mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-09-10 06:36:29 +00:00
Move the facets related system into the new search module
This commit is contained in:
259
src/search/facet.rs
Normal file
259
src/search/facet.rs
Normal file
@ -0,0 +1,259 @@
|
||||
use std::error::Error as StdError;
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Bound::{self, Unbounded, Included, Excluded};
|
||||
use std::str::FromStr;
|
||||
|
||||
use anyhow::{bail, ensure, Context};
|
||||
use heed::types::{ByteSlice, DecodeIgnore};
|
||||
use log::debug;
|
||||
use num_traits::Bounded;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::facet::FacetType;
|
||||
use crate::heed_codec::facet::{FacetLevelValueI64Codec, FacetLevelValueF64Codec};
|
||||
use crate::{Index, CboRoaringBitmapCodec};
|
||||
|
||||
use self::FacetCondition::*;
|
||||
use self::FacetOperator::*;
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
pub enum FacetOperator<T> {
|
||||
GreaterThan(T),
|
||||
GreaterThanOrEqual(T),
|
||||
LowerThan(T),
|
||||
LowerThanOrEqual(T),
|
||||
Equal(T),
|
||||
Between(T, T),
|
||||
}
|
||||
|
||||
// TODO also support ANDs, ORs, NOTs.
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
pub enum FacetCondition {
|
||||
OperatorI64(u8, FacetOperator<i64>),
|
||||
OperatorF64(u8, FacetOperator<f64>),
|
||||
}
|
||||
|
||||
impl FacetCondition {
|
||||
pub fn from_str(
|
||||
rtxn: &heed::RoTxn,
|
||||
index: &Index,
|
||||
string: &str,
|
||||
) -> anyhow::Result<Option<FacetCondition>>
|
||||
{
|
||||
let fields_ids_map = index.fields_ids_map(rtxn)?;
|
||||
let faceted_fields = index.faceted_fields(rtxn)?;
|
||||
|
||||
// TODO use a better parsing technic
|
||||
let mut iter = string.split_whitespace();
|
||||
|
||||
let field_name = match iter.next() {
|
||||
Some(field_name) => field_name,
|
||||
None => return Ok(None),
|
||||
};
|
||||
|
||||
let field_id = fields_ids_map.id(&field_name).with_context(|| format!("field {} not found", field_name))?;
|
||||
let field_type = faceted_fields.get(&field_id).with_context(|| format!("field {} is not faceted", field_name))?;
|
||||
|
||||
match field_type {
|
||||
FacetType::Integer => Self::parse_condition(iter).map(|op| Some(OperatorI64(field_id, op))),
|
||||
FacetType::Float => Self::parse_condition(iter).map(|op| Some(OperatorF64(field_id, op))),
|
||||
FacetType::String => bail!("invalid facet type"),
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_condition<'a, T: FromStr>(
|
||||
mut iter: impl Iterator<Item=&'a str>,
|
||||
) -> anyhow::Result<FacetOperator<T>>
|
||||
where T::Err: Send + Sync + StdError + 'static,
|
||||
{
|
||||
match iter.next() {
|
||||
Some(">") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
let value = param.parse().with_context(|| format!("invalid parameter ({:?})", param))?;
|
||||
Ok(GreaterThan(value))
|
||||
},
|
||||
Some(">=") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
let value = param.parse().with_context(|| format!("invalid parameter ({:?})", param))?;
|
||||
Ok(GreaterThanOrEqual(value))
|
||||
},
|
||||
Some("<") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
let value = param.parse().with_context(|| format!("invalid parameter ({:?})", param))?;
|
||||
Ok(LowerThan(value))
|
||||
},
|
||||
Some("<=") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
let value = param.parse().with_context(|| format!("invalid parameter ({:?})", param))?;
|
||||
Ok(LowerThanOrEqual(value))
|
||||
},
|
||||
Some("=") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
let value = param.parse().with_context(|| format!("invalid parameter ({:?})", param))?;
|
||||
Ok(Equal(value))
|
||||
},
|
||||
Some(otherwise) => {
|
||||
// BETWEEN or X TO Y (both inclusive)
|
||||
let left_param = otherwise.parse().with_context(|| format!("invalid first TO parameter ({:?})", otherwise))?;
|
||||
ensure!(iter.next().map_or(false, |s| s.eq_ignore_ascii_case("to")), "TO keyword missing or invalid");
|
||||
let next = iter.next().context("missing second TO parameter")?;
|
||||
let right_param = next.parse().with_context(|| format!("invalid second TO parameter ({:?})", next))?;
|
||||
Ok(Between(left_param, right_param))
|
||||
},
|
||||
None => bail!("missing facet filter first parameter"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Aggregates the documents ids that are part of the specified range automatically
|
||||
/// going deeper through the levels.
|
||||
fn explore_facet_levels<'t, T: 't, KC>(
|
||||
rtxn: &'t heed::RoTxn,
|
||||
db: heed::Database<ByteSlice, CboRoaringBitmapCodec>,
|
||||
field_id: u8,
|
||||
level: u8,
|
||||
left: Bound<T>,
|
||||
right: Bound<T>,
|
||||
output: &mut RoaringBitmap,
|
||||
) -> anyhow::Result<()>
|
||||
where
|
||||
T: Copy + PartialEq + PartialOrd + Bounded + Debug,
|
||||
KC: heed::BytesDecode<'t, DItem = (u8, u8, T, T)>,
|
||||
KC: for<'x> heed::BytesEncode<'x, EItem = (u8, u8, T, T)>,
|
||||
{
|
||||
match (left, right) {
|
||||
// If the request is an exact value we must go directly to the deepest level.
|
||||
(Included(l), Included(r)) if l == r && level > 0 => {
|
||||
return Self::explore_facet_levels::<T, KC>(rtxn, db, field_id, 0, left, right, output);
|
||||
},
|
||||
// lower TO upper when lower > upper must return no result
|
||||
(Included(l), Included(r)) if l > r => return Ok(()),
|
||||
(Included(l), Excluded(r)) if l >= r => return Ok(()),
|
||||
(Excluded(l), Excluded(r)) if l >= r => return Ok(()),
|
||||
(Excluded(l), Included(r)) if l >= r => return Ok(()),
|
||||
(_, _) => (),
|
||||
}
|
||||
|
||||
let mut left_found = None;
|
||||
let mut right_found = None;
|
||||
|
||||
// We must create a custom iterator to be able to iterate over the
|
||||
// requested range as the range iterator cannot express some conditions.
|
||||
let left_bound = match left {
|
||||
Included(left) => Included((field_id, level, left, T::min_value())),
|
||||
Excluded(left) => Excluded((field_id, level, left, T::min_value())),
|
||||
Unbounded => Unbounded,
|
||||
};
|
||||
let right_bound = Included((field_id, level, T::max_value(), T::max_value()));
|
||||
// We also make sure that we don't decode the data before we are sure we must return it.
|
||||
let iter = db
|
||||
.remap_key_type::<KC>()
|
||||
.lazily_decode_data()
|
||||
.range(rtxn, &(left_bound, right_bound))?
|
||||
.take_while(|r| r.as_ref().map_or(true, |((.., r), _)| {
|
||||
match right {
|
||||
Included(right) => *r <= right,
|
||||
Excluded(right) => *r < right,
|
||||
Unbounded => true,
|
||||
}
|
||||
}))
|
||||
.map(|r| r.and_then(|(key, lazy)| lazy.decode().map(|data| (key, data))));
|
||||
|
||||
debug!("Iterating between {:?} and {:?} (level {})", left, right, level);
|
||||
|
||||
for (i, result) in iter.enumerate() {
|
||||
let ((_fid, level, l, r), docids) = result?;
|
||||
debug!("{:?} to {:?} (level {}) found {} documents", l, r, level, docids.len());
|
||||
output.union_with(&docids);
|
||||
// We save the leftest and rightest bounds we actually found at this level.
|
||||
if i == 0 { left_found = Some(l); }
|
||||
right_found = Some(r);
|
||||
}
|
||||
|
||||
// Can we go deeper?
|
||||
let deeper_level = match level.checked_sub(1) {
|
||||
Some(level) => level,
|
||||
None => return Ok(()),
|
||||
};
|
||||
|
||||
// We must refine the left and right bounds of this range by retrieving the
|
||||
// missing part in a deeper level.
|
||||
match left_found.zip(right_found) {
|
||||
Some((left_found, right_found)) => {
|
||||
// If the bound is satisfied we avoid calling this function again.
|
||||
if !matches!(left, Included(l) if l == left_found) {
|
||||
let sub_right = Excluded(left_found);
|
||||
debug!("calling left with {:?} to {:?} (level {})", left, sub_right, deeper_level);
|
||||
Self::explore_facet_levels::<T, KC>(rtxn, db, field_id, deeper_level, left, sub_right, output)?;
|
||||
}
|
||||
if !matches!(right, Included(r) if r == right_found) {
|
||||
let sub_left = Excluded(right_found);
|
||||
debug!("calling right with {:?} to {:?} (level {})", sub_left, right, deeper_level);
|
||||
Self::explore_facet_levels::<T, KC>(rtxn, db, field_id, deeper_level, sub_left, right, output)?;
|
||||
}
|
||||
},
|
||||
None => {
|
||||
// If we found nothing at this level it means that we must find
|
||||
// the same bounds but at a deeper, more precise level.
|
||||
Self::explore_facet_levels::<T, KC>(rtxn, db, field_id, deeper_level, left, right, output)?;
|
||||
},
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn evaluate_operator<'t, T: 't, KC>(
|
||||
rtxn: &'t heed::RoTxn,
|
||||
db: heed::Database<ByteSlice, CboRoaringBitmapCodec>,
|
||||
field_id: u8,
|
||||
operator: FacetOperator<T>,
|
||||
) -> anyhow::Result<RoaringBitmap>
|
||||
where
|
||||
T: Copy + PartialEq + PartialOrd + Bounded + Debug,
|
||||
KC: heed::BytesDecode<'t, DItem = (u8, u8, T, T)>,
|
||||
KC: for<'x> heed::BytesEncode<'x, EItem = (u8, u8, T, T)>,
|
||||
{
|
||||
// Make sure we always bound the ranges with the field id and the level,
|
||||
// as the facets values are all in the same database and prefixed by the
|
||||
// field id and the level.
|
||||
let (left, right) = match operator {
|
||||
GreaterThan(val) => (Excluded(val), Included(T::max_value())),
|
||||
GreaterThanOrEqual(val) => (Included(val), Included(T::max_value())),
|
||||
LowerThan(val) => (Included(T::min_value()), Excluded(val)),
|
||||
LowerThanOrEqual(val) => (Included(T::min_value()), Included(val)),
|
||||
Equal(val) => (Included(val), Included(val)),
|
||||
Between(left, right) => (Included(left), Included(right)),
|
||||
};
|
||||
|
||||
// Ask for the biggest value that can exist for this specific field, if it exists
|
||||
// that's fine if it don't, the value just before will be returned instead.
|
||||
let biggest_level = db
|
||||
.remap_types::<KC, DecodeIgnore>()
|
||||
.get_lower_than_or_equal_to(rtxn, &(field_id, u8::MAX, T::max_value(), T::max_value()))?
|
||||
.and_then(|((id, level, _, _), _)| if id == field_id { Some(level) } else { None });
|
||||
|
||||
match biggest_level {
|
||||
Some(level) => {
|
||||
let mut output = RoaringBitmap::new();
|
||||
Self::explore_facet_levels::<T, KC>(rtxn, db, field_id, level, left, right, &mut output)?;
|
||||
Ok(output)
|
||||
},
|
||||
None => Ok(RoaringBitmap::new()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
rtxn: &heed::RoTxn,
|
||||
db: heed::Database<ByteSlice, CboRoaringBitmapCodec>,
|
||||
) -> anyhow::Result<RoaringBitmap>
|
||||
{
|
||||
match *self {
|
||||
FacetCondition::OperatorI64(fid, operator) => {
|
||||
Self::evaluate_operator::<i64, FacetLevelValueI64Codec>(rtxn, db, fid, operator)
|
||||
},
|
||||
FacetCondition::OperatorF64(fid, operator) => {
|
||||
Self::evaluate_operator::<f64, FacetLevelValueF64Codec>(rtxn, db, fid, operator)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
228
src/search/mod.rs
Normal file
228
src/search/mod.rs
Normal file
@ -0,0 +1,228 @@
|
||||
use std::borrow::Cow;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::fmt;
|
||||
|
||||
use fst::{IntoStreamer, Streamer};
|
||||
use levenshtein_automata::DFA;
|
||||
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
||||
use log::debug;
|
||||
use once_cell::sync::Lazy;
|
||||
use roaring::bitmap::RoaringBitmap;
|
||||
|
||||
use crate::mdfs::Mdfs;
|
||||
use crate::query_tokens::{QueryTokens, QueryToken};
|
||||
use crate::{Index, DocumentId};
|
||||
|
||||
pub use self::facet::FacetCondition;
|
||||
|
||||
// Building these factories is not free.
|
||||
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
||||
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
||||
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
||||
|
||||
mod facet;
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
facet_condition: Option<FacetCondition>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
||||
Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index }
|
||||
}
|
||||
|
||||
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
||||
self.query = Some(query.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
||||
self.offset = offset;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
||||
self.limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> {
|
||||
self.facet_condition = Some(condition);
|
||||
self
|
||||
}
|
||||
|
||||
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
||||
/// TODO introduce settings for the number of typos regarding the words lengths.
|
||||
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
||||
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
||||
|
||||
let words: Vec<_> = QueryTokens::new(query).collect();
|
||||
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
||||
let number_of_words = words.len();
|
||||
|
||||
words.into_iter().enumerate().map(|(i, word)| {
|
||||
let (word, quoted) = match word {
|
||||
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
||||
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
||||
};
|
||||
let is_last = i + 1 == number_of_words;
|
||||
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
||||
let lev = match word.len() {
|
||||
0..=4 => if quoted { lev0 } else { lev0 },
|
||||
5..=8 => if quoted { lev0 } else { lev1 },
|
||||
_ => if quoted { lev0 } else { lev2 },
|
||||
};
|
||||
|
||||
let dfa = if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
};
|
||||
|
||||
(word, is_prefix, dfa)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Fetch the words from the given FST related to the given DFAs along with
|
||||
/// the associated documents ids.
|
||||
fn fetch_words_docids(
|
||||
&self,
|
||||
fst: &fst::Set<Cow<[u8]>>,
|
||||
dfas: Vec<(String, bool, DFA)>,
|
||||
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
||||
{
|
||||
// A Vec storing all the derived words from the original query words, associated
|
||||
// with the distance from the original word and the docids where the words appears.
|
||||
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
||||
|
||||
for (_word, _is_prefix, dfa) in dfas {
|
||||
|
||||
let mut acc_derived_words = HashMap::new();
|
||||
let mut unions_docids = RoaringBitmap::new();
|
||||
let mut stream = fst.search_with_state(&dfa).into_stream();
|
||||
while let Some((word, state)) = stream.next() {
|
||||
|
||||
let word = std::str::from_utf8(word)?;
|
||||
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
||||
let distance = dfa.distance(state);
|
||||
unions_docids.union_with(&docids);
|
||||
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
||||
}
|
||||
derived_words.push((acc_derived_words, unions_docids));
|
||||
}
|
||||
|
||||
Ok(derived_words)
|
||||
}
|
||||
|
||||
/// Returns the set of docids that contains all of the query words.
|
||||
fn compute_candidates(
|
||||
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
||||
) -> RoaringBitmap
|
||||
{
|
||||
// We sort the derived words by inverse popularity, this way intersections are faster.
|
||||
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
||||
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
||||
|
||||
// we do a union between all the docids of each of the derived words,
|
||||
// we got N unions (the number of original query words), we then intersect them.
|
||||
let mut candidates = RoaringBitmap::new();
|
||||
|
||||
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
||||
if i == 0 {
|
||||
candidates = union_docids.clone();
|
||||
} else {
|
||||
candidates.intersect_with(&union_docids);
|
||||
}
|
||||
}
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
||||
let limit = self.limit;
|
||||
let fst = self.index.words_fst(self.rtxn)?;
|
||||
|
||||
// Construct the DFAs related to the query words.
|
||||
let derived_words = match self.query.as_deref().map(Self::generate_query_dfas) {
|
||||
Some(dfas) if !dfas.is_empty() => Some(self.fetch_words_docids(&fst, dfas)?),
|
||||
_otherwise => None,
|
||||
};
|
||||
|
||||
// We create the original candidates with the facet conditions results.
|
||||
let facet_db = self.index.facet_field_id_value_docids;
|
||||
let facet_candidates = match self.facet_condition {
|
||||
Some(condition) => Some(condition.evaluate(self.rtxn, facet_db)?),
|
||||
None => None,
|
||||
};
|
||||
|
||||
debug!("facet candidates: {:?}", facet_candidates);
|
||||
|
||||
let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
(Some(mut facet_candidates), Some(derived_words)) => {
|
||||
let words_candidates = Self::compute_candidates(&derived_words);
|
||||
facet_candidates.intersect_with(&words_candidates);
|
||||
(facet_candidates, derived_words)
|
||||
},
|
||||
(None, Some(derived_words)) => {
|
||||
(Self::compute_candidates(&derived_words), derived_words)
|
||||
},
|
||||
(Some(facet_candidates), None) => {
|
||||
// If the query is not set or results in no DFAs but
|
||||
// there is some facet conditions we return a placeholder.
|
||||
let documents_ids = facet_candidates.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
(None, None) => {
|
||||
// If the query is not set or results in no DFAs we return a placeholder.
|
||||
let documents_ids = self.index.documents_ids(self.rtxn)?.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
};
|
||||
|
||||
debug!("candidates: {:?}", candidates);
|
||||
|
||||
// The mana depth first search is a revised DFS that explore
|
||||
// solutions in the order of their proximities.
|
||||
let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates);
|
||||
let mut documents = Vec::new();
|
||||
|
||||
// We execute the Mdfs iterator until we find enough documents.
|
||||
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
match mdfs.next().transpose()? {
|
||||
Some((proximity, answer)) => {
|
||||
debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
documents.push(answer);
|
||||
},
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
|
||||
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
let documents_ids = documents.into_iter().flatten().take(limit).collect();
|
||||
Ok(SearchResult { found_words, documents_ids })
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.debug_struct("Search")
|
||||
.field("query", &self.query)
|
||||
.field("facet_condition", &self.facet_condition)
|
||||
.field("offset", &self.offset)
|
||||
.field("limit", &self.limit)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct SearchResult {
|
||||
pub found_words: HashSet<String>,
|
||||
// TODO those documents ids should be associated with their criteria scores.
|
||||
pub documents_ids: Vec<DocumentId>,
|
||||
}
|
Reference in New Issue
Block a user