mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-07-31 02:40:01 +00:00
Small commit to add hybrid search and autoembedding
This commit is contained in:
@ -498,19 +498,19 @@ mod tests {
|
||||
|
||||
use super::*;
|
||||
use crate::index::tests::TempIndex;
|
||||
use crate::{execute_search, SearchContext};
|
||||
use crate::{execute_search, filtered_universe, SearchContext};
|
||||
|
||||
impl<'a> MatcherBuilder<'a> {
|
||||
fn new_test(rtxn: &'a heed::RoTxn, index: &'a TempIndex, query: &str) -> Self {
|
||||
let mut ctx = SearchContext::new(index, rtxn);
|
||||
let universe = filtered_universe(&ctx, &None).unwrap();
|
||||
let crate::search::PartialSearchResult { located_query_terms, .. } = execute_search(
|
||||
&mut ctx,
|
||||
&Some(query.to_string()),
|
||||
&None,
|
||||
Some(query),
|
||||
crate::TermsMatchingStrategy::default(),
|
||||
crate::score_details::ScoringStrategy::Skip,
|
||||
false,
|
||||
&None,
|
||||
universe,
|
||||
&None,
|
||||
crate::search::new::GeoSortStrategy::default(),
|
||||
0,
|
||||
|
@ -16,6 +16,7 @@ mod small_bitmap;
|
||||
|
||||
mod exact_attribute;
|
||||
mod sort;
|
||||
mod vector_sort;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
@ -28,7 +29,6 @@ use db_cache::DatabaseCache;
|
||||
use exact_attribute::ExactAttribute;
|
||||
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
|
||||
use heed::RoTxn;
|
||||
use instant_distance::Search;
|
||||
use interner::{DedupInterner, Interner};
|
||||
pub use logger::visual::VisualSearchLogger;
|
||||
pub use logger::{DefaultSearchLogger, SearchLogger};
|
||||
@ -46,7 +46,7 @@ use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::distance::NDotProductPoint;
|
||||
use self::vector_sort::VectorSort;
|
||||
use crate::error::FieldIdMapMissingEntry;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
@ -258,6 +258,70 @@ fn get_ranking_rules_for_placeholder_search<'ctx>(
|
||||
Ok(ranking_rules)
|
||||
}
|
||||
|
||||
fn get_ranking_rules_for_vector<'ctx>(
|
||||
ctx: &SearchContext<'ctx>,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
target: &[f32],
|
||||
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
|
||||
// query graph search
|
||||
|
||||
let mut sort = false;
|
||||
let mut sorted_fields = HashSet::new();
|
||||
let mut geo_sorted = false;
|
||||
|
||||
let mut vector = false;
|
||||
let mut ranking_rules: Vec<BoxRankingRule<PlaceholderQuery>> = vec![];
|
||||
|
||||
let settings_ranking_rules = ctx.index.criteria(ctx.txn)?;
|
||||
for rr in settings_ranking_rules {
|
||||
match rr {
|
||||
crate::Criterion::Words
|
||||
| crate::Criterion::Typo
|
||||
| crate::Criterion::Proximity
|
||||
| crate::Criterion::Attribute
|
||||
| crate::Criterion::Exactness => {
|
||||
if !vector {
|
||||
let vector_candidates = ctx.index.documents_ids(ctx.txn)?;
|
||||
let vector_sort = VectorSort::new(ctx, target.to_vec(), vector_candidates)?;
|
||||
ranking_rules.push(Box::new(vector_sort));
|
||||
vector = true;
|
||||
}
|
||||
}
|
||||
crate::Criterion::Sort => {
|
||||
if sort {
|
||||
continue;
|
||||
}
|
||||
resolve_sort_criteria(
|
||||
sort_criteria,
|
||||
ctx,
|
||||
&mut ranking_rules,
|
||||
&mut sorted_fields,
|
||||
&mut geo_sorted,
|
||||
geo_strategy,
|
||||
)?;
|
||||
sort = true;
|
||||
}
|
||||
crate::Criterion::Asc(field_name) => {
|
||||
if sorted_fields.contains(&field_name) {
|
||||
continue;
|
||||
}
|
||||
sorted_fields.insert(field_name.clone());
|
||||
ranking_rules.push(Box::new(Sort::new(ctx.index, ctx.txn, field_name, true)?));
|
||||
}
|
||||
crate::Criterion::Desc(field_name) => {
|
||||
if sorted_fields.contains(&field_name) {
|
||||
continue;
|
||||
}
|
||||
sorted_fields.insert(field_name.clone());
|
||||
ranking_rules.push(Box::new(Sort::new(ctx.index, ctx.txn, field_name, false)?));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(ranking_rules)
|
||||
}
|
||||
|
||||
/// Return the list of initialised ranking rules to be used for a query graph search.
|
||||
fn get_ranking_rules_for_query_graph_search<'ctx>(
|
||||
ctx: &SearchContext<'ctx>,
|
||||
@ -422,15 +486,62 @@ fn resolve_sort_criteria<'ctx, Query: RankingRuleQueryTrait>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn filtered_universe(ctx: &SearchContext, filters: &Option<Filter>) -> Result<RoaringBitmap> {
|
||||
Ok(if let Some(filters) = filters {
|
||||
filters.evaluate(ctx.txn, ctx.index)?
|
||||
} else {
|
||||
ctx.index.documents_ids(ctx.txn)?
|
||||
})
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn execute_vector_search(
|
||||
ctx: &mut SearchContext,
|
||||
vector: &[f32],
|
||||
scoring_strategy: ScoringStrategy,
|
||||
universe: RoaringBitmap,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
length: usize,
|
||||
) -> Result<PartialSearchResult> {
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
|
||||
/// FIXME: input universe = universe & documents_with_vectors
|
||||
// for now if we're computing embeddings for ALL documents, we can assume that this is just universe
|
||||
let ranking_rules = get_ranking_rules_for_vector(ctx, sort_criteria, geo_strategy, vector)?;
|
||||
|
||||
let mut placeholder_search_logger = logger::DefaultSearchLogger;
|
||||
let placeholder_search_logger: &mut dyn SearchLogger<PlaceholderQuery> =
|
||||
&mut placeholder_search_logger;
|
||||
|
||||
let BucketSortOutput { docids, scores, all_candidates } = bucket_sort(
|
||||
ctx,
|
||||
ranking_rules,
|
||||
&PlaceholderQuery,
|
||||
&universe,
|
||||
from,
|
||||
length,
|
||||
scoring_strategy,
|
||||
placeholder_search_logger,
|
||||
)?;
|
||||
|
||||
Ok(PartialSearchResult {
|
||||
candidates: all_candidates,
|
||||
document_scores: scores,
|
||||
documents_ids: docids,
|
||||
located_query_terms: None,
|
||||
})
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn execute_search(
|
||||
ctx: &mut SearchContext,
|
||||
query: &Option<String>,
|
||||
vector: &Option<Vec<f32>>,
|
||||
query: Option<&str>,
|
||||
terms_matching_strategy: TermsMatchingStrategy,
|
||||
scoring_strategy: ScoringStrategy,
|
||||
exhaustive_number_hits: bool,
|
||||
filters: &Option<Filter>,
|
||||
mut universe: RoaringBitmap,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
@ -439,60 +550,8 @@ pub fn execute_search(
|
||||
placeholder_search_logger: &mut dyn SearchLogger<PlaceholderQuery>,
|
||||
query_graph_logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
) -> Result<PartialSearchResult> {
|
||||
let mut universe = if let Some(filters) = filters {
|
||||
filters.evaluate(ctx.txn, ctx.index)?
|
||||
} else {
|
||||
ctx.index.documents_ids(ctx.txn)?
|
||||
};
|
||||
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
let mut search = Search::default();
|
||||
let docids = match ctx.index.vector_hnsw(ctx.txn)? {
|
||||
Some(hnsw) => {
|
||||
if let Some(expected_size) = hnsw.iter().map(|(_, point)| point.len()).next() {
|
||||
if vector.len() != expected_size {
|
||||
return Err(UserError::InvalidVectorDimensions {
|
||||
expected: expected_size,
|
||||
found: vector.len(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
let vector = NDotProductPoint::new(vector.clone());
|
||||
|
||||
let neighbors = hnsw.search(&vector, &mut search);
|
||||
|
||||
let mut docids = Vec::new();
|
||||
let mut uniq_docids = RoaringBitmap::new();
|
||||
for instant_distance::Item { distance: _, pid, point: _ } in neighbors {
|
||||
let index = pid.into_inner();
|
||||
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap();
|
||||
if universe.contains(docid) && uniq_docids.insert(docid) {
|
||||
docids.push(docid);
|
||||
if docids.len() == (from + length) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// return the nearest documents that are also part of the candidates
|
||||
// along with a dummy list of scores that are useless in this context.
|
||||
docids.into_iter().skip(from).take(length).collect()
|
||||
}
|
||||
None => Vec::new(),
|
||||
};
|
||||
|
||||
return Ok(PartialSearchResult {
|
||||
candidates: universe,
|
||||
document_scores: vec![Vec::new(); docids.len()],
|
||||
documents_ids: docids,
|
||||
located_query_terms: None,
|
||||
});
|
||||
}
|
||||
|
||||
let mut located_query_terms = None;
|
||||
let query_terms = if let Some(query) = query {
|
||||
// We make sure that the analyzer is aware of the stop words
|
||||
@ -546,7 +605,7 @@ pub fn execute_search(
|
||||
terms_matching_strategy,
|
||||
)?;
|
||||
|
||||
universe =
|
||||
universe &=
|
||||
resolve_universe(ctx, &universe, &graph, terms_matching_strategy, query_graph_logger)?;
|
||||
|
||||
bucket_sort(
|
||||
|
150
milli/src/search/new/vector_sort.rs
Normal file
150
milli/src/search/new/vector_sort.rs
Normal file
@ -0,0 +1,150 @@
|
||||
use std::future::Future;
|
||||
use std::iter::FromIterator;
|
||||
use std::pin::Pin;
|
||||
|
||||
use nolife::DynBoxScope;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
|
||||
use crate::distance::NDotProductPoint;
|
||||
use crate::index::Hnsw;
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::{Result, SearchContext, SearchLogger, UserError};
|
||||
|
||||
pub struct VectorSort<Q: RankingRuleQueryTrait> {
|
||||
query: Option<Q>,
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
scope: nolife::DynBoxScope<SearchFamily>,
|
||||
}
|
||||
|
||||
type Item<'a> = instant_distance::Item<'a, NDotProductPoint>;
|
||||
type SearchFut = Pin<Box<dyn Future<Output = nolife::Never>>>;
|
||||
|
||||
struct SearchFamily;
|
||||
impl<'a> nolife::Family<'a> for SearchFamily {
|
||||
type Family = Box<dyn Iterator<Item = Item<'a>> + 'a>;
|
||||
}
|
||||
|
||||
async fn search_scope(
|
||||
mut time_capsule: nolife::TimeCapsule<SearchFamily>,
|
||||
hnsw: Hnsw,
|
||||
target: Vec<f32>,
|
||||
) -> nolife::Never {
|
||||
let mut search = instant_distance::Search::default();
|
||||
let it = Box::new(hnsw.search(&NDotProductPoint::new(target), &mut search));
|
||||
let mut it: Box<dyn Iterator<Item = Item>> = it;
|
||||
loop {
|
||||
time_capsule.freeze(&mut it).await;
|
||||
}
|
||||
}
|
||||
|
||||
impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
pub fn new(
|
||||
ctx: &SearchContext,
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
) -> Result<Self> {
|
||||
let hnsw =
|
||||
ctx.index.vector_hnsw(ctx.txn)?.unwrap_or(Hnsw::builder().build_hnsw(Vec::default()).0);
|
||||
|
||||
if let Some(expected_size) = hnsw.iter().map(|(_, point)| point.len()).next() {
|
||||
if target.len() != expected_size {
|
||||
return Err(UserError::InvalidVectorDimensions {
|
||||
expected: expected_size,
|
||||
found: target.len(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
let target_clone = target.clone();
|
||||
let producer = move |time_capsule| -> SearchFut {
|
||||
Box::pin(search_scope(time_capsule, hnsw, target_clone))
|
||||
};
|
||||
let scope = DynBoxScope::new(producer);
|
||||
|
||||
Ok(Self { query: None, target, vector_candidates, scope })
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
|
||||
fn id(&self) -> String {
|
||||
"vector_sort".to_owned()
|
||||
}
|
||||
|
||||
fn start_iteration(
|
||||
&mut self,
|
||||
_ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<Q>,
|
||||
universe: &RoaringBitmap,
|
||||
query: &Q,
|
||||
) -> Result<()> {
|
||||
assert!(self.query.is_none());
|
||||
|
||||
self.query = Some(query.clone());
|
||||
self.vector_candidates &= universe;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::only_used_in_recursion)]
|
||||
fn next_bucket(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<Q>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<Q>>> {
|
||||
let query = self.query.as_ref().unwrap().clone();
|
||||
self.vector_candidates &= universe;
|
||||
|
||||
if self.vector_candidates.is_empty() {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
}));
|
||||
}
|
||||
|
||||
let scope = &mut self.scope;
|
||||
let target = &self.target;
|
||||
let vector_candidates = &self.vector_candidates;
|
||||
|
||||
scope.enter(|it| {
|
||||
for item in it.by_ref() {
|
||||
let item: Item = item;
|
||||
let index = item.pid.into_inner();
|
||||
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap();
|
||||
|
||||
if vector_candidates.contains(docid) {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: RoaringBitmap::from_iter([docid]),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: target.clone(),
|
||||
value_similarity: Some((
|
||||
item.point.clone().into_inner(),
|
||||
1.0 - item.distance,
|
||||
)),
|
||||
}),
|
||||
}));
|
||||
}
|
||||
}
|
||||
Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
}))
|
||||
})
|
||||
}
|
||||
|
||||
fn end_iteration(&mut self, _ctx: &mut SearchContext<'ctx>, _logger: &mut dyn SearchLogger<Q>) {
|
||||
self.query = None;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user