新的转换算法测试,更好的声音适配

This commit is contained in:
2024-01-08 00:08:52 +08:00
parent 0b0328bc44
commit fc138f1dbf
10 changed files with 215 additions and 385 deletions

View File

@ -0,0 +1,42 @@
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def q_function1(x, a, a2, c1,):
return a * np.log( x + a2,)+ c1
def q_function2(x, b, b2, b3, b4, c2):
return b * ((x + b2) ** b3) + b4 * (x+b2) + c2
x_data = np.array([0, 16, 32, 48, 64, 80, 96, 112, 128])
y_data = np.array([16, 10, 6.75, 4, 2.5, 1.6, 0.8, 0.3, 0])
p_est1, err_est1 = curve_fit(q_function1, x_data[:5], y_data[:5], maxfev=1000000)
p_est2, err_est2 = curve_fit(q_function2, x_data[4:], y_data[4:], maxfev=1000000)
print(q_function1(x_data[:5], *p_est1))
print(q_function2(x_data[4:], *p_est2))
print("参数一:",*p_est1)
print("参数二:",*p_est2)
# 绘制图像
plt.plot(
np.arange(0, 64.1, 0.1), q_function1(np.arange(0, 64.1, 0.1), *p_est1), label=r"FIT1"
)
plt.plot(
np.arange(64, 128.1, 0.1), q_function2(np.arange(64, 128.1, 0.1), *p_est2), label=r"FIT2"
)
plt.scatter(x_data, y_data, color="red") # 标记给定的点
# plt.xlabel('x')
# plt.ylabel('y')
plt.title("Function Fit")
plt.legend()
# plt.grid(True)
plt.show()

View File

@ -0,0 +1,36 @@
import matplotlib.pyplot as plt
import numpy as np
# 定义对数函数
def q_function1(vol):
# return -23.65060754864053*((x+508.2130392724084)**0.8433764630986903) + 7.257078620637543 * (x+407.86870598508153) + 1585.6201108739122
# return -58.863374003875954 *((x+12.41481943150274 )**0.9973316187745871 ) +57.92341268595151 * (x+ 13.391132186222036) + -32.92986286030519
return -8.081720684086314 * np.log( vol + 14.579508825070013,)+ 37.65806375944386
def q_function2(vol):
return 0.2721359356095803 * ((vol + 2592.272889454798) ** 1.358571233418649) + -6.313841334963396 * (vol + 2592.272889454798) + 4558.496367823575
# 生成 x 值
x_values = np.linspace(0, 128, 1000)
x_data = np.array([0,16,32,48,64,80,96,112,128])
y_data = np.array([16, 10, 6.75, 4, 2.5, 1.6, 0.8, 0.3, 0])
print(q_function1(x_data))
print(q_function2(x_data))
# 绘制图像
plt.plot(x_values, q_function1(x_values,),label = "fit1")
plt.plot(x_values, q_function2(x_values,),label = "fit2")
plt.scatter(x_data, y_data, color='red') # 标记给定的点
# plt.scatter(x_data, y_data2, color='green') # 标记给定的点
# plt.scatter(x_data, y_data3, color='blue') # 标记给定的点
plt.xlabel('x')
plt.ylabel('y')
plt.title('Function')
plt.legend()
plt.grid(True)
plt.show()