mirror of
				https://github.com/nonebot/nonebot2.git
				synced 2025-10-31 15:06:42 +00:00 
			
		
		
		
	🔖 Release 2.3.1
This commit is contained in:
		| @@ -0,0 +1,378 @@ | ||||
| # 开发者指南 | ||||
|  | ||||
| 开发者指南内容较多,故分为了一个示例以及数个专题。 | ||||
| 阅读(并且最好跟随实践)示例后,你将会对使用 `nonebot-plugin-orm` 开发插件有一个基本的认识。 | ||||
| 如果想要更深入地学习关于 [SQLAlchemy](https://www.sqlalchemy.org/) 和 [Alembic](https://alembic.sqlalchemy.org/) 的知识,或者在使用过程中遇到了问题,可以查阅专题以及其官方文档。 | ||||
|  | ||||
| ## 示例 | ||||
|  | ||||
| ### 模型定义 | ||||
|  | ||||
| 首先,我们需要设计存储的数据的结构。 | ||||
| 例如天气插件,需要存储**什么地方 (`location`)** 的**天气是什么 (`weather`)**。 | ||||
| 其中,一个地方只会有一种天气,而不同地方可能有相同的天气。 | ||||
| 所以,我们可以设计出如下的模型: | ||||
|  | ||||
| ```python title=weather/__init__.py showLineNumbers | ||||
| from nonebot_plugin_orm import Model | ||||
| from sqlalchemy.orm import Mapped, mapped_column | ||||
|  | ||||
|  | ||||
| class Weather(Model): | ||||
|     location: Mapped[str] = mapped_column(primary_key=True) | ||||
|     weather: Mapped[str] | ||||
| ``` | ||||
|  | ||||
| 其中,`primary_key=True` 意味着此列 (`location`) 是主键,即内容是唯一的且非空的。 | ||||
| 每一个模型必须有至少一个主键。 | ||||
|  | ||||
| 我们可以用以下代码检查模型生成的数据库模式是否正确: | ||||
|  | ||||
| ```python | ||||
| from sqlalchemy.schema import CreateTable | ||||
|  | ||||
| print(CreateTable(Weather.__table__)) | ||||
| ``` | ||||
|  | ||||
| ```sql | ||||
| CREATE TABLE weather_weather ( | ||||
|         location VARCHAR NOT NULL, | ||||
|         weather VARCHAR NOT NULL, | ||||
|         CONSTRAINT pk_weather_weather PRIMARY KEY (location) | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| 可以注意到表名是 `weather_weather` 而不是 `Weather` 或者 `weather`。 | ||||
| 这是因为 `nonebot-plugin-orm` 会自动为模型生成一个表名,规则是:`<插件模块名>_<类名小写>`。 | ||||
|  | ||||
| 你也可以通过指定 `__tablename__` 属性来自定义表名: | ||||
|  | ||||
| ```python {2} | ||||
| class Weather(Model): | ||||
|     __tablename__ = "weather" | ||||
|     ... | ||||
| ``` | ||||
|  | ||||
| ```sql {1} | ||||
| CREATE TABLE weather ( | ||||
|     ... | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| 但是,并不推荐你这么做,因为这可能会导致不同插件间的表名重复,引发冲突。 | ||||
| 特别是当你会发布插件时,你并不知道其他插件会不会使用相同的表名。 | ||||
|  | ||||
| ### 首次迁移 | ||||
|  | ||||
| 我们成功定义了模型,现在启动机器人试试吧: | ||||
|  | ||||
| ```shell | ||||
| $ nb run | ||||
| 01-02 15:04:05 [SUCCESS] nonebot | NoneBot is initializing... | ||||
| 01-02 15:04:05 [ERROR] nonebot_plugin_orm | 启动检查失败 | ||||
| 01-02 15:04:05 [ERROR] nonebot | Application startup failed. Exiting. | ||||
| Traceback (most recent call last): | ||||
|   ... | ||||
| click.exceptions.UsageError: 检测到新的升级操作: | ||||
| [('add_table', | ||||
|   Table('weather', MetaData(), Column('location', String(), table=<weather>, primary_key=True, nullable=False), Column('weather', String(), table=<weather>, nullable=False), schema=None))] | ||||
| ``` | ||||
|  | ||||
| 咦,发生了什么? | ||||
| `nonebot-plugin-orm` 试图阻止我们启动机器人。 | ||||
| 原来是我们定义了模型,但是数据库中并没有对应的表,这会导致插件不能正常运行。 | ||||
| 所以,我们需要迁移数据库。 | ||||
|  | ||||
| 首先,我们需要创建一个迁移脚本: | ||||
|  | ||||
| ```shell | ||||
| nb orm revision -m "first revision" --branch-label weather | ||||
| ``` | ||||
|  | ||||
| 其中,`-m` 参数是迁移脚本的描述,`--branch-label` 参数是迁移脚本的分支,一般为插件模块名。 | ||||
| 执行命令过后,出现了一个 `weather/migrations` 目录,其中有一个 `xxxxxxxxxxxx_first_revision.py` 文件: | ||||
|  | ||||
| ```shell {4,5} | ||||
| weather | ||||
| ├── __init__.py | ||||
| ├── config.py | ||||
| └── migrations | ||||
|     └── xxxxxxxxxxxx_first_revision.py | ||||
| ``` | ||||
|  | ||||
| 这就是我们创建的迁移脚本,它记录了数据库模式的变化。 | ||||
| 我们可以查看一下它的内容: | ||||
|  | ||||
| ```python title=weather/migrations/xxxxxxxxxxxx_first_revision.py {25-33,39-41} showLineNumbers | ||||
| """first revision | ||||
|  | ||||
| 迁移 ID: xxxxxxxxxxxx | ||||
| 父迁移: | ||||
| 创建时间: 2006-01-02 15:04:05.999999 | ||||
|  | ||||
| """ | ||||
|  | ||||
| from __future__ import annotations | ||||
|  | ||||
| from collections.abc import Sequence | ||||
|  | ||||
| import sqlalchemy as sa | ||||
| from alembic import op | ||||
|  | ||||
| revision: str = "xxxxxxxxxxxx" | ||||
| down_revision: str | Sequence[str] | None = None | ||||
| branch_labels: str | Sequence[str] | None = ("weather",) | ||||
| depends_on: str | Sequence[str] | None = None | ||||
|  | ||||
|  | ||||
| def upgrade(name: str = "") -> None: | ||||
|     if name: | ||||
|         return | ||||
|     # ### commands auto generated by Alembic - please adjust! ### | ||||
|     op.create_table( | ||||
|         "weather_weather", | ||||
|         sa.Column("location", sa.String(), nullable=False), | ||||
|         sa.Column("weather", sa.String(), nullable=False), | ||||
|         sa.PrimaryKeyConstraint("location", name=op.f("pk_weather_weather")), | ||||
|         info={"bind_key": "weather"}, | ||||
|     ) | ||||
|     # ### end Alembic commands ### | ||||
|  | ||||
|  | ||||
| def downgrade(name: str = "") -> None: | ||||
|     if name: | ||||
|         return | ||||
|     # ### commands auto generated by Alembic - please adjust! ### | ||||
|     op.drop_table("weather_weather") | ||||
|     # ### end Alembic commands ### | ||||
| ``` | ||||
|  | ||||
| 可以注意到脚本的主体部分(其余是模版代码,请勿修改)是: | ||||
|  | ||||
| ```python | ||||
| # ### commands auto generated by Alembic - please adjust! ### | ||||
| op.create_table(  # CREATE TABLE | ||||
|     "weather_weather",  # weather_weather | ||||
|     sa.Column("location", sa.String(), nullable=False),  # location VARCHAR NOT NULL, | ||||
|     sa.Column("weather", sa.String(), nullable=False),  # weather VARCHAR NOT NULL, | ||||
|     sa.PrimaryKeyConstraint("location", name=op.f("pk_weather_weather")),  # CONSTRAINT pk_weather_weather PRIMARY KEY (location) | ||||
|     info={"bind_key": "weather"}, | ||||
| ) | ||||
| # ### end Alembic commands ### | ||||
| ``` | ||||
|  | ||||
| ```python | ||||
| # ### commands auto generated by Alembic - please adjust! ### | ||||
| op.drop_table("weather_weather")  # DROP TABLE weather_weather; | ||||
| # ### end Alembic commands ### | ||||
| ``` | ||||
|  | ||||
| 虽然我们不是很懂这些代码的意思,但是可以注意到它们几乎与 SQL 语句 (DDL) 一一对应。 | ||||
| 显然,它们是用来创建和删除表的。 | ||||
|  | ||||
| 我们还可以注意到,`upgrade()` 和 `downgrade()` 函数中的代码是**互逆**的。 | ||||
| 也就是说,执行一次 `upgrade()` 函数,再执行一次 `downgrade()` 函数后,数据库的模式就会回到原来的状态。 | ||||
|  | ||||
| 这就是迁移脚本的作用:记录数据库模式的变化,以便我们在不同的环境中(例如开发环境和生产环境)**可复现地**、**可逆地**同步数据库模式,正如 git 对我们的代码做的事情那样。 | ||||
|  | ||||
| 对了,不要忘记还有一段注释:`commands auto generated by Alembic - please adjust!`。 | ||||
| 它在提醒我们,这些代码是由 Alembic 自动生成的,我们应该检查它们,并且根据需要进行调整。 | ||||
|  | ||||
| :::caution 注意 | ||||
| 迁移脚本冗长且繁琐,我们一般不会手写它们,而是由 Alembic 自动生成。 | ||||
| 一般情况下,Alembic 足够智能,可以正确地生成迁移脚本。 | ||||
| 但是,在复杂或有歧义的情况下,我们可能需要手动调整迁移脚本。 | ||||
| 所以,**永远要检查迁移脚本,并且在开发环境中测试!** | ||||
|  | ||||
| **迁移脚本中任何一处错误都足以使数据付之东流!** | ||||
| ::: | ||||
|  | ||||
| 确定迁移脚本正确后,我们就可以执行迁移脚本,将数据库模式同步到数据库中: | ||||
|  | ||||
| ```shell | ||||
| nb orm upgrade | ||||
| ``` | ||||
|  | ||||
| 现在,我们可以正常启动机器人了。 | ||||
|  | ||||
| 开发过程中,我们可能会频繁地修改模型,这意味着我们需要频繁地创建并执行迁移脚本,非常繁琐。 | ||||
| 实际上,此时我们不在乎数据安全,只需要数据库模式与模型定义一致即可。 | ||||
| 所以,我们可以关闭 `nonebot-plugin-orm` 的启动检查: | ||||
|  | ||||
| ```shell title=.env.dev | ||||
| ALEMBIC_STARTUP_CHECK=false | ||||
| ``` | ||||
|  | ||||
| 现在,每次启动机器人时,数据库模式会自动与模型定义同步,无需手动迁移。 | ||||
|  | ||||
| ### 会话管理 | ||||
|  | ||||
| 我们已经成功定义了模型,并且迁移了数据库,现在可以开始使用数据库了……吗? | ||||
| 并不能,因为模型只是数据结构的定义,并不能通过它操作数据(如果你曾经使用过 [Tortoise ORM](https://tortoise.github.io/),可能会知道 `await Weather.get(location="上海")` 这样的面向对象编程。 | ||||
| 但是 SQLAlchemy 不同,选择了命令式编程)。 | ||||
| 我们需要使用**会话**操作数据: | ||||
|  | ||||
| ```python title=weather/__init__.py {10,13} showLineNumbers | ||||
| from nonebot import on_command | ||||
| from nonebot.adapters import Message | ||||
| from nonebot.params import CommandArg | ||||
| from nonebot_plugin_orm import async_scoped_session | ||||
|  | ||||
| weather = on_command("天气") | ||||
|  | ||||
|  | ||||
| @weather.handle() | ||||
| async def _(session: async_scoped_session, args: Message = CommandArg()): | ||||
|     location = args.extract_plain_text() | ||||
|  | ||||
|     if wea := await session.get(Weather, location): | ||||
|         await weather.finish(f"今天{location}的天气是{wea.weather}") | ||||
|  | ||||
|     await weather.finish(f"未查询到{location}的天气") | ||||
| ``` | ||||
|  | ||||
| 我们通过 `session: async_scoped_session` 依赖注入获得了一个会话,然后使用 `await session.get(Weather, location)` 查询数据库。 | ||||
| `async_scoped_session` 是一个有作用域限制的会话,作用域为当前事件、当前事件响应器。 | ||||
| 会话产生的模型实例(例如此处的 `wea := await session.get(Weather, location)`)作用域与会话相同。 | ||||
|  | ||||
| :::caution 注意 | ||||
| 此处提到的“会话”指的是 ORM 会话,而非 [NoneBot 会话](../../../appendices/session-control),两者的生命周期也是不同的(NoneBot 会话的生命周期中可能包含多个事件,不同的事件也会有不同的事件响应器)。 | ||||
| 具体而言,就是不要将 ORM 会话和模型实例存储在 NoneBot 会话状态中: | ||||
|  | ||||
| ```python {12} | ||||
| from nonebot.params import ArgPlainText | ||||
| from nonebot.typing import T_State | ||||
|  | ||||
|  | ||||
| @weather.got("location", prompt="请输入地名") | ||||
| async def _(state: T_State, session: async_scoped_session, location: str = ArgPlainText()): | ||||
|     wea = await session.get(Weather, location) | ||||
|  | ||||
|     if not wea: | ||||
|         await weather.finish(f"未查询到{location}的天气") | ||||
|  | ||||
|     state["weather"] = wea  # 不要这么做,除非你知道自己在做什么 | ||||
| ``` | ||||
|  | ||||
| 当然非要这么做也不是不可以: | ||||
|  | ||||
| ```python {6} | ||||
| @weather.handle() | ||||
| async def _(state: T_State, session: async_scoped_session): | ||||
|     # 通过 await session.merge(state["weather"]) 获得了此 ORM 会话中的相应模型实例, | ||||
|     # 而非直接使用会话状态中的模型实例, | ||||
|     # 因为先前的 ORM 会话已经关闭了。 | ||||
|     wea = await session.merge(state["weather"]) | ||||
|     await weather.finish(f"今天{state['location']}的天气是{wea.weather}") | ||||
| ``` | ||||
|  | ||||
| ::: | ||||
|  | ||||
| 当有数据更改时,我们需要提交事务,也要注意会话作用域问题: | ||||
|  | ||||
| ```python title=weather/__init__.py {12,20} showLineNumbers | ||||
| from nonebot.params import Depends | ||||
|  | ||||
|  | ||||
| async def get_weather( | ||||
|     session: async_scoped_session, args: Message = CommandArg() | ||||
| ) -> Weather: | ||||
|     location = args.extract_plain_text() | ||||
|  | ||||
|     if not (wea := await session.get(Weather, location)): | ||||
|         wea = Weather(location=location, weather="未知") | ||||
|         session.add(wea) | ||||
|         # await session.commit()  # 不应该在其他地方提交事务 | ||||
|  | ||||
|     return wea | ||||
|  | ||||
|  | ||||
| @weather.handle() | ||||
| async def _(session: async_scoped_session, wea: Weather = Depends(get_weather)): | ||||
|     await weather.send(f"今天的天气是{wea.weather}") | ||||
|     await session.commit()  # 而应该在事件响应器结束前提交事务 | ||||
| ``` | ||||
|  | ||||
| 当然我们也可以获得一个新的会话,不过此时就要手动管理会话了: | ||||
|  | ||||
| ```python title=weather/__init__.py {5-6} showLineNumbers | ||||
| from nonebot_plugin_orm import get_session | ||||
|  | ||||
|  | ||||
| async def get_weather(location: str) -> str: | ||||
|     session = get_session() | ||||
|     async with session.begin(): | ||||
|         wea = await session.get(Weather, location) | ||||
|  | ||||
|         if not wea: | ||||
|             wea = Weather(location=location, weather="未知") | ||||
|             session.add(wea) | ||||
|  | ||||
|         return wea.weather | ||||
|  | ||||
|  | ||||
| @weather.handle() | ||||
| async def _(args: Message = CommandArg()): | ||||
|     wea = await get_weather(args.extract_plain_text()) | ||||
|     await weather.send(f"今天的天气是{wea}") | ||||
| ``` | ||||
|  | ||||
| ### 依赖注入 | ||||
|  | ||||
| 在上面的示例中,我们都是通过会话获得数据的。 | ||||
| 不过,我们也可以通过依赖注入获得数据: | ||||
|  | ||||
| ```python title=weather/__init__.py {12-14} showLineNumbers | ||||
| from sqlalchemy import select | ||||
| from nonebot.params import Depends | ||||
| from nonebot_plugin_orm import SQLDepends | ||||
|  | ||||
|  | ||||
| def extract_arg_plain_text(args: Message = CommandArg()) -> str: | ||||
|     return args.extract_plain_text() | ||||
|  | ||||
|  | ||||
| @weather.handle() | ||||
| async def _( | ||||
|     wea: Weather = SQLDepends( | ||||
|         select(Weather).where(Weather.location == Depends(extract_arg_plain_text)) | ||||
|     ), | ||||
| ): | ||||
|     await weather.send(f"今天的天气是{wea.weather}") | ||||
| ``` | ||||
|  | ||||
| 其中,`SQLDepends` 是一个特殊的依赖注入,它会根据类型标注和 SQL 语句提供数据,SQL 语句中也可以有子依赖。 | ||||
|  | ||||
| 不同的类型标注也会获得不同形式的数据: | ||||
|  | ||||
| ```python title=weather/__init__.py {5} showLineNumbers | ||||
| from collections.abc import Sequence | ||||
|  | ||||
| @weather.handle() | ||||
| async def _( | ||||
|     weas: Sequence[Weather] = SQLDepends( | ||||
|         select(Weather).where(Weather.weather == Depends(extract_arg_plain_text)) | ||||
|     ), | ||||
| ): | ||||
|     await weather.send(f"今天的天气是{weas[0].weather}的城市有{','.join(wea.location for wea in weas)}") | ||||
| ``` | ||||
|  | ||||
| 支持的类型标注请参见 [依赖注入](dependency)。 | ||||
|  | ||||
| 我们也可以像 [类作为依赖](../../../advanced/dependency#类作为依赖) 那样,在类属性中声明子依赖: | ||||
|  | ||||
| ```python title=weather/__init__.py {5-6,10} showLineNumbers | ||||
| from collections.abc import Sequence | ||||
|  | ||||
| class Weather(Model): | ||||
|     location: Mapped[str] = mapped_column(primary_key=True) | ||||
|     weather: Mapped[str] = Depends(extract_arg_plain_text) | ||||
|     # weather: Annotated[Mapped[str], Depends(extract_arg_plain_text)]  # Annotated 支持 | ||||
|  | ||||
|  | ||||
| @weather.handle() | ||||
| async def _(weas: Sequence[Weather]): | ||||
|     await weather.send( | ||||
|         f"今天的天气是{weas[0].weather}的城市有{','.join(wea.location for wea in weas)}" | ||||
|     ) | ||||
| ``` | ||||
		Reference in New Issue
	
	Block a user