Plug new indexer

This commit is contained in:
many
2021-08-16 13:36:30 +02:00
parent 3aaf1d62f3
commit 1d314328f0
36 changed files with 1920 additions and 1826 deletions

View File

@ -0,0 +1,130 @@
use std::collections::HashSet;
use std::convert::TryInto;
use std::fs::File;
use std::{io, mem, str};
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig, Token};
use roaring::RoaringBitmap;
use serde_json::Value;
use super::helpers::{concat_u32s_array, create_sorter, sorter_into_reader, GrenadParameters};
use crate::error::{InternalError, SerializationError};
use crate::proximity::ONE_ATTRIBUTE;
use crate::{FieldId, Result};
/// Extracts the word and positions where this word appear and
/// prefixes it by the document id.
///
/// Returns the generated internal documents ids and a grenad reader
/// with the list of extracted words from the given chunk of documents.
pub fn extract_docid_word_positions<R: io::Read>(
mut obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
searchable_fields: &Option<HashSet<FieldId>>,
) -> Result<(RoaringBitmap, grenad::Reader<File>)> {
let max_memory = indexer.max_memory_by_thread();
let mut documents_ids = RoaringBitmap::new();
let mut docid_word_positions_sorter = create_sorter(
concat_u32s_array,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
let mut key_buffer = Vec::new();
let mut field_buffer = String::new();
let analyzer = Analyzer::<Vec<u8>>::new(AnalyzerConfig::default());
while let Some((key, value)) = obkv_documents.next()? {
let document_id = key
.try_into()
.map(u32::from_be_bytes)
.map_err(|_| SerializationError::InvalidNumberSerialization)?;
let obkv = obkv::KvReader::<FieldId>::new(value);
documents_ids.push(document_id);
key_buffer.clear();
key_buffer.extend_from_slice(&document_id.to_be_bytes());
for (field_id, field_bytes) in obkv.iter() {
if searchable_fields.as_ref().map_or(true, |sf| sf.contains(&field_id)) {
let value =
serde_json::from_slice(field_bytes).map_err(InternalError::SerdeJson)?;
field_buffer.clear();
if let Some(field) = json_to_string(&value, &mut field_buffer) {
let analyzed = analyzer.analyze(field);
let tokens = analyzed
.tokens()
.filter(Token::is_word)
.enumerate()
.take_while(|(i, _)| (*i as u32) < ONE_ATTRIBUTE);
for (index, token) in tokens {
let token = token.text().trim();
key_buffer.truncate(mem::size_of::<u32>());
key_buffer.extend_from_slice(token.as_bytes());
let position: u32 = index
.try_into()
.map_err(|_| SerializationError::InvalidNumberSerialization)?;
let position = field_id as u32 * ONE_ATTRIBUTE + position;
docid_word_positions_sorter.insert(&key_buffer, &position.to_ne_bytes())?;
}
}
}
}
}
sorter_into_reader(docid_word_positions_sorter, indexer).map(|reader| (documents_ids, reader))
}
/// Transform a JSON value into a string that can be indexed.
fn json_to_string<'a>(value: &'a Value, buffer: &'a mut String) -> Option<&'a str> {
fn inner(value: &Value, output: &mut String) -> bool {
use std::fmt::Write;
match value {
Value::Null => false,
Value::Bool(boolean) => write!(output, "{}", boolean).is_ok(),
Value::Number(number) => write!(output, "{}", number).is_ok(),
Value::String(string) => write!(output, "{}", string).is_ok(),
Value::Array(array) => {
let mut count = 0;
for value in array {
if inner(value, output) {
output.push_str(". ");
count += 1;
}
}
// check that at least one value was written
count != 0
}
Value::Object(object) => {
let mut buffer = String::new();
let mut count = 0;
for (key, value) in object {
buffer.clear();
let _ = write!(&mut buffer, "{}: ", key);
if inner(value, &mut buffer) {
buffer.push_str(". ");
// We write the "key: value. " pair only when
// we are sure that the value can be written.
output.push_str(&buffer);
count += 1;
}
}
// check that at least one value was written
count != 0
}
}
}
if let Value::String(string) = value {
Some(&string)
} else if inner(value, buffer) {
Some(buffer)
} else {
None
}
}

View File

@ -0,0 +1,41 @@
use std::fs::File;
use std::io;
use heed::{BytesDecode, BytesEncode};
use super::helpers::{
create_sorter, merge_cbo_roaring_bitmaps, sorter_into_reader, GrenadParameters,
};
use crate::heed_codec::facet::{FacetLevelValueF64Codec, FieldDocIdFacetF64Codec};
use crate::Result;
/// Extracts the facet number and the documents ids where this facet number appear.
///
/// Returns a grenad reader with the list of extracted facet numbers and
/// documents ids from the given chunk of docid facet number positions.
pub fn extract_facet_number_docids<R: io::Read>(
mut docid_fid_facet_number: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut facet_number_docids_sorter = create_sorter(
merge_cbo_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
while let Some((key_bytes, _)) = docid_fid_facet_number.next()? {
let (field_id, document_id, number) =
FieldDocIdFacetF64Codec::bytes_decode(key_bytes).unwrap();
let key = (field_id, 0, number, number);
let key_bytes = FacetLevelValueF64Codec::bytes_encode(&key).unwrap();
facet_number_docids_sorter.insert(key_bytes, document_id.to_ne_bytes())?;
}
sorter_into_reader(facet_number_docids_sorter, indexer)
}

View File

@ -0,0 +1,57 @@
use std::fs::File;
use std::iter::FromIterator;
use std::{io, str};
use roaring::RoaringBitmap;
use super::helpers::{
create_sorter, keep_first_prefix_value_merge_roaring_bitmaps, sorter_into_reader,
try_split_array_at, GrenadParameters,
};
use crate::heed_codec::facet::{encode_prefix_string, FacetStringLevelZeroCodec};
use crate::{FieldId, Result};
/// Extracts the facet string and the documents ids where this facet string appear.
///
/// Returns a grenad reader with the list of extracted facet strings and
/// documents ids from the given chunk of docid facet string positions.
pub fn extract_facet_string_docids<R: io::Read>(
mut docid_fid_facet_string: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut facet_string_docids_sorter = create_sorter(
keep_first_prefix_value_merge_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
let mut key_buffer = Vec::new();
let mut value_buffer = Vec::new();
while let Some((key, original_value_bytes)) = docid_fid_facet_string.next()? {
let (field_id_bytes, bytes) = try_split_array_at(key).unwrap();
let field_id = FieldId::from_be_bytes(field_id_bytes);
let (document_id_bytes, normalized_value_bytes) = try_split_array_at(bytes).unwrap();
let document_id = u32::from_be_bytes(document_id_bytes);
let original_value = str::from_utf8(original_value_bytes)?;
key_buffer.clear();
FacetStringLevelZeroCodec::serialize_into(
field_id,
str::from_utf8(normalized_value_bytes)?,
&mut key_buffer,
);
value_buffer.clear();
encode_prefix_string(original_value, &mut value_buffer)?;
let bitmap = RoaringBitmap::from_iter(Some(document_id));
bitmap.serialize_into(&mut value_buffer)?;
facet_string_docids_sorter.insert(&key_buffer, &value_buffer)?;
}
sorter_into_reader(facet_string_docids_sorter, indexer)
}

View File

@ -0,0 +1,118 @@
use std::collections::HashSet;
use std::fs::File;
use std::io;
use std::mem::size_of;
use heed::zerocopy::AsBytes;
use serde_json::Value;
use super::helpers::{create_sorter, keep_first, sorter_into_reader, GrenadParameters};
use crate::error::InternalError;
use crate::facet::value_encoding::f64_into_bytes;
use crate::{DocumentId, FieldId, Result};
/// Extracts the facet values of each faceted field of each document.
///
/// Returns the generated grenad reader containing the docid the fid and the orginal value as key
/// and the normalized value as value extracted from the given chunk of documents.
pub fn extract_fid_docid_facet_values<R: io::Read>(
mut obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
faceted_fields: &HashSet<FieldId>,
) -> Result<(grenad::Reader<File>, grenad::Reader<File>)> {
let max_memory = indexer.max_memory_by_thread();
let mut fid_docid_facet_numbers_sorter = create_sorter(
keep_first,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory.map(|m| m / 2),
);
let mut fid_docid_facet_strings_sorter = create_sorter(
keep_first,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory.map(|m| m / 2),
);
let mut key_buffer = Vec::new();
while let Some((docid_bytes, value)) = obkv_documents.next()? {
let obkv = obkv::KvReader::new(value);
for (field_id, field_bytes) in obkv.iter() {
if faceted_fields.contains(&field_id) {
let value =
serde_json::from_slice(field_bytes).map_err(InternalError::SerdeJson)?;
let (numbers, strings) = extract_facet_values(&value);
key_buffer.clear();
// prefix key with the field_id and the document_id
key_buffer.extend_from_slice(&field_id.to_be_bytes());
key_buffer.extend_from_slice(&docid_bytes);
// insert facet numbers in sorter
for number in numbers {
key_buffer.truncate(size_of::<FieldId>() + size_of::<DocumentId>());
let value_bytes = f64_into_bytes(number).unwrap(); // invalid float
key_buffer.extend_from_slice(&value_bytes);
key_buffer.extend_from_slice(&number.to_be_bytes());
fid_docid_facet_numbers_sorter.insert(&key_buffer, ().as_bytes())?;
}
// insert normalized and original facet string in sorter
for (normalized, original) in strings {
key_buffer.truncate(size_of::<FieldId>() + size_of::<DocumentId>());
key_buffer.extend_from_slice(normalized.as_bytes());
fid_docid_facet_strings_sorter.insert(&key_buffer, original.as_bytes())?;
}
}
}
}
Ok((
sorter_into_reader(fid_docid_facet_numbers_sorter, indexer.clone())?,
sorter_into_reader(fid_docid_facet_strings_sorter, indexer)?,
))
}
fn extract_facet_values(value: &Value) -> (Vec<f64>, Vec<(String, String)>) {
fn inner_extract_facet_values(
value: &Value,
can_recurse: bool,
output_numbers: &mut Vec<f64>,
output_strings: &mut Vec<(String, String)>,
) {
match value {
Value::Null => (),
Value::Bool(b) => output_strings.push((b.to_string(), b.to_string())),
Value::Number(number) => {
if let Some(float) = number.as_f64() {
output_numbers.push(float);
}
}
Value::String(original) => {
let normalized = original.trim().to_lowercase();
output_strings.push((normalized, original.clone()));
}
Value::Array(values) => {
if can_recurse {
for value in values {
inner_extract_facet_values(value, false, output_numbers, output_strings);
}
}
}
Value::Object(_) => (),
}
}
let mut facet_number_values = Vec::new();
let mut facet_string_values = Vec::new();
inner_extract_facet_values(value, true, &mut facet_number_values, &mut facet_string_values);
(facet_number_values, facet_string_values)
}

View File

@ -0,0 +1,91 @@
use std::collections::HashMap;
use std::fs::File;
use std::{cmp, io};
use grenad::Sorter;
use super::helpers::{
create_sorter, merge_cbo_roaring_bitmaps, read_u32_ne_bytes, sorter_into_reader,
try_split_array_at, GrenadParameters, MergeFn,
};
use crate::proximity::extract_position;
use crate::{DocumentId, FieldId, Result};
/// Extracts the field id word count and the documents ids where
/// this field id with this amount of words appear.
///
/// Returns a grenad reader with the list of extracted field id word counts
/// and documents ids from the given chunk of docid word positions.
pub fn extract_fid_word_count_docids<R: io::Read>(
mut docid_word_positions: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut fid_word_count_docids_sorter = create_sorter(
merge_cbo_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
// This map is assumed to not consume a lot of memory.
let mut document_fid_wordcount = HashMap::new();
let mut current_document_id = None;
while let Some((key, value)) = docid_word_positions.next()? {
let (document_id_bytes, _word_bytes) = try_split_array_at(key).unwrap();
let document_id = u32::from_be_bytes(document_id_bytes);
let curr_document_id = *current_document_id.get_or_insert(document_id);
if curr_document_id != document_id {
drain_document_fid_wordcount_into_sorter(
&mut fid_word_count_docids_sorter,
&mut document_fid_wordcount,
curr_document_id,
)?;
current_document_id = Some(document_id);
}
for position in read_u32_ne_bytes(value) {
let (field_id, position) = extract_position(position);
let word_count = position + 1;
let value = document_fid_wordcount.entry(field_id as FieldId).or_insert(0);
*value = cmp::max(*value, word_count);
}
}
if let Some(document_id) = current_document_id {
// We must make sure that don't lose the current document field id
// word count map if we break because we reached the end of the chunk.
drain_document_fid_wordcount_into_sorter(
&mut fid_word_count_docids_sorter,
&mut document_fid_wordcount,
document_id,
)?;
}
sorter_into_reader(fid_word_count_docids_sorter, indexer)
}
fn drain_document_fid_wordcount_into_sorter(
fid_word_count_docids_sorter: &mut Sorter<MergeFn>,
document_fid_wordcount: &mut HashMap<FieldId, u32>,
document_id: DocumentId,
) -> Result<()> {
let mut key_buffer = Vec::new();
for (fid, count) in document_fid_wordcount.drain() {
if count <= 10 {
key_buffer.clear();
key_buffer.extend_from_slice(&fid.to_be_bytes());
key_buffer.push(count as u8);
fid_word_count_docids_sorter.insert(&key_buffer, document_id.to_ne_bytes())?;
}
}
Ok(())
}

View File

@ -0,0 +1,42 @@
use std::fs::File;
use std::io;
use std::iter::FromIterator;
use roaring::RoaringBitmap;
use super::helpers::{
create_sorter, merge_roaring_bitmaps, serialize_roaring_bitmap, sorter_into_reader,
try_split_array_at, GrenadParameters,
};
use crate::Result;
/// Extracts the word and the documents ids where this word appear.
///
/// Returns a grenad reader with the list of extracted words and
/// documents ids from the given chunk of docid word positions.
pub fn extract_word_docids<R: io::Read>(
mut docid_word_positions: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut word_docids_sorter = create_sorter(
merge_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
let mut value_buffer = Vec::new();
while let Some((key, _value)) = docid_word_positions.next()? {
let (document_id_bytes, word_bytes) = try_split_array_at(key).unwrap();
let document_id = u32::from_be_bytes(document_id_bytes);
let bitmap = RoaringBitmap::from_iter(Some(document_id));
serialize_roaring_bitmap(&bitmap, &mut value_buffer)?;
word_docids_sorter.insert(word_bytes, &value_buffer)?;
}
sorter_into_reader(word_docids_sorter, indexer)
}

View File

@ -0,0 +1,46 @@
use std::fs::File;
use std::io;
use super::helpers::{
create_sorter, merge_cbo_roaring_bitmaps, read_u32_ne_bytes, sorter_into_reader,
try_split_array_at, GrenadParameters,
};
use crate::{DocumentId, Result};
/// Extracts the word positions and the documents ids where this word appear.
///
/// Returns a grenad reader with the list of extracted words at positions and
/// documents ids from the given chunk of docid word positions.
pub fn extract_word_level_position_docids<R: io::Read>(
mut docid_word_positions: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut word_level_position_docids_sorter = create_sorter(
merge_cbo_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
let mut key_buffer = Vec::new();
while let Some((key, value)) = docid_word_positions.next()? {
let (document_id_bytes, word_bytes) = try_split_array_at(key).unwrap();
let document_id = DocumentId::from_be_bytes(document_id_bytes);
for position in read_u32_ne_bytes(value) {
key_buffer.clear();
key_buffer.extend_from_slice(word_bytes);
key_buffer.push(0); // tree level
// Levels are composed of left and right bounds.
key_buffer.extend_from_slice(&position.to_be_bytes());
key_buffer.extend_from_slice(&position.to_be_bytes());
word_level_position_docids_sorter.insert(&key_buffer, &document_id.to_ne_bytes())?;
}
}
sorter_into_reader(word_level_position_docids_sorter, indexer)
}

View File

@ -0,0 +1,196 @@
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::fs::File;
use std::time::{Duration, Instant};
use std::{cmp, io, mem, str, vec};
use log::debug;
use super::helpers::{
create_sorter, merge_cbo_roaring_bitmaps, read_u32_ne_bytes, sorter_into_reader,
try_split_array_at, GrenadParameters, MergeFn,
};
use crate::proximity::{positions_proximity, MAX_DISTANCE};
use crate::{DocumentId, Result};
/// Extracts the best proximity between pairs of words and the documents ids where this pair appear.
///
/// Returns a grenad reader with the list of extracted word pairs proximities and
/// documents ids from the given chunk of docid word positions.
pub fn extract_word_pair_proximity_docids<R: io::Read>(
mut docid_word_positions: grenad::Reader<R>,
indexer: GrenadParameters,
) -> Result<grenad::Reader<File>> {
let max_memory = indexer.max_memory_by_thread();
let mut word_pair_proximity_docids_sorter = create_sorter(
merge_cbo_roaring_bitmaps,
indexer.chunk_compression_type,
indexer.chunk_compression_level,
indexer.max_nb_chunks,
max_memory,
);
let mut number_of_documents = 0;
let mut total_time_aggregation = Duration::default();
let mut total_time_grenad_insert = Duration::default();
// This map is assumed to not consume a lot of memory.
let mut document_word_positions_heap = BinaryHeap::new();
let mut current_document_id = None;
while let Some((key, value)) = docid_word_positions.next()? {
let (document_id_bytes, word_bytes) = try_split_array_at(key).unwrap();
let document_id = u32::from_be_bytes(document_id_bytes);
let word = str::from_utf8(word_bytes)?;
let curr_document_id = *current_document_id.get_or_insert(document_id);
if curr_document_id != document_id {
let document_word_positions_heap = mem::take(&mut document_word_positions_heap);
document_word_positions_into_sorter(
curr_document_id,
document_word_positions_heap,
&mut word_pair_proximity_docids_sorter,
&mut total_time_aggregation,
&mut total_time_grenad_insert,
)?;
number_of_documents += 1;
current_document_id = Some(document_id);
}
let word = word.to_string();
let mut iter = read_u32_ne_bytes(value).collect::<Vec<_>>().into_iter();
if let Some(position) = iter.next() {
document_word_positions_heap.push(PeekedWordPosition { word, position, iter });
}
}
if let Some(document_id) = current_document_id {
// We must make sure that don't lose the current document field id
// word count map if we break because we reached the end of the chunk.
let document_word_positions_heap = mem::take(&mut document_word_positions_heap);
document_word_positions_into_sorter(
document_id,
document_word_positions_heap,
&mut word_pair_proximity_docids_sorter,
&mut total_time_aggregation,
&mut total_time_grenad_insert,
)?;
}
debug!(
"Number of documents {}
- we took {:02?} to aggregate proximities
- we took {:02?} to grenad insert those proximities",
number_of_documents, total_time_aggregation, total_time_grenad_insert,
);
sorter_into_reader(word_pair_proximity_docids_sorter, indexer)
}
/// Fills the list of all pairs of words with the shortest proximity between 1 and 7 inclusive.
///
/// This list is used by the engine to calculate the documents containing words that are
/// close to each other.
fn document_word_positions_into_sorter<'b>(
document_id: DocumentId,
mut word_positions_heap: BinaryHeap<PeekedWordPosition<vec::IntoIter<u32>>>,
word_pair_proximity_docids_sorter: &mut grenad::Sorter<MergeFn>,
total_time_aggregation: &mut Duration,
total_time_grenad_insert: &mut Duration,
) -> Result<()> {
let before_aggregating = Instant::now();
let mut word_pair_proximity = HashMap::new();
let mut ordered_peeked_word_positions = Vec::new();
while !word_positions_heap.is_empty() {
while let Some(peeked_word_position) = word_positions_heap.pop() {
ordered_peeked_word_positions.push(peeked_word_position);
if ordered_peeked_word_positions.len() == 7 {
break;
}
}
if let Some((head, tail)) = ordered_peeked_word_positions.split_first() {
for PeekedWordPosition { word, position, .. } in tail {
let prox = positions_proximity(head.position, *position);
if prox > 0 && prox < MAX_DISTANCE {
word_pair_proximity
.entry((head.word.clone(), word.clone()))
.and_modify(|p| {
*p = cmp::min(*p, prox);
})
.or_insert(prox);
// We also compute the inverse proximity.
let prox = prox + 1;
if prox < MAX_DISTANCE {
word_pair_proximity
.entry((word.clone(), head.word.clone()))
.and_modify(|p| {
*p = cmp::min(*p, prox);
})
.or_insert(prox);
}
}
}
// Push the tail in the heap.
let tail_iter = ordered_peeked_word_positions.drain(1..);
word_positions_heap.extend(tail_iter);
// Advance the head and push it in the heap.
if let Some(mut head) = ordered_peeked_word_positions.pop() {
if let Some(next_position) = head.iter.next() {
word_positions_heap.push(PeekedWordPosition {
word: head.word,
position: next_position,
iter: head.iter,
});
}
}
}
}
*total_time_aggregation += before_aggregating.elapsed();
let mut key_buffer = Vec::new();
for ((w1, w2), prox) in word_pair_proximity {
key_buffer.clear();
key_buffer.extend_from_slice(w1.as_bytes());
key_buffer.push(0);
key_buffer.extend_from_slice(w2.as_bytes());
key_buffer.push(prox as u8);
let before_grenad_insert = Instant::now();
word_pair_proximity_docids_sorter.insert(&key_buffer, &document_id.to_ne_bytes())?;
*total_time_grenad_insert += before_grenad_insert.elapsed();
}
Ok(())
}
struct PeekedWordPosition<I> {
word: String,
position: u32,
iter: I,
}
impl<I> Ord for PeekedWordPosition<I> {
fn cmp(&self, other: &Self) -> Ordering {
self.position.cmp(&other.position).reverse()
}
}
impl<I> PartialOrd for PeekedWordPosition<I> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<I> Eq for PeekedWordPosition<I> {}
impl<I> PartialEq for PeekedWordPosition<I> {
fn eq(&self, other: &Self) -> bool {
self.position == other.position
}
}

View File

@ -0,0 +1,199 @@
mod extract_docid_word_positions;
mod extract_facet_number_docids;
mod extract_facet_string_docids;
mod extract_fid_docid_facet_values;
mod extract_fid_word_count_docids;
mod extract_word_docids;
mod extract_word_level_position_docids;
mod extract_word_pair_proximity_docids;
use std::collections::HashSet;
use std::fs::File;
use crossbeam_channel::Sender;
use rayon::prelude::*;
use self::extract_docid_word_positions::extract_docid_word_positions;
use self::extract_facet_number_docids::extract_facet_number_docids;
use self::extract_facet_string_docids::extract_facet_string_docids;
use self::extract_fid_docid_facet_values::extract_fid_docid_facet_values;
use self::extract_fid_word_count_docids::extract_fid_word_count_docids;
use self::extract_word_docids::extract_word_docids;
use self::extract_word_level_position_docids::extract_word_level_position_docids;
use self::extract_word_pair_proximity_docids::extract_word_pair_proximity_docids;
use super::helpers::{
into_clonable_grenad, keep_first_prefix_value_merge_roaring_bitmaps, merge_cbo_roaring_bitmaps,
merge_readers, merge_roaring_bitmaps, CursorClonableMmap, GrenadParameters, MergeFn,
};
use super::{helpers, TypedChunk};
use crate::{FieldId, Result};
/// Extract data for each databases from obkv documents in parallel.
/// Send data in grenad file over provided Sender.
pub(crate) fn data_from_obkv_documents(
obkv_chunks: impl Iterator<Item = Result<grenad::Reader<File>>> + Send,
indexer: GrenadParameters,
lmdb_writer_sx: Sender<TypedChunk>,
searchable_fields: Option<HashSet<FieldId>>,
faceted_fields: HashSet<FieldId>,
) -> Result<()> {
let result: Result<(Vec<_>, (Vec<_>, Vec<_>))> = obkv_chunks
.par_bridge()
.map(|result| {
let documents_chunk = result.and_then(|c| unsafe { into_clonable_grenad(c) }).unwrap();
lmdb_writer_sx.send(TypedChunk::Documents(documents_chunk.clone())).unwrap();
let (docid_word_positions_chunk, docid_fid_facet_values_chunks): (
Result<_>,
Result<_>,
) = rayon::join(
|| {
let (documents_ids, docid_word_positions_chunk) = extract_docid_word_positions(
documents_chunk.clone(),
indexer.clone(),
&searchable_fields,
)?;
// send documents_ids to DB writer
lmdb_writer_sx.send(TypedChunk::NewDocumentsIds(documents_ids)).unwrap();
// send docid_word_positions_chunk to DB writer
let docid_word_positions_chunk =
unsafe { into_clonable_grenad(docid_word_positions_chunk)? };
lmdb_writer_sx
.send(TypedChunk::DocidWordPositions(docid_word_positions_chunk.clone()))
.unwrap();
Ok(docid_word_positions_chunk)
},
|| {
let (docid_fid_facet_numbers_chunk, docid_fid_facet_strings_chunk) =
extract_fid_docid_facet_values(
documents_chunk.clone(),
indexer.clone(),
&faceted_fields,
)?;
// send docid_fid_facet_numbers_chunk to DB writer
let docid_fid_facet_numbers_chunk =
unsafe { into_clonable_grenad(docid_fid_facet_numbers_chunk)? };
lmdb_writer_sx
.send(TypedChunk::FieldIdDocidFacetNumbers(
docid_fid_facet_numbers_chunk.clone(),
))
.unwrap();
// send docid_fid_facet_strings_chunk to DB writer
let docid_fid_facet_strings_chunk =
unsafe { into_clonable_grenad(docid_fid_facet_strings_chunk)? };
lmdb_writer_sx
.send(TypedChunk::FieldIdDocidFacetStrings(
docid_fid_facet_strings_chunk.clone(),
))
.unwrap();
Ok((docid_fid_facet_numbers_chunk, docid_fid_facet_strings_chunk))
},
);
Ok((docid_word_positions_chunk?, docid_fid_facet_values_chunks?))
})
.collect();
let (
docid_word_positions_chunks,
(docid_fid_facet_numbers_chunks, docid_fid_facet_strings_chunks),
) = result?;
spawn_extraction_task(
docid_word_positions_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_word_pair_proximity_docids,
merge_cbo_roaring_bitmaps,
TypedChunk::WordPairProximityDocids,
"word-pair-proximity-docids",
);
spawn_extraction_task(
docid_word_positions_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_fid_word_count_docids,
merge_cbo_roaring_bitmaps,
TypedChunk::FieldIdWordcountDocids,
"field-id-wordcount-docids",
);
spawn_extraction_task(
docid_word_positions_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_word_docids,
merge_roaring_bitmaps,
TypedChunk::WordDocids,
"word-docids",
);
spawn_extraction_task(
docid_word_positions_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_word_level_position_docids,
merge_cbo_roaring_bitmaps,
TypedChunk::WordLevelPositionDocids,
"word-level-position-docids",
);
spawn_extraction_task(
docid_fid_facet_strings_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_facet_string_docids,
keep_first_prefix_value_merge_roaring_bitmaps,
TypedChunk::FieldIdFacetStringDocids,
"field-id-facet-string-docids",
);
spawn_extraction_task(
docid_fid_facet_numbers_chunks.clone(),
indexer.clone(),
lmdb_writer_sx.clone(),
extract_facet_number_docids,
merge_cbo_roaring_bitmaps,
TypedChunk::FieldIdFacetNumberDocids,
"field-id-facet-number-docids",
);
Ok(())
}
/// Spawn a new task to extract data for a specific DB using extract_fn.
/// Generated grenad chunks are merged using the merge_fn.
/// The result of merged chunks is serialized as TypedChunk using the serialize_fn
/// and sent into lmdb_writer_sx.
fn spawn_extraction_task<FE, FS>(
chunks: Vec<grenad::Reader<CursorClonableMmap>>,
indexer: GrenadParameters,
lmdb_writer_sx: Sender<TypedChunk>,
extract_fn: FE,
merge_fn: MergeFn,
serialize_fn: FS,
name: &'static str,
) where
FE: Fn(grenad::Reader<CursorClonableMmap>, GrenadParameters) -> Result<grenad::Reader<File>>
+ Sync
+ Send
+ 'static,
FS: Fn(grenad::Reader<File>) -> TypedChunk + Sync + Send + 'static,
{
rayon::spawn(move || {
let chunks: Vec<_> = chunks
.into_par_iter()
.map(|chunk| extract_fn(chunk, indexer.clone()).unwrap())
.collect();
rayon::spawn(move || {
let reader = merge_readers(chunks, merge_fn, indexer).unwrap();
lmdb_writer_sx.send(serialize_fn(reader)).unwrap();
});
});
}