mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-07-29 01:31:00 +00:00
Replace the hnsw crate by the instant-distance one
This commit is contained in:
@ -28,7 +28,7 @@ use db_cache::DatabaseCache;
|
||||
use exact_attribute::ExactAttribute;
|
||||
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
|
||||
use heed::RoTxn;
|
||||
use hnsw::Searcher;
|
||||
use instant_distance::Search;
|
||||
use interner::{DedupInterner, Interner};
|
||||
pub use logger::visual::VisualSearchLogger;
|
||||
pub use logger::{DefaultSearchLogger, SearchLogger};
|
||||
@ -40,19 +40,18 @@ use ranking_rules::{
|
||||
use resolve_query_graph::{compute_query_graph_docids, PhraseDocIdsCache};
|
||||
use roaring::RoaringBitmap;
|
||||
use sort::Sort;
|
||||
use space::Neighbor;
|
||||
|
||||
use self::distinct::facet_string_values;
|
||||
use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::distance::NDotProductPoint;
|
||||
use crate::error::FieldIdMapMissingEntry;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::{
|
||||
normalize_vector, AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy,
|
||||
UserError, BEU32,
|
||||
AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError, BEU32,
|
||||
};
|
||||
|
||||
/// A structure used throughout the execution of a search query.
|
||||
@ -445,29 +444,31 @@ pub fn execute_search(
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
let mut searcher = Searcher::new();
|
||||
let hnsw = ctx.index.vector_hnsw(ctx.txn)?.unwrap_or_default();
|
||||
let ef = hnsw.len().min(100);
|
||||
let mut dest = vec![Neighbor { index: 0, distance: 0 }; ef];
|
||||
let vector = normalize_vector(vector.clone());
|
||||
let neighbors = hnsw.nearest(&vector, ef, &mut searcher, &mut dest[..]);
|
||||
let mut search = Search::default();
|
||||
let docids = match ctx.index.vector_hnsw(ctx.txn)? {
|
||||
Some(hnsw) => {
|
||||
let vector = NDotProductPoint::new(vector.clone());
|
||||
let neighbors = hnsw.search(&vector, &mut search);
|
||||
|
||||
let mut docids = Vec::new();
|
||||
let mut uniq_docids = RoaringBitmap::new();
|
||||
for Neighbor { index, distance: _ } in neighbors.iter() {
|
||||
let index = BEU32::new(*index as u32);
|
||||
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap().get();
|
||||
if universe.contains(docid) && uniq_docids.insert(docid) {
|
||||
docids.push(docid);
|
||||
if docids.len() == (from + length) {
|
||||
break;
|
||||
let mut docids = Vec::new();
|
||||
let mut uniq_docids = RoaringBitmap::new();
|
||||
for instant_distance::Item { distance: _, pid, point: _ } in neighbors {
|
||||
let index = BEU32::new(pid.into_inner());
|
||||
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap().get();
|
||||
if universe.contains(docid) && uniq_docids.insert(docid) {
|
||||
docids.push(docid);
|
||||
if docids.len() == (from + length) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// return the nearest documents that are also part of the candidates
|
||||
// along with a dummy list of scores that are useless in this context.
|
||||
let docids: Vec<_> = docids.into_iter().skip(from).take(length).collect();
|
||||
// return the nearest documents that are also part of the candidates
|
||||
// along with a dummy list of scores that are useless in this context.
|
||||
docids.into_iter().skip(from).take(length).collect()
|
||||
}
|
||||
None => Vec::new(),
|
||||
};
|
||||
|
||||
return Ok(PartialSearchResult {
|
||||
candidates: universe,
|
||||
|
Reference in New Issue
Block a user