||
path_edges.push(dijkstra.edges[cur.0 as usize]);
|
||||
cur = n;
|
||||
}
|
||||
path_edges.reverse();
|
||||
Some(Path { edges: path_edges, cost: dijkstra.distances[self.query_graph.end_node] })
|
||||
Some(Path {
|
||||
edges: path_edges,
|
||||
cost: dijkstra.distances[self.query_graph.end_node.0 as usize],
|
||||
})
|
||||
}
|
||||
|
||||
// TODO: this implementation is VERY fragile, as we assume that the edges are ordered by cost
|
||||
// already. Change it.
|
||||
pub fn cheapest_edge(&self, cur_node: usize, succ: usize) -> Option<(EdgeIndex, u8)> {
|
||||
pub fn cheapest_edge(&self, cur_node: NodeIndex, succ: NodeIndex) -> Option<(EdgeIndex, u8)> {
|
||||
self.visit_edges(cur_node, succ, |edge_idx, edge| {
|
||||
std::ops::ControlFlow::Break((edge_idx, edge.cost))
|
||||
})
|
||||
|
@ -9,6 +9,12 @@ use crate::new::db_cache::DatabaseCache;
|
||||
use crate::new::BitmapOrAllRef;
|
||||
use crate::{Index, Result};
|
||||
|
||||
// TODO: the cache should have a G::EdgeDetails as key
|
||||
// but then it means that we should have a quick way of
|
||||
// computing their hash and comparing them
|
||||
// which can be done...
|
||||
// by using a pointer (real, Rc, bumpalo, or in a vector)???
|
||||
|
||||
pub struct EdgeDocidsCache<G: RankingRuleGraphTrait> {
|
||||
pub cache: HashMap<EdgeIndex, RoaringBitmap>,
|
||||
|
||||
|
@ -13,7 +13,7 @@ use heed::RoTxn;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::db_cache::DatabaseCache;
|
||||
use super::{QueryGraph, QueryNode};
|
||||
use super::{NodeIndex, QueryGraph, QueryNode};
|
||||
use crate::{Index, Result};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@ -24,8 +24,8 @@ pub enum EdgeDetails<E> {
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Edge<E> {
|
||||
from_node: usize,
|
||||
to_node: usize,
|
||||
from_node: NodeIndex,
|
||||
to_node: NodeIndex,
|
||||
cost: u8,
|
||||
details: EdgeDetails<E>,
|
||||
}
|
||||
@ -38,22 +38,20 @@ pub struct EdgePointer<'graph, E> {
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct EdgeIndex(pub usize);
|
||||
// {
|
||||
// // TODO: they could all be u16 instead
|
||||
// // There may be a way to store all the edge indices in a u32 as well,
|
||||
// // if the edges are in a vector
|
||||
// // then we can store sets of edges in a bitmap efficiently
|
||||
// pub from: usize,
|
||||
// pub to: usize,
|
||||
// pub edge_idx: usize,
|
||||
// }
|
||||
|
||||
pub trait RankingRuleGraphTrait {
|
||||
/// The details of an edge connecting two query nodes. These details
|
||||
/// should be sufficient to compute the edge's cost and associated document ids
|
||||
/// in [`compute_docids`](RankingRuleGraphTrait).
|
||||
type EdgeDetails: Sized;
|
||||
|
||||
type BuildVisitedFromNode;
|
||||
|
||||
fn edge_details_dot_label(edge: &Self::EdgeDetails) -> String;
|
||||
/// Return the label of the given edge details, to be used when visualising
|
||||
/// the ranking rule graph using GraphViz.
|
||||
fn graphviz_edge_details_label(edge: &Self::EdgeDetails) -> String;
|
||||
|
||||
/// Compute the document ids associated with the given edge.
|
||||
fn compute_docids<'transaction>(
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
@ -61,6 +59,10 @@ pub trait RankingRuleGraphTrait {
|
||||
edge_details: &Self::EdgeDetails,
|
||||
) -> Result<RoaringBitmap>;
|
||||
|
||||
/// Prepare to build the edges outgoing from `from_node`.
|
||||
///
|
||||
/// This call is followed by zero, one or more calls to [`build_visit_to_node`](RankingRuleGraphTrait::build_visit_to_node),
|
||||
/// which builds the actual edges.
|
||||
fn build_visit_from_node<'transaction>(
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
@ -68,39 +70,59 @@ pub trait RankingRuleGraphTrait {
|
||||
from_node: &QueryNode,
|
||||
) -> Result<Option<Self::BuildVisitedFromNode>>;
|
||||
|
||||
/// Return the cost and details of the edges going from the previously visited node
|
||||
/// (with [`build_visit_from_node`](RankingRuleGraphTrait::build_visit_from_node)) to `to_node`.
|
||||
fn build_visit_to_node<'from_data, 'transaction: 'from_data>(
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
to_node: &QueryNode,
|
||||
from_node_data: &'from_data Self::BuildVisitedFromNode,
|
||||
) -> Result<Option<Vec<(u8, EdgeDetails<Self::EdgeDetails>)>>>;
|
||||
) -> Result<Vec<(u8, EdgeDetails<Self::EdgeDetails>)>>;
|
||||
}
|
||||
|
||||
pub struct RankingRuleGraph<G: RankingRuleGraphTrait> {
|
||||
pub query_graph: QueryGraph,
|
||||
// pub edges: Vec<HashMap<usize, Vec<Edge<G::EdgeDetails>>>>,
|
||||
pub all_edges: Vec<Option<Edge<G::EdgeDetails>>>,
|
||||
pub node_edges: Vec<BTreeSet<usize>>,
|
||||
|
||||
pub node_edges: Vec<RoaringBitmap>,
|
||||
|
||||
pub successors: Vec<RoaringBitmap>,
|
||||
// to get the edges between two nodes:
|
||||
// 1. get node_outgoing_edges[from]
|
||||
// 2. get node_incoming_edges[to]
|
||||
// 3. take intersection betweem the two
|
||||
|
||||
// TODO: node edges could be different I guess
|
||||
// something like:
|
||||
// pub node_edges: Vec<BitSet>
|
||||
// where each index is the result of:
|
||||
// the successor index in the top 16 bits, the edge index in the bottom 16 bits
|
||||
|
||||
// TODO:
|
||||
// node_successors?
|
||||
|
||||
// pub removed_edges: HashSet<EdgeIndex>,
|
||||
// pub tmp_removed_edges: HashSet<EdgeIndex>,
|
||||
}
|
||||
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
// NOTE: returns the edge even if it was removed
|
||||
pub fn get_edge(&self, edge_index: EdgeIndex) -> &Option<Edge<G::EdgeDetails>> {
|
||||
&self.all_edges[edge_index.0]
|
||||
}
|
||||
|
||||
// Visit all edges between the two given nodes in order of increasing cost.
|
||||
pub fn visit_edges<'graph, O>(
|
||||
&'graph self,
|
||||
from: usize,
|
||||
to: usize,
|
||||
from: NodeIndex,
|
||||
to: NodeIndex,
|
||||
mut visit: impl FnMut(EdgeIndex, &'graph Edge<G::EdgeDetails>) -> ControlFlow<O>,
|
||||
) -> Option<O> {
|
||||
let from_edges = &self.node_edges[from];
|
||||
for &edge_idx in from_edges {
|
||||
let edge = self.all_edges[edge_idx].as_ref().unwrap();
|
||||
let from_edges = &self.node_edges[from.0 as usize];
|
||||
for edge_idx in from_edges {
|
||||
let edge = self.all_edges[edge_idx as usize].as_ref().unwrap();
|
||||
if edge.to_node == to {
|
||||
let cf = visit(EdgeIndex(edge_idx), edge);
|
||||
let cf = visit(EdgeIndex(edge_idx as usize), edge);
|
||||
match cf {
|
||||
ControlFlow::Continue(_) => continue,
|
||||
ControlFlow::Break(o) => return Some(o),
|
||||
@ -113,54 +135,61 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
|
||||
fn remove_edge(&mut self, edge_index: EdgeIndex) {
|
||||
let edge_opt = &mut self.all_edges[edge_index.0];
|
||||
let Some(Edge { from_node, to_node, cost, details }) = &edge_opt else { return };
|
||||
|
||||
let node_edges = &mut self.node_edges[*from_node];
|
||||
node_edges.remove(&edge_index.0);
|
||||
|
||||
let Some(edge) = &edge_opt else { return };
|
||||
let (from_node, to_node) = (edge.from_node, edge.to_node);
|
||||
*edge_opt = None;
|
||||
}
|
||||
pub fn remove_nodes(&mut self, nodes: &[usize]) {
|
||||
for &node in nodes {
|
||||
let edge_indices = &mut self.node_edges[node];
|
||||
for edge_index in edge_indices.iter() {
|
||||
self.all_edges[*edge_index] = None;
|
||||
}
|
||||
edge_indices.clear();
|
||||
|
||||
let preds = &self.query_graph.edges[node].incoming;
|
||||
for pred in preds {
|
||||
let edge_indices = &mut self.node_edges[*pred];
|
||||
for edge_index in edge_indices.iter() {
|
||||
let edge_opt = &mut self.all_edges[*edge_index];
|
||||
let Some(edge) = edge_opt else { continue; };
|
||||
if edge.to_node == node {
|
||||
*edge_opt = None;
|
||||
}
|
||||
}
|
||||
panic!("remove nodes is incorrect at the moment");
|
||||
edge_indices.clear();
|
||||
}
|
||||
}
|
||||
self.query_graph.remove_nodes(nodes);
|
||||
}
|
||||
pub fn simplify(&mut self) {
|
||||
loop {
|
||||
let mut nodes_to_remove = vec![];
|
||||
for (node_idx, node) in self.query_graph.nodes.iter().enumerate() {
|
||||
if !matches!(node, QueryNode::End | QueryNode::Deleted)
|
||||
&& self.node_edges[node_idx].is_empty()
|
||||
{
|
||||
nodes_to_remove.push(node_idx);
|
||||
}
|
||||
}
|
||||
if nodes_to_remove.is_empty() {
|
||||
break;
|
||||
} else {
|
||||
self.remove_nodes(&nodes_to_remove);
|
||||
}
|
||||
let from_node_edges = &mut self.node_edges[from_node.0 as usize];
|
||||
from_node_edges.remove(edge_index.0 as u32);
|
||||
|
||||
let mut new_successors_from_node = RoaringBitmap::new();
|
||||
for edge in from_node_edges.iter() {
|
||||
let Edge { to_node, .. } = &self.all_edges[edge as usize].as_ref().unwrap();
|
||||
new_successors_from_node.insert(to_node.0);
|
||||
}
|
||||
self.successors[from_node.0 as usize] = new_successors_from_node;
|
||||
}
|
||||
// pub fn remove_nodes(&mut self, nodes: &[usize]) {
|
||||
// for &node in nodes {
|
||||
// let edge_indices = &mut self.node_edges[node];
|
||||
// for edge_index in edge_indices.iter() {
|
||||
// self.all_edges[*edge_index] = None;
|
||||
// }
|
||||
// edge_indices.clear();
|
||||
|
||||
// let preds = &self.query_graph.edges[node].incoming;
|
||||
// for pred in preds {
|
||||
// let edge_indices = &mut self.node_edges[*pred];
|
||||
// for edge_index in edge_indices.iter() {
|
||||
// let edge_opt = &mut self.all_edges[*edge_index];
|
||||
// let Some(edge) = edge_opt else { continue; };
|
||||
// if edge.to_node == node {
|
||||
// *edge_opt = None;
|
||||
// }
|
||||
// }
|
||||
// panic!("remove nodes is incorrect at the moment");
|
||||
// edge_indices.clear();
|
||||
// }
|
||||
// }
|
||||
// self.query_graph.remove_nodes(nodes);
|
||||
// }
|
||||
// pub fn simplify(&mut self) {
|
||||
// loop {
|
||||
// let mut nodes_to_remove = vec![];
|
||||
// for (node_idx, node) in self.query_graph.nodes.iter().enumerate() {
|
||||
// if !matches!(node, QueryNode::End | QueryNode::Deleted)
|
||||
// && self.node_edges[node_idx].is_empty()
|
||||
// {
|
||||
// nodes_to_remove.push(node_idx);
|
||||
// }
|
||||
// }
|
||||
// if nodes_to_remove.is_empty() {
|
||||
// break;
|
||||
// } else {
|
||||
// self.remove_nodes(&nodes_to_remove);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// fn is_removed_edge(&self, edge: EdgeIndex) -> bool {
|
||||
// self.removed_edges.contains(&edge) || self.tmp_removed_edges.contains(&edge)
|
||||
// }
|
||||
@ -174,9 +203,9 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
continue;
|
||||
}
|
||||
desc.push_str(&format!("{node_idx} [label = {:?}]", node));
|
||||
if node_idx == self.query_graph.root_node {
|
||||
if node_idx == self.query_graph.root_node.0 as usize {
|
||||
desc.push_str("[color = blue]");
|
||||
} else if node_idx == self.query_graph.end_node {
|
||||
} else if node_idx == self.query_graph.end_node.0 as usize {
|
||||
desc.push_str("[color = red]");
|
||||
}
|
||||
desc.push_str(";\n");
|
||||
@ -195,7 +224,7 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
desc.push_str(&format!(
|
||||
"{from_node} -> {to_node} [label = \"cost {cost} {edge_label}\"];\n",
|
||||
cost = edge.cost,
|
||||
edge_label = G::edge_details_dot_label(details)
|
||||
edge_label = G::graphviz_edge_details_label(details)
|
||||
));
|
||||
}
|
||||
}
|
||||
|
@ -235,9 +235,9 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
continue;
|
||||
}
|
||||
desc.push_str(&format!("{node_idx} [label = {:?}]", node));
|
||||
if node_idx == self.query_graph.root_node {
|
||||
if node_idx == self.query_graph.root_node.0 as usize {
|
||||
desc.push_str("[color = blue]");
|
||||
} else if node_idx == self.query_graph.end_node {
|
||||
} else if node_idx == self.query_graph.end_node.0 as usize {
|
||||
desc.push_str("[color = red]");
|
||||
}
|
||||
desc.push_str(";\n");
|
||||
@ -262,7 +262,7 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
|
||||
desc.push_str(&format!(
|
||||
"{from_node} -> {to_node} [label = \"cost {cost} {edge_label}\", color = {color}];\n",
|
||||
cost = edge.cost,
|
||||
edge_label = G::edge_details_dot_label(details),
|
||||
edge_label = G::graphviz_edge_details_label(details),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
@ -51,11 +51,11 @@ pub fn visit_to_node<'transaction, 'from_data>(
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
to_node: &QueryNode,
|
||||
from_node_data: &'from_data (WordDerivations, i8),
|
||||
) -> Result<Option<Vec<(u8, EdgeDetails<ProximityEdge>)>>> {
|
||||
) -> Result<Vec<(u8, EdgeDetails<ProximityEdge>)>> {
|
||||
let (derivations1, pos1) = from_node_data;
|
||||
let term2 = match &to_node {
|
||||
QueryNode::End => return Ok(Some(vec![(0, EdgeDetails::Unconditional)])),
|
||||
QueryNode::Deleted | QueryNode::Start => return Ok(None),
|
||||
QueryNode::End => return Ok(vec![(0, EdgeDetails::Unconditional)]),
|
||||
QueryNode::Deleted | QueryNode::Start => return Ok(vec![]),
|
||||
QueryNode::Term(term) => term,
|
||||
};
|
||||
let LocatedQueryTerm { value: value2, positions: pos2 } = term2;
|
||||
@ -86,7 +86,7 @@ pub fn visit_to_node<'transaction, 'from_data>(
|
||||
// We want to effectively ignore this pair of terms
|
||||
// Unconditionally walk through the edge without computing the docids
|
||||
// But also what should the cost be?
|
||||
return Ok(Some(vec![(0, EdgeDetails::Unconditional)]));
|
||||
return Ok(vec![(0, EdgeDetails::Unconditional)]);
|
||||
}
|
||||
|
||||
let updb1 = derivations1.use_prefix_db;
|
||||
@ -161,5 +161,5 @@ pub fn visit_to_node<'transaction, 'from_data>(
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
new_edges.push((8 + (ngram_len2 - 1) as u8, EdgeDetails::Unconditional));
|
||||
Ok(Some(new_edges))
|
||||
Ok(new_edges)
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ impl RankingRuleGraphTrait for ProximityGraph {
|
||||
type EdgeDetails = ProximityEdge;
|
||||
type BuildVisitedFromNode = (WordDerivations, i8);
|
||||
|
||||
fn edge_details_dot_label(edge: &Self::EdgeDetails) -> String {
|
||||
fn graphviz_edge_details_label(edge: &Self::EdgeDetails) -> String {
|
||||
let ProximityEdge { pairs, proximity } = edge;
|
||||
format!(", prox {proximity}, {} pairs", pairs.len())
|
||||
}
|
||||
@ -55,7 +55,7 @@ impl RankingRuleGraphTrait for ProximityGraph {
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
to_node: &QueryNode,
|
||||
from_node_data: &'from_data Self::BuildVisitedFromNode,
|
||||
) -> Result<Option<Vec<(u8, EdgeDetails<Self::EdgeDetails>)>>> {
|
||||
) -> Result<Vec<(u8, EdgeDetails<Self::EdgeDetails>)>> {
|
||||
build::visit_to_node(index, txn, db_cache, to_node, from_node_data)
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user