Compare commits

..

13 Commits

73 changed files with 1515 additions and 2031 deletions

View File

@ -1,41 +1,24 @@
#!/usr/bin/env bash
set -eu -o pipefail
#!/bin/bash
check_tag() {
local expected=$1
local actual=$2
local filename=$3
if [[ $actual != $expected ]]; then
echo >&2 "Error: the current tag does not match the version in $filename: found $actual, expected $expected"
return 1
fi
# check_tag $current_tag $file_tag $file_name
function check_tag {
if [[ "$1" != "$2" ]]; then
echo "Error: the current tag does not match the version in Cargo.toml: found $2 - expected $1"
ret=1
fi
}
read_version() {
grep '^version = ' | cut -d \" -f 2
}
if [[ -z "${GITHUB_REF:-}" ]]; then
echo >&2 "Error: GITHUB_REF is not set"
exit 1
fi
if [[ ! "$GITHUB_REF" =~ ^refs/tags/v[0-9]+\.[0-9]+\.[0-9]+(-[a-z0-9]+)?$ ]]; then
echo >&2 "Error: GITHUB_REF is not a valid tag: $GITHUB_REF"
exit 1
fi
current_tag=${GITHUB_REF#refs/tags/v}
ret=0
current_tag=${GITHUB_REF#'refs/tags/v'}
toml_tag="$(cat Cargo.toml | read_version)"
check_tag "$current_tag" "$toml_tag" Cargo.toml || ret=1
file_tag="$(grep '^version = ' Cargo.toml | cut -d '=' -f 2 | tr -d '"' | tr -d ' ')"
check_tag $current_tag $file_tag
lock_tag=$(grep -A 1 '^name = "meilisearch-auth"' Cargo.lock | read_version)
check_tag "$current_tag" "$lock_tag" Cargo.lock || ret=1
lock_file='Cargo.lock'
lock_tag=$(grep -A 1 'name = "meilisearch-auth"' $lock_file | grep version | cut -d '=' -f 2 | tr -d '"' | tr -d ' ')
check_tag $current_tag $lock_tag $lock_file
if (( ret == 0 )); then
echo 'OK'
if [[ "$ret" -eq 0 ]] ; then
echo 'OK'
fi
exit $ret

View File

@ -1,24 +0,0 @@
name: Run the indexing fuzzer
on:
push:
branches:
- main
jobs:
fuzz:
name: Setup the action
runs-on: ubuntu-latest
timeout-minutes: 4320 # 72h
steps:
- uses: actions/checkout@v3
- uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: stable
override: true
# Run benchmarks
- name: Run the fuzzer
run: |
cargo run --release --bin fuzz-indexing

View File

@ -16,28 +16,13 @@ env:
MEILI_NO_ANALYTICS: 'true'
jobs:
define-docker-image:
runs-on: ubuntu-latest
outputs:
docker-image: ${{ steps.define-image.outputs.docker-image }}
steps:
- uses: actions/checkout@v3
- name: Define the Docker image we need to use
id: define-image
run: |
event=${{ github.event_name }}
echo "docker-image=nightly" >> $GITHUB_OUTPUT
if [[ $event == 'workflow_dispatch' ]]; then
echo "docker-image=${{ github.event.inputs.docker_image }}" >> $GITHUB_OUTPUT
fi
meilisearch-js-tests:
needs: define-docker-image
name: JS SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -67,12 +52,11 @@ jobs:
run: yarn test:env:browser
instant-meilisearch-tests:
needs: define-docker-image
name: instant-meilisearch tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -94,12 +78,11 @@ jobs:
run: yarn build
meilisearch-php-tests:
needs: define-docker-image
name: PHP SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -125,12 +108,11 @@ jobs:
composer remove --dev guzzlehttp/guzzle http-interop/http-factory-guzzle
meilisearch-python-tests:
needs: define-docker-image
name: Python SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -150,12 +132,11 @@ jobs:
run: pipenv run pytest
meilisearch-go-tests:
needs: define-docker-image
name: Go SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -180,12 +161,11 @@ jobs:
run: go test -v ./...
meilisearch-ruby-tests:
needs: define-docker-image
name: Ruby SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@ -205,12 +185,11 @@ jobs:
run: bundle exec rspec
meilisearch-rust-tests:
needs: define-docker-image
name: Rust SDK tests
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ needs.define-docker-image.outputs.docker-image }}
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}

754
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -10,12 +10,10 @@ members = [
"file-store",
"permissive-json-pointer",
"milli",
"index-stats",
"filter-parser",
"flatten-serde-json",
"json-depth-checker",
"benchmarks",
"fuzzers",
"benchmarks"
]
[workspace.package]

View File

@ -1,20 +0,0 @@
[package]
name = "fuzzers"
publish = false
version.workspace = true
authors.workspace = true
description.workspace = true
homepage.workspace = true
readme.workspace = true
edition.workspace = true
license.workspace = true
[dependencies]
arbitrary = { version = "1.3.0", features = ["derive"] }
clap = { version = "4.3.0", features = ["derive"] }
fastrand = "1.9.0"
milli = { path = "../milli" }
serde = { version = "1.0.160", features = ["derive"] }
serde_json = { version = "1.0.95", features = ["preserve_order"] }
tempfile = "3.5.0"

View File

@ -1,3 +0,0 @@
# Fuzzers
The purpose of this crate is to contains all the handmade "fuzzer" we may need.

View File

@ -1,152 +0,0 @@
use std::num::NonZeroUsize;
use std::path::PathBuf;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::time::Duration;
use arbitrary::{Arbitrary, Unstructured};
use clap::Parser;
use fuzzers::Operation;
use milli::heed::EnvOpenOptions;
use milli::update::{IndexDocuments, IndexDocumentsConfig, IndexerConfig};
use milli::Index;
use tempfile::TempDir;
#[derive(Debug, Arbitrary)]
struct Batch([Operation; 5]);
#[derive(Debug, Clone, Parser)]
struct Opt {
/// The number of fuzzer to run in parallel.
#[clap(long)]
par: Option<NonZeroUsize>,
// We need to put a lot of newlines in the following documentation or else everything gets collapsed on one line
/// The path in which the databases will be created.
/// Using a ramdisk is recommended.
///
/// Linux:
///
/// sudo mount -t tmpfs -o size=2g tmpfs ramdisk # to create it
///
/// sudo umount ramdisk # to remove it
///
/// MacOS:
///
/// diskutil erasevolume HFS+ 'RAM Disk' `hdiutil attach -nobrowse -nomount ram://4194304 # create it
///
/// hdiutil detach /dev/:the_disk
#[clap(long)]
path: Option<PathBuf>,
}
fn main() {
let opt = Opt::parse();
let progression: &'static AtomicUsize = Box::leak(Box::new(AtomicUsize::new(0)));
let stop: &'static AtomicBool = Box::leak(Box::new(AtomicBool::new(false)));
let par = opt.par.unwrap_or_else(|| std::thread::available_parallelism().unwrap()).get();
let mut handles = Vec::with_capacity(par);
for _ in 0..par {
let opt = opt.clone();
let handle = std::thread::spawn(move || {
let mut options = EnvOpenOptions::new();
options.map_size(1024 * 1024 * 1024 * 1024);
let tempdir = match opt.path {
Some(path) => TempDir::new_in(path).unwrap(),
None => TempDir::new().unwrap(),
};
let index = Index::new(options, tempdir.path()).unwrap();
let indexer_config = IndexerConfig::default();
let index_documents_config = IndexDocumentsConfig::default();
std::thread::scope(|s| {
loop {
if stop.load(Ordering::Relaxed) {
return;
}
let v: Vec<u8> =
std::iter::repeat_with(|| fastrand::u8(..)).take(1000).collect();
let mut data = Unstructured::new(&v);
let batches = <[Batch; 5]>::arbitrary(&mut data).unwrap();
// will be used to display the error once a thread crashes
let dbg_input = format!("{:#?}", batches);
let handle = s.spawn(|| {
let mut wtxn = index.write_txn().unwrap();
for batch in batches {
let mut builder = IndexDocuments::new(
&mut wtxn,
&index,
&indexer_config,
index_documents_config.clone(),
|_| (),
|| false,
)
.unwrap();
for op in batch.0 {
match op {
Operation::AddDoc(doc) => {
let documents =
milli::documents::objects_from_json_value(doc.to_d());
let documents =
milli::documents::documents_batch_reader_from_objects(
documents,
);
let (b, _added) = builder.add_documents(documents).unwrap();
builder = b;
}
Operation::DeleteDoc(id) => {
let (b, _removed) =
builder.remove_documents(vec![id.to_s()]).unwrap();
builder = b;
}
}
}
builder.execute().unwrap();
// after executing a batch we check if the database is corrupted
let res = index.search(&wtxn).execute().unwrap();
index.documents(&wtxn, res.documents_ids).unwrap();
progression.fetch_add(1, Ordering::Relaxed);
}
wtxn.abort().unwrap();
});
if let err @ Err(_) = handle.join() {
stop.store(true, Ordering::Relaxed);
err.expect(&dbg_input);
}
}
});
});
handles.push(handle);
}
std::thread::spawn(|| {
let mut last_value = 0;
let start = std::time::Instant::now();
loop {
let total = progression.load(Ordering::Relaxed);
let elapsed = start.elapsed().as_secs();
if elapsed > 3600 {
// after 1 hour, stop the fuzzer, success
std::process::exit(0);
}
println!(
"Has been running for {:?} seconds. Tested {} new values for a total of {}.",
elapsed,
total - last_value,
total
);
last_value = total;
std::thread::sleep(Duration::from_secs(1));
}
});
for handle in handles {
handle.join().unwrap();
}
}

View File

@ -1,46 +0,0 @@
use arbitrary::Arbitrary;
use serde_json::{json, Value};
#[derive(Debug, Arbitrary)]
pub enum Document {
One,
Two,
Three,
Four,
Five,
Six,
}
impl Document {
pub fn to_d(&self) -> Value {
match self {
Document::One => json!({ "id": 0, "doggo": "bernese" }),
Document::Two => json!({ "id": 0, "doggo": "golden" }),
Document::Three => json!({ "id": 0, "catto": "jorts" }),
Document::Four => json!({ "id": 1, "doggo": "bernese" }),
Document::Five => json!({ "id": 1, "doggo": "golden" }),
Document::Six => json!({ "id": 1, "catto": "jorts" }),
}
}
}
#[derive(Debug, Arbitrary)]
pub enum DocId {
Zero,
One,
}
impl DocId {
pub fn to_s(&self) -> String {
match self {
DocId::Zero => "0".to_string(),
DocId::One => "1".to_string(),
}
}
}
#[derive(Debug, Arbitrary)]
pub enum Operation {
AddDoc(Document),
DeleteDoc(DocId),
}

View File

@ -160,7 +160,7 @@ impl BatchKind {
impl BatchKind {
/// Returns a `ControlFlow::Break` if you must stop right now.
/// The boolean tell you if an index has been created by the batched task.
/// To ease the writing of the code. `true` can be returned when you don't need to create an index
/// To ease the writting of the code. `true` can be returned when you don't need to create an index
/// but false can't be returned if you needs to create an index.
// TODO use an AutoBatchKind as input
pub fn new(
@ -214,7 +214,7 @@ impl BatchKind {
/// Returns a `ControlFlow::Break` if you must stop right now.
/// The boolean tell you if an index has been created by the batched task.
/// To ease the writing of the code. `true` can be returned when you don't need to create an index
/// To ease the writting of the code. `true` can be returned when you don't need to create an index
/// but false can't be returned if you needs to create an index.
#[rustfmt::skip]
fn accumulate(self, id: TaskId, kind: AutobatchKind, index_already_exists: bool, primary_key: Option<&str>) -> ControlFlow<BatchKind, BatchKind> {
@ -321,18 +321,9 @@ impl BatchKind {
})
}
(
BatchKind::DocumentOperation { method, allow_index_creation, primary_key, mut operation_ids },
this @ BatchKind::DocumentOperation { .. },
K::DocumentDeletion,
) => {
operation_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids,
})
}
) => Break(this),
// but we can't autobatch documents if it's not the same kind
// this match branch MUST be AFTER the previous one
(
@ -355,35 +346,7 @@ impl BatchKind {
deletion_ids.push(id);
Continue(BatchKind::DocumentClear { ids: deletion_ids })
}
// we can autobatch the deletion and import if the index already exists
(
BatchKind::DocumentDeletion { mut deletion_ids },
K::DocumentImport { method, allow_index_creation, primary_key }
) if index_already_exists => {
deletion_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids: deletion_ids,
})
}
// we can autobatch the deletion and import if both can't create an index
(
BatchKind::DocumentDeletion { mut deletion_ids },
K::DocumentImport { method, allow_index_creation, primary_key }
) if !allow_index_creation => {
deletion_ids.push(id);
Continue(BatchKind::DocumentOperation {
method,
allow_index_creation,
primary_key,
operation_ids: deletion_ids,
})
}
// we can't autobatch a deletion and an import if the index does not exists but would be created by an addition
// we can't autobatch a deletion and an import
(
this @ BatchKind::DocumentDeletion { .. },
K::DocumentImport { .. }
@ -685,36 +648,36 @@ mod tests {
debug_snapshot!(autobatch_from(false,None, [settings(false)]), @"Some((Settings { allow_index_creation: false, settings_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false,None, [settings(false), settings(false), settings(false)]), @"Some((Settings { allow_index_creation: false, settings_ids: [0, 1, 2] }, false))");
// We can autobatch document addition with document deletion
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
// And the other way around
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0, 1] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0, 1] }, false))"###);
// We can't autobatch document addition with document deletion
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(true, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: None, operation_ids: [0] }, true))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, None), doc_del()]), @"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: None, operation_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, true, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: true, primary_key: Some("catto"), operation_ids: [0] }, true))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(ReplaceDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: ReplaceDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
debug_snapshot!(autobatch_from(false, None, [doc_imp(UpdateDocuments, false, Some("catto")), doc_del()]), @r###"Some((DocumentOperation { method: UpdateDocuments, allow_index_creation: false, primary_key: Some("catto"), operation_ids: [0] }, false))"###);
// we also can't do the only way around
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, true, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, true, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(true, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, None)]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(ReplaceDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
debug_snapshot!(autobatch_from(false, None, [doc_del(), doc_imp(UpdateDocuments, false, Some("catto"))]), @"Some((DocumentDeletion { deletion_ids: [0] }, false))");
}
#[test]

View File

@ -998,7 +998,7 @@ impl IndexScheduler {
}()
.unwrap_or_default();
// The write transaction is directly owned and committed inside.
// The write transaction is directly owned and commited inside.
match self.index_mapper.delete_index(wtxn, &index_uid) {
Ok(()) => (),
Err(Error::IndexNotFound(_)) if index_has_been_created => (),

View File

@ -1785,7 +1785,7 @@ mod tests {
assert_eq!(task.kind.as_kind(), k);
}
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "everything_is_successfully_registered");
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "everything_is_succesfully_registered");
}
#[test]
@ -2075,105 +2075,6 @@ mod tests {
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "both_task_succeeded");
}
#[test]
fn document_addition_and_document_deletion() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
let content = r#"[
{ "id": 1, "doggo": "jean bob" },
{ "id": 2, "catto": "jorts" },
{ "id": 3, "doggo": "bork" }
]"#;
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0).unwrap();
let documents_count = read_json(content.as_bytes(), file.as_file_mut()).unwrap();
file.persist().unwrap();
index_scheduler
.register(KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: ReplaceDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_first_task");
index_scheduler
.register(KindWithContent::DocumentDeletion {
index_uid: S("doggos"),
documents_ids: vec![S("1"), S("2")],
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_second_task");
handle.advance_one_successful_batch(); // The addition AND deletion should've been batched together
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_processing_the_batch");
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let field_ids_map = index.fields_ids_map(&rtxn).unwrap();
let field_ids = field_ids_map.ids().collect::<Vec<_>>();
let documents = index
.all_documents(&rtxn)
.unwrap()
.map(|ret| obkv_to_json(&field_ids, &field_ids_map, ret.unwrap().1).unwrap())
.collect::<Vec<_>>();
snapshot!(serde_json::to_string_pretty(&documents).unwrap(), name: "documents");
}
#[test]
fn document_deletion_and_document_addition() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);
index_scheduler
.register(KindWithContent::DocumentDeletion {
index_uid: S("doggos"),
documents_ids: vec![S("1"), S("2")],
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_first_task");
let content = r#"[
{ "id": 1, "doggo": "jean bob" },
{ "id": 2, "catto": "jorts" },
{ "id": 3, "doggo": "bork" }
]"#;
let (uuid, mut file) = index_scheduler.create_update_file_with_uuid(0).unwrap();
let documents_count = read_json(content.as_bytes(), file.as_file_mut()).unwrap();
file.persist().unwrap();
index_scheduler
.register(KindWithContent::DocumentAdditionOrUpdate {
index_uid: S("doggos"),
primary_key: Some(S("id")),
method: ReplaceDocuments,
content_file: uuid,
documents_count,
allow_index_creation: true,
})
.unwrap();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "registered_the_second_task");
// The deletion should have failed because it can't create an index
handle.advance_one_failed_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_failing_the_deletion");
// The addition should works
handle.advance_one_successful_batch();
snapshot!(snapshot_index_scheduler(&index_scheduler), name: "after_last_successful_addition");
let index = index_scheduler.index("doggos").unwrap();
let rtxn = index.read_txn().unwrap();
let field_ids_map = index.fields_ids_map(&rtxn).unwrap();
let field_ids = field_ids_map.ids().collect::<Vec<_>>();
let documents = index
.all_documents(&rtxn)
.unwrap()
.map(|ret| obkv_to_json(&field_ids, &field_ids_map, ret.unwrap().1).unwrap())
.collect::<Vec<_>>();
snapshot!(serde_json::to_string_pretty(&documents).unwrap(), name: "documents");
}
#[test]
fn do_not_batch_task_of_different_indexes() {
let (index_scheduler, mut handle) = IndexScheduler::test(true, vec![]);

View File

@ -1,43 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { received_documents: 3, indexed_documents: Some(3) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_document_ids: 2, deleted_documents: Some(2) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
"documentDeletion" [1,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 1, field_distribution: {"doggo": 1, "id": 1} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@ -1,9 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
[
{
"id": 3,
"doggo": "bork"
}
]

View File

@ -1,37 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@ -1,40 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [0,]
"documentDeletion" [1,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@ -1,43 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: failed, error: ResponseError { code: 200, message: "Index `doggos` not found.", error_code: "index_not_found", error_type: "invalid_request", error_link: "https://docs.meilisearch.com/errors#index_not_found" }, details: { received_document_ids: 2, deleted_documents: Some(0) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [1,]
failed [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@ -1,46 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: failed, error: ResponseError { code: 200, message: "Index `doggos` not found.", error_code: "index_not_found", error_type: "invalid_request", error_link: "https://docs.meilisearch.com/errors#index_not_found" }, details: { received_document_ids: 2, deleted_documents: Some(0) }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: succeeded, details: { received_documents: 3, indexed_documents: Some(3) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []
succeeded [1,]
failed [0,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
doggos: { number_of_documents: 3, field_distribution: {"catto": 1, "doggo": 2, "id": 3} }
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Finished At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@ -1,17 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
[
{
"id": 1,
"doggo": "jean bob"
},
{
"id": 2,
"catto": "jorts"
},
{
"id": 3,
"doggo": "bork"
}
]

View File

@ -1,36 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
----------------------------------------------------------------------
### Status:
enqueued [0,]
----------------------------------------------------------------------
### Kind:
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
----------------------------------------------------------------------

View File

@ -1,40 +0,0 @@
---
source: index-scheduler/src/lib.rs
---
### Autobatching Enabled = true
### Processing Tasks:
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { received_document_ids: 2, deleted_documents: None }, kind: DocumentDeletion { index_uid: "doggos", documents_ids: ["1", "2"] }}
1 {uid: 1, status: enqueued, details: { received_documents: 3, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: ReplaceDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 3, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,1,]
----------------------------------------------------------------------
### Kind:
"documentAdditionOrUpdate" [1,]
"documentDeletion" [0,]
----------------------------------------------------------------------
### Index Tasks:
doggos [0,1,]
----------------------------------------------------------------------
### Index Mapper:
----------------------------------------------------------------------
### Canceled By:
----------------------------------------------------------------------
### Enqueued At:
[timestamp] [0,]
[timestamp] [1,]
----------------------------------------------------------------------
### Started At:
----------------------------------------------------------------------
### Finished At:
----------------------------------------------------------------------
### File Store:
00000000-0000-0000-0000-000000000000
----------------------------------------------------------------------

View File

@ -1,12 +0,0 @@
[package]
name = "index-stats"
description = "A small program that computes internal stats of a Meilisearch index"
version = "0.1.0"
edition = "2021"
publish = false
[dependencies]
anyhow = "1.0.71"
clap = { version = "4.3.5", features = ["derive"] }
milli = { path = "../milli" }
piechart = "1.0.0"

View File

@ -1,224 +0,0 @@
use std::cmp::Reverse;
use std::path::PathBuf;
use clap::Parser;
use milli::heed::{types::ByteSlice, EnvOpenOptions, PolyDatabase, RoTxn};
use milli::index::db_name::*;
use milli::index::Index;
use piechart::{Chart, Color, Data};
/// Simple program to greet a person
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// The path to the LMDB Meilisearch index database.
path: PathBuf,
/// The radius of the graphs
#[clap(long, default_value_t = 10)]
graph_radius: u16,
/// The radius of the graphs
#[clap(long, default_value_t = 6)]
graph_aspect_ratio: u16,
}
fn main() -> anyhow::Result<()> {
let Args { path, graph_radius, graph_aspect_ratio } = Args::parse();
let env = EnvOpenOptions::new().max_dbs(24).open(path)?;
// TODO not sure to keep that...
// if removed put the pub(crate) back in the Index struct
matches!(
Option::<Index>::None,
Some(Index {
env: _,
main: _,
word_docids: _,
exact_word_docids: _,
word_prefix_docids: _,
exact_word_prefix_docids: _,
word_pair_proximity_docids: _,
word_prefix_pair_proximity_docids: _,
prefix_word_pair_proximity_docids: _,
word_position_docids: _,
word_fid_docids: _,
field_id_word_count_docids: _,
word_prefix_position_docids: _,
word_prefix_fid_docids: _,
script_language_docids: _,
facet_id_exists_docids: _,
facet_id_is_null_docids: _,
facet_id_is_empty_docids: _,
facet_id_f64_docids: _,
facet_id_string_docids: _,
field_id_docid_facet_f64s: _,
field_id_docid_facet_strings: _,
documents: _,
})
);
let mut wtxn = env.write_txn()?;
let main = env.create_poly_database(&mut wtxn, Some(MAIN))?;
let word_docids = env.create_poly_database(&mut wtxn, Some(WORD_DOCIDS))?;
let exact_word_docids = env.create_poly_database(&mut wtxn, Some(EXACT_WORD_DOCIDS))?;
let word_prefix_docids = env.create_poly_database(&mut wtxn, Some(WORD_PREFIX_DOCIDS))?;
let exact_word_prefix_docids =
env.create_poly_database(&mut wtxn, Some(EXACT_WORD_PREFIX_DOCIDS))?;
let word_pair_proximity_docids =
env.create_poly_database(&mut wtxn, Some(WORD_PAIR_PROXIMITY_DOCIDS))?;
let script_language_docids =
env.create_poly_database(&mut wtxn, Some(SCRIPT_LANGUAGE_DOCIDS))?;
let word_prefix_pair_proximity_docids =
env.create_poly_database(&mut wtxn, Some(WORD_PREFIX_PAIR_PROXIMITY_DOCIDS))?;
let prefix_word_pair_proximity_docids =
env.create_poly_database(&mut wtxn, Some(PREFIX_WORD_PAIR_PROXIMITY_DOCIDS))?;
let word_position_docids = env.create_poly_database(&mut wtxn, Some(WORD_POSITION_DOCIDS))?;
let word_fid_docids = env.create_poly_database(&mut wtxn, Some(WORD_FIELD_ID_DOCIDS))?;
let field_id_word_count_docids =
env.create_poly_database(&mut wtxn, Some(FIELD_ID_WORD_COUNT_DOCIDS))?;
let word_prefix_position_docids =
env.create_poly_database(&mut wtxn, Some(WORD_PREFIX_POSITION_DOCIDS))?;
let word_prefix_fid_docids =
env.create_poly_database(&mut wtxn, Some(WORD_PREFIX_FIELD_ID_DOCIDS))?;
let facet_id_f64_docids = env.create_poly_database(&mut wtxn, Some(FACET_ID_F64_DOCIDS))?;
let facet_id_string_docids =
env.create_poly_database(&mut wtxn, Some(FACET_ID_STRING_DOCIDS))?;
let facet_id_exists_docids =
env.create_poly_database(&mut wtxn, Some(FACET_ID_EXISTS_DOCIDS))?;
let facet_id_is_null_docids =
env.create_poly_database(&mut wtxn, Some(FACET_ID_IS_NULL_DOCIDS))?;
let facet_id_is_empty_docids =
env.create_poly_database(&mut wtxn, Some(FACET_ID_IS_EMPTY_DOCIDS))?;
let field_id_docid_facet_f64s =
env.create_poly_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_F64S))?;
let field_id_docid_facet_strings =
env.create_poly_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_STRINGS))?;
let documents = env.create_poly_database(&mut wtxn, Some(DOCUMENTS))?;
wtxn.commit()?;
let list = [
(main, MAIN),
(word_docids, WORD_DOCIDS),
(exact_word_docids, EXACT_WORD_DOCIDS),
(word_prefix_docids, WORD_PREFIX_DOCIDS),
(exact_word_prefix_docids, EXACT_WORD_PREFIX_DOCIDS),
(word_pair_proximity_docids, WORD_PAIR_PROXIMITY_DOCIDS),
(script_language_docids, SCRIPT_LANGUAGE_DOCIDS),
(word_prefix_pair_proximity_docids, WORD_PREFIX_PAIR_PROXIMITY_DOCIDS),
(prefix_word_pair_proximity_docids, PREFIX_WORD_PAIR_PROXIMITY_DOCIDS),
(word_position_docids, WORD_POSITION_DOCIDS),
(word_fid_docids, WORD_FIELD_ID_DOCIDS),
(field_id_word_count_docids, FIELD_ID_WORD_COUNT_DOCIDS),
(word_prefix_position_docids, WORD_PREFIX_POSITION_DOCIDS),
(word_prefix_fid_docids, WORD_PREFIX_FIELD_ID_DOCIDS),
(facet_id_f64_docids, FACET_ID_F64_DOCIDS),
(facet_id_string_docids, FACET_ID_STRING_DOCIDS),
(facet_id_exists_docids, FACET_ID_EXISTS_DOCIDS),
(facet_id_is_null_docids, FACET_ID_IS_NULL_DOCIDS),
(facet_id_is_empty_docids, FACET_ID_IS_EMPTY_DOCIDS),
(field_id_docid_facet_f64s, FIELD_ID_DOCID_FACET_F64S),
(field_id_docid_facet_strings, FIELD_ID_DOCID_FACET_STRINGS),
(documents, DOCUMENTS),
];
let rtxn = env.read_txn()?;
let result: Result<Vec<_>, _> =
list.into_iter().map(|(db, name)| compute_stats(&rtxn, db).map(|s| (s, name))).collect();
let mut stats = result?;
println!("{:1$} Number of Entries", "", graph_radius as usize * 2);
stats.sort_by_key(|(s, _)| Reverse(s.number_of_entries));
let data = compute_graph_data(stats.iter().map(|(s, n)| (s.number_of_entries as f32, *n)));
Chart::new().radius(graph_radius).aspect_ratio(graph_aspect_ratio).draw(&data);
display_legend(&data);
print!("\r\n");
println!("{:1$} Size of Entries", "", graph_radius as usize * 2);
stats.sort_by_key(|(s, _)| Reverse(s.size_of_entries));
let data = compute_graph_data(stats.iter().map(|(s, n)| (s.size_of_entries as f32, *n)));
Chart::new().radius(graph_radius).aspect_ratio(graph_aspect_ratio).draw(&data);
display_legend(&data);
print!("\r\n");
println!("{:1$} Size of Data", "", graph_radius as usize * 2);
stats.sort_by_key(|(s, _)| Reverse(s.size_of_data));
let data = compute_graph_data(stats.iter().map(|(s, n)| (s.size_of_data as f32, *n)));
Chart::new().radius(graph_radius).aspect_ratio(graph_aspect_ratio).draw(&data);
display_legend(&data);
print!("\r\n");
println!("{:1$} Size of Keys", "", graph_radius as usize * 2);
stats.sort_by_key(|(s, _)| Reverse(s.size_of_keys));
let data = compute_graph_data(stats.iter().map(|(s, n)| (s.size_of_keys as f32, *n)));
Chart::new().radius(graph_radius).aspect_ratio(graph_aspect_ratio).draw(&data);
display_legend(&data);
Ok(())
}
fn display_legend(data: &[Data]) {
let total: f32 = data.iter().map(|d| d.value).sum();
for Data { label, value, color, fill } in data {
println!(
"{} {} {:.02}%",
color.unwrap().paint(fill.to_string()),
label,
value / total * 100.0
);
}
}
fn compute_graph_data<'a>(stats: impl IntoIterator<Item = (f32, &'a str)>) -> Vec<Data> {
let mut colors = [
Color::Red,
Color::Green,
Color::Yellow,
Color::Blue,
Color::Purple,
Color::Cyan,
Color::White,
]
.into_iter()
.cycle();
let mut characters = ['▴', '▵', '▾', '▿', '▪', '▫', '•', '◦'].into_iter().cycle();
stats
.into_iter()
.map(|(value, name)| Data {
label: (*name).into(),
value,
color: Some(colors.next().unwrap().into()),
fill: characters.next().unwrap(),
})
.collect()
}
#[derive(Debug)]
pub struct Stats {
pub number_of_entries: u64,
pub size_of_keys: u64,
pub size_of_data: u64,
pub size_of_entries: u64,
}
fn compute_stats(rtxn: &RoTxn, db: PolyDatabase) -> anyhow::Result<Stats> {
let mut number_of_entries = 0;
let mut size_of_keys = 0;
let mut size_of_data = 0;
for result in db.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
let (key, data) = result?;
number_of_entries += 1;
size_of_keys += key.len() as u64;
size_of_data += data.len() as u64;
}
Ok(Stats {
number_of_entries,
size_of_keys,
size_of_data,
size_of_entries: size_of_keys + size_of_data,
})
}

View File

@ -240,6 +240,8 @@ InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;

View File

@ -56,6 +56,10 @@ pub struct SearchQueryGet {
sort: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowMatchesPosition>)]
show_matches_position: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchFacets>)]
facets: Option<CS<String>>,
#[deserr( default = DEFAULT_HIGHLIGHT_PRE_TAG(), error = DeserrQueryParamError<InvalidSearchHighlightPreTag>)]
@ -91,6 +95,8 @@ impl From<SearchQueryGet> for SearchQuery {
filter,
sort: other.sort.map(|attr| fix_sort_query_parameters(&attr)),
show_matches_position: other.show_matches_position.0,
show_ranking_score: other.show_ranking_score.0,
show_ranking_score_details: other.show_ranking_score_details.0,
facets: other.facets.map(|o| o.into_iter().collect()),
highlight_pre_tag: other.highlight_pre_tag,
highlight_post_tag: other.highlight_post_tag,

View File

@ -9,6 +9,7 @@ use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::ScoreDetails;
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
@ -54,6 +55,10 @@ pub struct SearchQuery {
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchSort>)]
@ -103,6 +108,10 @@ pub struct SearchQueryWithIndex {
pub crop_length: usize,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToHighlight>)]
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
@ -134,6 +143,8 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@ -155,6 +166,8 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
@ -194,7 +207,7 @@ impl From<MatchingStrategy> for TermsMatchingStrategy {
}
}
#[derive(Debug, Clone, Serialize, PartialEq, Eq)]
#[derive(Debug, Clone, Serialize, PartialEq)]
pub struct SearchHit {
#[serde(flatten)]
pub document: Document,
@ -202,6 +215,10 @@ pub struct SearchHit {
pub formatted: Document,
#[serde(rename = "_matchesPosition", skip_serializing_if = "Option::is_none")]
pub matches_position: Option<MatchesPosition>,
#[serde(rename = "_rankingScore", skip_serializing_if = "Option::is_none")]
pub ranking_score: Option<u64>,
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
@ -320,7 +337,8 @@ pub fn perform_search(
search.sort_criteria(sort);
}
let milli::SearchResult { documents_ids, matching_words, candidates, .. } = search.execute()?;
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
search.execute()?;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@ -392,7 +410,7 @@ pub fn perform_search(
let documents_iter = index.documents(&rtxn, documents_ids)?;
for (_id, obkv) in documents_iter {
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
@ -416,7 +434,18 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document);
}
let hit = SearchHit { document, formatted, matches_position };
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score_linear_scale(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}

View File

@ -1,3 +1,4 @@
use insta::{allow_duplicates, assert_json_snapshot};
use serde_json::json;
use super::*;
@ -18,30 +19,43 @@ async fn formatted_contain_wildcard() {
|response, code|
{
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###);
}
}
)
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti"
}
"###)
}
})
.await;
@ -50,20 +64,29 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToHighlight": ["id"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
})
.await;
index
@ -71,17 +94,20 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToCrop": ["*"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###);
}
},
)
.await;
@ -89,17 +115,20 @@ async fn formatted_contain_wildcard() {
index
.search(json!({ "q": "pésti", "attributesToCrop": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
}
}
"###)
}
})
.await;
}
@ -116,21 +145,24 @@ async fn format_nested() {
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": 2,
},
{
"name": "buddy",
"age": 4,
},
],
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby",
"age": 2
},
{
"name": "buddy",
"age": 4
}
]
}
"###)
}
})
.await;
@ -139,19 +171,22 @@ async fn format_nested() {
json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
"###)
}
},
)
.await;
@ -161,20 +196,30 @@ async fn format_nested() {
json!({ "q": "bobby", "attributesToRetrieve": ["doggos.name"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_matchesPosition": {"doggos.name": [{"start": 0, "length": 5}]},
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_matchesPosition": {
"doggos.name": [
{
"start": 0,
"length": 5
}
]
}
}
"###)
}
}
)
.await;
@ -183,21 +228,24 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
})
.await;
@ -205,21 +253,24 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
}
}
"###)
}
})
.await;
@ -227,55 +278,61 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"], "attributesToHighlight": ["doggos.age"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
})
);
})
{
"name": "buddy"
}
],
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
})
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.age"], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
}
}
"###)
}
}
)
.await;
@ -297,54 +354,66 @@ async fn displayedattr_2_smol() {
.search(json!({ "attributesToRetrieve": ["father", "id"], "attributesToHighlight": ["mother"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
})
.await;
index
.search(json!({ "attributesToRetrieve": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
})
.await;
index
.search(json!({ "attributesToHighlight": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
})
.await;
index
.search(json!({ "attributesToCrop": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
})
.await;
@ -353,15 +422,18 @@ async fn displayedattr_2_smol() {
json!({ "attributesToHighlight": ["id"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
}
}
"###)
}
},
)
.await;
@ -369,31 +441,41 @@ async fn displayedattr_2_smol() {
index
.search(json!({ "attributesToHighlight": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
})
.await;
index
.search(json!({ "attributesToCrop": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852
}
"###)
}
})
.await;
index
.search(json!({ "attributesToRetrieve": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(response["hits"][0], json!({}));
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
})
.await;
@ -402,7 +484,11 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["cattos"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(response["hits"][0], json!({}));
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@"{}")
}
}
)
@ -413,14 +499,17 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
},
)
.await;
@ -430,14 +519,17 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
}
}
"###)
}
},
)
.await;

View File

@ -65,7 +65,7 @@ async fn simple_search_single_index() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
[
{
"indexUid": "test",
@ -170,7 +170,7 @@ async fn simple_search_two_indexes() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
[
{
"indexUid": "test",

View File

@ -75,6 +75,9 @@ maplit = "1.0.2"
md5 = "0.7.0"
rand = { version = "0.8.5", features = ["small_rng"] }
[target.'cfg(fuzzing)'.dev-dependencies]
fuzzcheck = "0.12.1"
[features]
all-tokenizations = ["charabia/default"]

View File

@ -111,6 +111,7 @@ pub enum Error {
Io(#[from] io::Error),
}
#[cfg(test)]
pub fn objects_from_json_value(json: serde_json::Value) -> Vec<crate::Object> {
let documents = match json {
object @ serde_json::Value::Object(_) => vec![object],
@ -140,6 +141,7 @@ macro_rules! documents {
}};
}
#[cfg(test)]
pub fn documents_batch_reader_from_objects(
objects: impl IntoIterator<Item = Object>,
) -> DocumentsBatchReader<std::io::Cursor<Vec<u8>>> {

View File

@ -106,30 +106,22 @@ impl<'a> ExternalDocumentsIds<'a> {
map
}
/// Return an fst of the combined hard and soft deleted ID.
pub fn to_fst<'b>(&'b self) -> fst::Result<Cow<'b, fst::Map<Cow<'a, [u8]>>>> {
if self.soft.is_empty() {
return Ok(Cow::Borrowed(&self.hard));
}
let union_op = self.hard.op().add(&self.soft).r#union();
let mut iter = union_op.into_stream();
let mut new_hard_builder = fst::MapBuilder::memory();
while let Some((external_id, marked_docids)) = iter.next() {
let value = indexed_last_value(marked_docids).unwrap();
if value != DELETED_ID {
new_hard_builder.insert(external_id, value)?;
}
}
drop(iter);
Ok(Cow::Owned(new_hard_builder.into_map().map_data(Cow::Owned)?))
}
fn merge_soft_into_hard(&mut self) -> fst::Result<()> {
if self.soft.len() >= self.hard.len() / 2 {
self.hard = self.to_fst()?.into_owned();
let union_op = self.hard.op().add(&self.soft).r#union();
let mut iter = union_op.into_stream();
let mut new_hard_builder = fst::MapBuilder::memory();
while let Some((external_id, marked_docids)) = iter.next() {
let value = indexed_last_value(marked_docids).unwrap();
if value != DELETED_ID {
new_hard_builder.insert(external_id, value)?;
}
}
drop(iter);
self.hard = new_hard_builder.into_map().map_data(Cow::Owned)?;
self.soft = fst::Map::default().map_data(Cow::Owned)?;
}

View File

@ -93,10 +93,10 @@ pub mod db_name {
#[derive(Clone)]
pub struct Index {
/// The LMDB environment which this index is associated with.
pub env: heed::Env,
pub(crate) env: heed::Env,
/// Contains many different types (e.g. the fields ids map).
pub main: PolyDatabase,
pub(crate) main: PolyDatabase,
/// A word and all the documents ids containing the word.
pub word_docids: Database<Str, RoaringBitmapCodec>,
@ -150,7 +150,7 @@ pub struct Index {
pub field_id_docid_facet_strings: Database<FieldDocIdFacetStringCodec, Str>,
/// Maps the document id to the document as an obkv store.
pub documents: Database<OwnedType<BEU32>, ObkvCodec>,
pub(crate) documents: Database<OwnedType<BEU32>, ObkvCodec>,
}
impl Index {
@ -1466,9 +1466,9 @@ pub(crate) mod tests {
db_snap!(index, field_distribution,
@r###"
age 1 |
id 2 |
name 2 |
age 1
id 2
name 2
"###
);
@ -1486,9 +1486,9 @@ pub(crate) mod tests {
db_snap!(index, field_distribution,
@r###"
age 1 |
id 2 |
name 2 |
age 1
id 2
name 2
"###
);
@ -1502,9 +1502,9 @@ pub(crate) mod tests {
db_snap!(index, field_distribution,
@r###"
has_dog 1 |
id 2 |
name 2 |
has_dog 1
id 2
name 2
"###
);
}
@ -2488,8 +2488,12 @@ pub(crate) mod tests {
let rtxn = index.read_txn().unwrap();
let search = Search::new(&rtxn, &index);
let SearchResult { matching_words: _, candidates: _, mut documents_ids } =
search.execute().unwrap();
let SearchResult {
matching_words: _,
candidates: _,
document_scores: _,
mut documents_ids,
} = search.execute().unwrap();
let primary_key_id = index.fields_ids_map(&rtxn).unwrap().id("primary_key").unwrap();
documents_ids.sort_unstable();
let docs = index.documents(&rtxn, documents_ids).unwrap();

View File

@ -17,6 +17,7 @@ mod fields_ids_map;
pub mod heed_codec;
pub mod index;
pub mod proximity;
pub mod score_details;
mod search;
pub mod update;

295
milli/src/score_details.rs Normal file
View File

@ -0,0 +1,295 @@
use serde::Serialize;
use crate::distance_between_two_points;
#[derive(Debug, Clone, PartialEq)]
pub enum ScoreDetails {
Words(Words),
Typo(Typo),
Proximity(Rank),
Fid(Rank),
Position(Rank),
ExactAttribute(ExactAttribute),
Exactness(Rank),
Sort(Sort),
GeoSort(GeoSort),
}
impl ScoreDetails {
pub fn local_score(&self) -> Option<f64> {
self.rank().map(Rank::local_score)
}
pub fn rank(&self) -> Option<Rank> {
match self {
ScoreDetails::Words(details) => Some(details.rank()),
ScoreDetails::Typo(details) => Some(details.rank()),
ScoreDetails::Proximity(details) => Some(*details),
ScoreDetails::Fid(details) => Some(*details),
ScoreDetails::Position(details) => Some(*details),
ScoreDetails::ExactAttribute(details) => Some(details.rank()),
ScoreDetails::Exactness(details) => Some(*details),
ScoreDetails::Sort(_) => None,
ScoreDetails::GeoSort(_) => None,
}
}
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self>) -> f64 {
Rank::global_score(details.filter_map(Self::rank))
}
pub fn global_score_linear_scale<'a>(details: impl Iterator<Item = &'a Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
/// Panics
///
/// - If Position is not preceded by Fid
/// - If Exactness is not preceded by ExactAttribute
/// - If a sort fid is not contained in the passed `fields_ids_map`.
pub fn to_json_map<'a>(
details: impl Iterator<Item = &'a Self>,
) -> serde_json::Map<String, serde_json::Value> {
let mut order = 0;
let mut details_map = serde_json::Map::default();
for details in details {
match details {
ScoreDetails::Words(words) => {
let words_details = serde_json::json!({
"order": order,
"matchingWords": words.matching_words,
"maxMatchingWords": words.max_matching_words,
"score": words.rank().local_score_linear_scale(),
});
details_map.insert("words".into(), words_details);
order += 1;
}
ScoreDetails::Typo(typo) => {
let typo_details = serde_json::json!({
"order": order,
"typoCount": typo.typo_count,
"maxTypoCount": typo.max_typo_count,
"score": typo.rank().local_score_linear_scale(),
});
details_map.insert("typo".into(), typo_details);
order += 1;
}
ScoreDetails::Proximity(proximity) => {
let proximity_details = serde_json::json!({
"order": order,
"score": proximity.local_score_linear_scale(),
});
details_map.insert("proximity".into(), proximity_details);
order += 1;
}
ScoreDetails::Fid(fid) => {
// For now, fid is a virtual rule always followed by the "position" rule
let fid_details = serde_json::json!({
"order": order,
"attributes_ranking_order": fid.local_score_linear_scale(),
});
details_map.insert("attribute".into(), fid_details);
order += 1;
}
ScoreDetails::Position(position) => {
// For now, position is a virtual rule always preceded by the "fid" rule
let attribute_details = details_map
.get_mut("attribute")
.expect("position not preceded by attribute");
let attribute_details = attribute_details
.as_object_mut()
.expect("attribute details was not an object");
attribute_details.insert(
"attributes_query_word_order".into(),
position.local_score_linear_scale().into(),
);
// do not update the order since this was already done by fid
}
ScoreDetails::ExactAttribute(exact_attribute) => {
let exactness_details = serde_json::json!({
"order": order,
"exactIn": exact_attribute,
"score": exact_attribute.rank().local_score_linear_scale(),
});
details_map.insert("exactness".into(), exactness_details);
order += 1;
}
ScoreDetails::Exactness(details) => {
// For now, exactness is a virtual rule always preceded by the "ExactAttribute" rule
let exactness_details = details_map
.get_mut("exactness")
.expect("Exactness not preceded by exactAttribute");
let exactness_details = exactness_details
.as_object_mut()
.expect("exactness details was not an object");
if exactness_details.get("exactIn").expect("missing 'exactIn'")
== &serde_json::json!(ExactAttribute::NoExactMatch)
{
let score = Rank::global_score_linear_scale(
[ExactAttribute::NoExactMatch.rank(), *details].iter().copied(),
);
*exactness_details.get_mut("score").expect("missing score") = score.into();
}
// do not update the order since this was already done by exactAttribute
}
ScoreDetails::Sort(details) => {
let sort = format!(
"{}:{}",
details.field_name,
if details.ascending { "asc" } else { "desc" }
);
let sort_details = serde_json::json!({
"order": order,
"value": details.value,
});
details_map.insert(sort, sort_details);
order += 1;
}
ScoreDetails::GeoSort(details) => {
let sort = format!(
"_geoPoint({}, {}):{}",
details.target_point[0],
details.target_point[1],
if details.ascending { "asc" } else { "desc" }
);
let point = if let Some(value) = details.value {
serde_json::json!({ "lat": value[0], "lng": value[1]})
} else {
serde_json::Value::Null
};
let sort_details = serde_json::json!({
"order": order,
"value": point,
"distance": details.distance(),
});
details_map.insert(sort, sort_details);
order += 1;
}
}
}
details_map
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Words {
pub matching_words: u32,
pub max_matching_words: u32,
}
impl Words {
pub fn rank(&self) -> Rank {
Rank { rank: self.matching_words, max_rank: self.max_matching_words }
}
pub(crate) fn from_rank(rank: Rank) -> Words {
Words { matching_words: rank.rank, max_matching_words: rank.max_rank }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Typo {
pub typo_count: u32,
pub max_typo_count: u32,
}
impl Typo {
pub fn rank(&self) -> Rank {
Rank {
rank: self.max_typo_count - self.typo_count + 1,
max_rank: (self.max_typo_count + 1),
}
}
// max_rank = max_typo + 1
// max_typo = max_rank - 1
//
// rank = max_typo - typo + 1
// rank = max_rank - 1 - typo + 1
// rank + typo = max_rank
// typo = max_rank - rank
pub fn from_rank(rank: Rank) -> Typo {
Typo { typo_count: rank.max_rank - rank.rank, max_typo_count: rank.max_rank - 1 }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Rank {
/// The ordinal rank, such that `max_rank` is the first rank, and 0 is the last rank.
///
/// The higher the better. Documents with a rank of 0 have a score of 0 and are typically never returned
/// (they don't match the query).
pub rank: u32,
/// The maximum possible rank. Documents with this rank have a score of 1.
///
/// The max rank should not be 0.
pub max_rank: u32,
}
impl Rank {
pub fn local_score(self) -> f64 {
self.rank as f64 / self.max_rank as f64
}
pub fn local_score_linear_scale(self) -> u64 {
(self.local_score() * LINEAR_SCALE_FACTOR).round() as u64
}
pub fn global_score(details: impl Iterator<Item = Self>) -> f64 {
let mut rank = Rank { rank: 1, max_rank: 1 };
for inner_rank in details {
rank.rank -= 1;
rank.rank *= inner_rank.max_rank;
rank.max_rank *= inner_rank.max_rank;
rank.rank += inner_rank.rank;
}
rank.local_score()
}
pub fn global_score_linear_scale(details: impl Iterator<Item = Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum ExactAttribute {
MatchesFull,
MatchesStart,
NoExactMatch,
}
impl ExactAttribute {
pub fn rank(&self) -> Rank {
let rank = match self {
ExactAttribute::MatchesFull => 3,
ExactAttribute::MatchesStart => 2,
ExactAttribute::NoExactMatch => 1,
};
Rank { rank, max_rank: 3 }
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Sort {
pub field_name: String,
pub ascending: bool,
pub value: serde_json::Value,
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct GeoSort {
pub target_point: [f64; 2],
pub ascending: bool,
pub value: Option<[f64; 2]>,
}
impl GeoSort {
pub fn distance(&self) -> Option<f64> {
self.value.map(|value| distance_between_two_points(&self.target_point, &value))
}
}
const LINEAR_SCALE_FACTOR: f64 = 1000.0;

View File

@ -7,6 +7,7 @@ use roaring::bitmap::RoaringBitmap;
pub use self::facet::{FacetDistribution, Filter, DEFAULT_VALUES_PER_FACET};
pub use self::new::matches::{FormatOptions, MatchBounds, Matcher, MatcherBuilder, MatchingWords};
use self::new::PartialSearchResult;
use crate::score_details::ScoreDetails;
use crate::{
execute_search, AscDesc, DefaultSearchLogger, DocumentId, Index, Result, SearchContext,
};
@ -93,7 +94,7 @@ impl<'a> Search<'a> {
self
}
/// Force the search to exhastivelly compute the number of candidates,
/// Forces the search to exhaustively compute the number of candidates,
/// this will increase the search time but allows finite pagination.
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
self.exhaustive_number_hits = exhaustive_number_hits;
@ -102,7 +103,7 @@ impl<'a> Search<'a> {
pub fn execute(&self) -> Result<SearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
let PartialSearchResult { located_query_terms, candidates, documents_ids } =
let PartialSearchResult { located_query_terms, candidates, documents_ids, document_scores } =
execute_search(
&mut ctx,
&self.query,
@ -124,7 +125,7 @@ impl<'a> Search<'a> {
None => MatchingWords::default(),
};
Ok(SearchResult { matching_words, candidates, documents_ids })
Ok(SearchResult { matching_words, candidates, document_scores, documents_ids })
}
}
@ -160,8 +161,8 @@ impl fmt::Debug for Search<'_> {
pub struct SearchResult {
pub matching_words: MatchingWords,
pub candidates: RoaringBitmap,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]

View File

@ -3,11 +3,13 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
use super::SearchContext;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput};
use crate::Result;
pub struct BucketSortOutput {
pub docids: Vec<u32>,
pub scores: Vec<Vec<ScoreDetails>>,
pub all_candidates: RoaringBitmap,
}
@ -31,7 +33,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
};
if universe.len() < from as u64 {
return Ok(BucketSortOutput { docids: vec![], all_candidates: universe.clone() });
return Ok(BucketSortOutput {
docids: vec![],
scores: vec![],
all_candidates: universe.clone(),
});
}
if ranking_rules.is_empty() {
if let Some(distinct_fid) = distinct_fid {
@ -49,22 +55,32 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
}
let mut all_candidates = universe - excluded;
all_candidates.extend(results.iter().copied());
return Ok(BucketSortOutput { docids: results, all_candidates });
return Ok(BucketSortOutput {
scores: vec![Default::default(); results.len()],
docids: results,
all_candidates,
});
} else {
let docids = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput { docids, all_candidates: universe.clone() });
let docids: Vec<u32> = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput {
scores: vec![Default::default(); docids.len()],
docids,
all_candidates: universe.clone(),
});
};
}
let ranking_rules_len = ranking_rules.len();
logger.start_iteration_ranking_rule(0, ranking_rules[0].as_ref(), query, universe);
ranking_rules[0].start_iteration(ctx, logger, universe, query)?;
let mut ranking_rule_scores: Vec<ScoreDetails> = vec![];
let mut ranking_rule_universes: Vec<RoaringBitmap> =
vec![RoaringBitmap::default(); ranking_rules_len];
ranking_rule_universes[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
/// Finish iterating over the current ranking rule, yielding
@ -89,11 +105,16 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
} else {
cur_ranking_rule_index -= 1;
}
// FIXME: check off by one
if ranking_rule_scores.len() > cur_ranking_rule_index {
ranking_rule_scores.pop();
}
};
}
let mut all_candidates = universe.clone();
let mut valid_docids = vec![];
let mut valid_scores = vec![];
let mut cur_offset = 0usize;
macro_rules! maybe_add_to_results {
@ -104,23 +125,23 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
length,
logger,
&mut valid_docids,
&mut valid_scores,
&mut all_candidates,
&mut ranking_rule_universes,
&mut ranking_rules,
cur_ranking_rule_index,
&mut cur_offset,
distinct_fid,
&ranking_rule_scores,
$candidates,
)?;
};
}
while valid_docids.len() < length {
// The universe for this bucket is zero or one element, so we don't need to sort
// anything, just extend the results and go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].len() <= 1 {
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
maybe_add_to_results!(bucket);
// The universe for this bucket is zero, so we don't need to sort
// anything, just go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].is_empty() {
back!();
continue;
}
@ -130,6 +151,8 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
continue;
};
ranking_rule_scores.push(next_bucket.score);
logger.next_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index].as_ref(),
@ -143,10 +166,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1
|| next_bucket.candidates.len() <= 1
|| cur_offset + (next_bucket.candidates.len() as usize) < from
{
maybe_add_to_results!(next_bucket.candidates);
// FIXME: use index based logic like all the other rules so that you don't have to maintain the pop/push?
ranking_rule_scores.pop();
continue;
}
@ -166,7 +190,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
)?;
}
Ok(BucketSortOutput { docids: valid_docids, all_candidates })
Ok(BucketSortOutput { docids: valid_docids, scores: valid_scores, all_candidates })
}
/// Add the candidates to the results. Take `distinct`, `from`, `length`, and `cur_offset`
@ -179,14 +203,18 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
logger: &mut dyn SearchLogger<Q>,
valid_docids: &mut Vec<u32>,
valid_scores: &mut Vec<Vec<ScoreDetails>>,
all_candidates: &mut RoaringBitmap,
ranking_rule_universes: &mut [RoaringBitmap],
ranking_rules: &mut [BoxRankingRule<'ctx, Q>],
cur_ranking_rule_index: usize,
cur_offset: &mut usize,
distinct_fid: Option<u16>,
ranking_rule_scores: &[ScoreDetails],
candidates: RoaringBitmap,
) -> Result<()> {
// First apply the distinct rule on the candidates, reducing the universes if necessary
@ -231,13 +259,17 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
let candidates =
candidates.iter().take(length - valid_docids.len()).copied().collect::<Vec<_>>();
logger.add_to_results(&candidates);
valid_docids.extend(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
}
} else {
// if we have passed the offset already, add some of the documents (up to the limit)
let candidates = candidates.iter().take(length - valid_docids.len()).collect::<Vec<u32>>();
logger.add_to_results(&candidates);
valid_docids.extend(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
}
*cur_offset += candidates.len() as usize;

View File

@ -26,6 +26,7 @@ pub fn apply_distinct_rule(
ctx: &mut SearchContext,
field_id: u16,
candidates: &RoaringBitmap,
// TODO: add a universe here, such that the `excluded` are a subset of the universe?
) -> Result<DistinctOutput> {
let mut excluded = RoaringBitmap::new();
let mut remaining = RoaringBitmap::new();

View File

@ -2,6 +2,7 @@ use roaring::{MultiOps, RoaringBitmap};
use super::query_graph::QueryGraph;
use super::ranking_rules::{RankingRule, RankingRuleOutput};
use crate::score_details::{self, ScoreDetails};
use crate::search::new::query_graph::QueryNodeData;
use crate::search::new::query_term::ExactTerm;
use crate::{Result, SearchContext, SearchLogger};
@ -206,7 +207,7 @@ impl State {
)?;
intersection &= &candidates;
if !intersection.is_empty() {
// Although not really worth it in terms of performance,
// TODO: although not really worth it in terms of performance,
// if would be good to put this in cache for the sake of consistency
let candidates_with_exact_word_count = if count_all_positions < u8::MAX as usize {
ctx.index
@ -244,7 +245,13 @@ impl State {
candidates &= universe;
(
State::AttributeStarts(query_graph.clone(), candidates_per_attribute),
Some(RankingRuleOutput { query: query_graph, candidates }),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesFull,
),
}),
)
}
State::AttributeStarts(query_graph, candidates_per_attribute) => {
@ -257,12 +264,24 @@ impl State {
candidates &= universe;
(
State::Empty(query_graph.clone()),
Some(RankingRuleOutput { query: query_graph, candidates }),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesStart,
),
}),
)
}
State::Empty(query_graph) => (
State::Empty(query_graph.clone()),
Some(RankingRuleOutput { query: query_graph, candidates: universe.clone() }),
Some(RankingRuleOutput {
query: query_graph,
candidates: universe.clone(),
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::NoExactMatch,
),
}),
),
};
(state, output)

View File

@ -8,6 +8,7 @@ use rstar::RTree;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::heed_codec::facet::{FieldDocIdFacetCodec, OrderedF64Codec};
use crate::score_details::{self, ScoreDetails};
use crate::{
distance_between_two_points, lat_lng_to_xyz, GeoPoint, Index, Result, SearchContext,
SearchLogger,
@ -80,7 +81,7 @@ pub struct GeoSort<Q: RankingRuleQueryTrait> {
field_ids: Option<[u16; 2]>,
rtree: Option<RTree<GeoPoint>>,
cached_sorted_docids: VecDeque<u32>,
cached_sorted_docids: VecDeque<(u32, [f64; 2])>,
geo_candidates: RoaringBitmap,
}
@ -130,7 +131,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&self.point);
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_back(point.data.0);
self.cached_sorted_docids.push_back(point.data);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@ -142,7 +143,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&opposite_of(self.point));
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_front(point.data.0);
self.cached_sorted_docids.push_front(point.data);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@ -177,7 +178,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
// computing the distance between two points is expensive thus we cache the result
documents
.sort_by_cached_key(|(_, p)| distance_between_two_points(&self.point, p) as usize);
self.cached_sorted_docids.extend(documents.into_iter().map(|(doc_id, _)| doc_id));
self.cached_sorted_docids.extend(documents.into_iter());
};
Ok(())
@ -220,12 +221,19 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
logger: &mut dyn SearchLogger<Q>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Q>>> {
assert!(universe.len() > 1);
let query = self.query.as_ref().unwrap().clone();
self.geo_candidates &= universe;
if self.geo_candidates.is_empty() {
return Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }));
return Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: None,
}),
}));
}
let ascending = self.ascending;
@ -236,11 +244,16 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
cache.pop_back()
}
};
while let Some(id) = next(&mut self.cached_sorted_docids) {
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
if self.geo_candidates.contains(id) {
return Ok(Some(RankingRuleOutput {
query,
candidates: RoaringBitmap::from_iter([id]),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: Some(point),
}),
}));
}
}

View File

@ -50,6 +50,7 @@ use super::ranking_rule_graph::{
};
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
use crate::score_details::Rank;
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::PathVisitor;
use crate::{Result, TermsMatchingStrategy};
@ -118,6 +119,8 @@ pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
all_costs: MappedInterner<QueryNode, Vec<u64>>,
/// An index in the first element of `all_distances`, giving the cost of the next bucket
cur_cost: u64,
/// One above the highest possible cost for this rule
next_max_cost: u64,
}
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
@ -139,13 +142,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
let mut forbidden_nodes =
SmallBitmap::for_interned_values_in(&query_graph.nodes);
let mut costs = query_graph.nodes.map(|_| None);
let mut cost = 100;
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
for ns in removal_order {
for n in ns.iter() {
*costs.get_mut(n) = Some((cost, forbidden_nodes.clone()));
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
}
forbidden_nodes.union(&ns);
cost += 100;
}
costs
}
@ -162,12 +164,16 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
// Then pre-compute the cost of all paths from each node to the end node
let all_costs = graph.find_all_costs_to_end();
let next_max_cost =
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0) + 1;
let state = GraphBasedRankingRuleState {
graph,
conditions_cache: condition_docids_cache,
dead_ends_cache,
all_costs,
cur_cost: 0,
next_max_cost,
};
self.state = Some(state);
@ -181,17 +187,13 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
logger: &mut dyn SearchLogger<QueryGraph>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
// If universe.len() <= 1, the bucket sort algorithm
// should not have called this function.
assert!(universe.len() > 1);
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
// should never happen
let mut state = self.state.take().unwrap();
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
// Retrieve the cost of the paths to compute
let Some(&cost) = state
.all_costs
.get(state.graph.query_graph.root_node)
let Some(&cost) = all_costs
.iter()
.find(|c| **c >= state.cur_cost) else {
self.state = None;
@ -207,8 +209,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
dead_ends_cache,
all_costs,
cur_cost: _,
next_max_cost,
} = &mut state;
let rank = *next_max_cost - cost;
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
let mut universe = universe.clone();
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
@ -325,7 +331,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
self.state = Some(state);
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket }))
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
}
fn end_iteration(

View File

@ -32,7 +32,7 @@ impl<T> Interned<T> {
#[derive(Clone)]
pub struct DedupInterner<T> {
stable_store: Vec<T>,
lookup: FxHashMap<T, Interned<T>>,
lookup: FxHashMap<T, Interned<T>>, // TODO: Arc
}
impl<T> Default for DedupInterner<T> {
fn default() -> Self {

View File

@ -1,4 +1,5 @@
/// Maximum number of tokens we consider in a single search.
// TODO: Loic, find proper value here so we don't overflow the interner.
pub const MAX_TOKEN_COUNT: usize = 1_000;
/// Maximum number of prefixes that can be derived from a single word.

View File

@ -44,6 +44,7 @@ use self::geo_sort::GeoSort;
pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::apply_distinct_rule;
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
@ -426,13 +427,15 @@ pub fn execute_search(
)?
};
let BucketSortOutput { docids, mut all_candidates } = bucket_sort_output;
let BucketSortOutput { docids, scores, mut all_candidates } = bucket_sort_output;
let fields_ids_map = ctx.index.fields_ids_map(ctx.txn)?;
// The candidates is the universe unless the exhaustive number of hits
// is requested and a distinct attribute is set.
if exhaustive_number_hits {
if let Some(f) = ctx.index.distinct_field(ctx.txn)? {
if let Some(distinct_fid) = ctx.index.fields_ids_map(ctx.txn)?.id(f) {
if let Some(distinct_fid) = fields_ids_map.id(f) {
all_candidates = apply_distinct_rule(ctx, distinct_fid, &all_candidates)?.remaining;
}
}
@ -440,6 +443,7 @@ pub fn execute_search(
Ok(PartialSearchResult {
candidates: all_candidates,
document_scores: scores,
documents_ids: docids,
located_query_terms,
})
@ -491,4 +495,5 @@ pub struct PartialSearchResult {
pub located_query_terms: Option<Vec<LocatedQueryTerm>>,
pub candidates: RoaringBitmap,
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}

View File

@ -92,7 +92,7 @@ impl QueryGraph {
/// which contains ngrams.
pub fn from_query(
ctx: &mut SearchContext,
// The terms here must be consecutive
// NOTE: the terms here must be consecutive
terms: &[LocatedQueryTerm],
) -> Result<(QueryGraph, Vec<LocatedQueryTerm>)> {
let mut new_located_query_terms = terms.to_vec();
@ -103,7 +103,7 @@ impl QueryGraph {
let root_node = 0;
let end_node = 1;
// Ee could consider generalizing to 4,5,6,7,etc. ngrams
// TODO: we could consider generalizing to 4,5,6,7,etc. ngrams
let (mut prev2, mut prev1, mut prev0): (Vec<u16>, Vec<u16>, Vec<u16>) =
(vec![], vec![], vec![root_node]);

View File

@ -132,6 +132,7 @@ impl QueryTermSubset {
if full_query_term.ngram_words.is_some() {
return None;
}
// TODO: included in subset
if let Some(phrase) = full_query_term.zero_typo.phrase {
self.zero_typo_subset.contains_phrase(phrase).then_some(ExactTerm::Phrase(phrase))
} else if let Some(word) = full_query_term.zero_typo.exact {
@ -181,6 +182,7 @@ impl QueryTermSubset {
let word = match &self.zero_typo_subset {
NTypoTermSubset::All => Some(use_prefix_db),
NTypoTermSubset::Subset { words, phrases: _ } => {
// TODO: use a subset of prefix words instead
if words.contains(&use_prefix_db) {
Some(use_prefix_db)
} else {
@ -202,6 +204,7 @@ impl QueryTermSubset {
ctx: &mut SearchContext,
) -> Result<BTreeSet<Word>> {
let mut result = BTreeSet::default();
// TODO: a compute_partially funtion
if !self.one_typo_subset.is_empty() || !self.two_typo_subset.is_empty() {
self.original.compute_fully_if_needed(ctx)?;
}
@ -297,6 +300,7 @@ impl QueryTermSubset {
let mut result = BTreeSet::default();
if !self.one_typo_subset.is_empty() {
// TODO: compute less than fully if possible
self.original.compute_fully_if_needed(ctx)?;
}
let original = ctx.term_interner.get_mut(self.original);

View File

@ -139,6 +139,7 @@ pub fn number_of_typos_allowed<'ctx>(
let min_len_one_typo = ctx.index.min_word_len_one_typo(ctx.txn)?;
let min_len_two_typos = ctx.index.min_word_len_two_typos(ctx.txn)?;
// TODO: should `exact_words` also disable prefix search, ngrams, split words, or synonyms?
let exact_words = ctx.index.exact_words(ctx.txn)?;
Ok(Box::new(move |word: &str| {
@ -249,6 +250,8 @@ impl PhraseBuilder {
} else {
// token has kind Word
let word = ctx.word_interner.insert(token.lemma().to_string());
// TODO: in a phrase, check that every word exists
// otherwise return an empty term
self.words.push(Some(word));
}
}

View File

@ -49,10 +49,15 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
if let Some((cost_of_ignoring, forbidden_nodes)) =
cost_of_ignoring_node.get(dest_idx)
{
let dest = graph_nodes.get(dest_idx);
let dest_size = match &dest.data {
QueryNodeData::Term(term) => term.term_ids.len(),
_ => panic!(),
};
let new_edge_id = edges_store.insert(Some(Edge {
source_node: source_id,
dest_node: dest_idx,
cost: *cost_of_ignoring,
cost: *cost_of_ignoring * dest_size as u32,
condition: None,
nodes_to_skip: forbidden_nodes.clone(),
}));

View File

@ -1,48 +1,5 @@
/** Implements a "PathVisitor" which finds all paths of a certain cost
from the START to END node of a ranking rule graph.
#![allow(clippy::too_many_arguments)]
A path is a list of conditions. A condition is the data associated with
an edge, given by the ranking rule. Some edges don't have a condition associated
with them, they are "unconditional". These kinds of edges are used to "skip" a node.
The algorithm uses a depth-first search. It benefits from two main optimisations:
- The list of all possible costs to go from any node to the END node is precomputed
- The `DeadEndsCache` reduces the number of valid paths drastically, by making some edges
untraversable depending on what other edges were selected.
These two optimisations are meant to avoid traversing edges that wouldn't lead
to a valid path. In practically all cases, we avoid the exponential complexity
that is inherent to depth-first search in a large ranking rule graph.
The DeadEndsCache is a sort of prefix tree which associates a list of forbidden
conditions to a list of traversed conditions.
For example, the DeadEndsCache could say the following:
- Immediately, from the start, the conditions `[a,b]` are forbidden
- if we take the condition `c`, then the conditions `[e]` are also forbidden
- and if after that, we take `f`, then `[h,i]` are also forbidden
- etc.
- if we take `g`, then `[f]` is also forbidden
- etc.
- etc.
As we traverse the graph, we also traverse the `DeadEndsCache` and keep a list of forbidden
conditions in memory. Then, we know to avoid all edges which have a condition that is forbidden.
When a path is found from START to END, we give it to the `visit` closure.
This closure takes a mutable reference to the `DeadEndsCache`. This means that
the caller can update this cache. Therefore, we must handle the case where the
DeadEndsCache has been updated. This means potentially backtracking up to the point
where the traversed conditions are all allowed by the new DeadEndsCache.
The algorithm also implements the `TermsMatchingStrategy` logic.
Some edges are augmented with a list of "nodes_to_skip". Skipping
a node means "reaching this node through an unconditional edge". If we have
already traversed (ie. not skipped) a node that is in this list, then we know that we
can't traverse this edge. Otherwise, we traverse the edge but make sure to skip any
future node that was present in the "nodes_to_skip" list.
The caller can decide to stop the path finding algorithm
by returning a `ControlFlow::Break` from the `visit` closure.
*/
use std::collections::{BTreeSet, VecDeque};
use std::iter::FromIterator;
use std::ops::ControlFlow;
@ -55,41 +12,30 @@ use crate::search::new::query_graph::QueryNode;
use crate::search::new::small_bitmap::SmallBitmap;
use crate::Result;
/// Closure which processes a path found by the `PathVisitor`
type VisitFn<'f, G> = &'f mut dyn FnMut(
// the path as a list of conditions
&[Interned<<G as RankingRuleGraphTrait>::Condition>],
&mut RankingRuleGraph<G>,
// a mutable reference to the DeadEndsCache, to update it in case the given
// path doesn't resolve to any valid document ids
&mut DeadEndsCache<<G as RankingRuleGraphTrait>::Condition>,
) -> Result<ControlFlow<()>>;
/// A structure which is kept but not updated during the traversal of the graph.
/// It can however be updated by the `visit` closure once a valid path has been found.
struct VisitorContext<'a, G: RankingRuleGraphTrait> {
graph: &'a mut RankingRuleGraph<G>,
all_costs_from_node: &'a MappedInterner<QueryNode, Vec<u64>>,
dead_ends_cache: &'a mut DeadEndsCache<G::Condition>,
}
/// The internal state of the traversal algorithm
struct VisitorState<G: RankingRuleGraphTrait> {
/// Budget from the current node to the end node
remaining_cost: u64,
/// Previously visited conditions, in order.
path: Vec<Interned<G::Condition>>,
/// Previously visited conditions, as an efficient and compact set.
visited_conditions: SmallBitmap<G::Condition>,
/// Previously visited (ie not skipped) nodes, as an efficient and compact set.
visited_nodes: SmallBitmap<QueryNode>,
/// The conditions that cannot be visited anymore
forbidden_conditions: SmallBitmap<G::Condition>,
/// The nodes that cannot be visited anymore (they must be skipped)
nodes_to_skip: SmallBitmap<QueryNode>,
forbidden_conditions_to_nodes: SmallBitmap<QueryNode>,
}
/// See module documentation
pub struct PathVisitor<'a, G: RankingRuleGraphTrait> {
state: VisitorState<G>,
ctx: VisitorContext<'a, G>,
@ -110,13 +56,14 @@ impl<'a, G: RankingRuleGraphTrait> PathVisitor<'a, G> {
forbidden_conditions: SmallBitmap::for_interned_values_in(
&graph.conditions_interner,
),
nodes_to_skip: SmallBitmap::for_interned_values_in(&graph.query_graph.nodes),
forbidden_conditions_to_nodes: SmallBitmap::for_interned_values_in(
&graph.query_graph.nodes,
),
},
ctx: VisitorContext { graph, all_costs_from_node, dead_ends_cache },
}
}
/// See module documentation
pub fn visit_paths(mut self, visit: VisitFn<G>) -> Result<()> {
let _ =
self.state.visit_node(self.ctx.graph.query_graph.root_node, visit, &mut self.ctx)?;
@ -125,31 +72,22 @@ impl<'a, G: RankingRuleGraphTrait> PathVisitor<'a, G> {
}
impl<G: RankingRuleGraphTrait> VisitorState<G> {
/// Visits a node: traverse all its valid conditional and unconditional edges.
///
/// Returns ControlFlow::Break if the path finding algorithm should stop.
/// Returns whether a valid path was found from this node otherwise.
fn visit_node(
&mut self,
from_node: Interned<QueryNode>,
visit: VisitFn<G>,
ctx: &mut VisitorContext<G>,
) -> Result<ControlFlow<(), bool>> {
// any valid path will be found from this point
// if a valid path was found, then we know that the DeadEndsCache may have been updated,
// and we will need to do more work to potentially backtrack
let mut any_valid = false;
let edges = ctx.graph.edges_of_node.get(from_node).clone();
for edge_idx in edges.iter() {
// could be none if the edge was deleted
let Some(edge) = ctx.graph.edges_store.get(edge_idx).clone() else { continue };
if self.remaining_cost < edge.cost as u64 {
continue;
}
self.remaining_cost -= edge.cost as u64;
let cf = match edge.condition {
Some(condition) => self.visit_condition(
condition,
@ -181,10 +119,6 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
Ok(ControlFlow::Continue(any_valid))
}
/// Visits an unconditional edge.
///
/// Returns ControlFlow::Break if the path finding algorithm should stop.
/// Returns whether a valid path was found from this node otherwise.
fn visit_no_condition(
&mut self,
dest_node: Interned<QueryNode>,
@ -200,29 +134,20 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
{
return Ok(ControlFlow::Continue(false));
}
// We've reached the END node!
if dest_node == ctx.graph.query_graph.end_node {
let control_flow = visit(&self.path, ctx.graph, ctx.dead_ends_cache)?;
// We could change the return type of the visit closure such that the caller
// tells us whether the dead ends cache was updated or not.
// Alternatively, maybe the DeadEndsCache should have a generation number
// to it, so that we don't need to play with these booleans at all.
match control_flow {
ControlFlow::Continue(_) => Ok(ControlFlow::Continue(true)),
ControlFlow::Break(_) => Ok(ControlFlow::Break(())),
}
} else {
let old_fbct = self.nodes_to_skip.clone();
self.nodes_to_skip.union(edge_new_nodes_to_skip);
let old_fbct = self.forbidden_conditions_to_nodes.clone();
self.forbidden_conditions_to_nodes.union(edge_new_nodes_to_skip);
let cf = self.visit_node(dest_node, visit, ctx)?;
self.nodes_to_skip = old_fbct;
self.forbidden_conditions_to_nodes = old_fbct;
Ok(cf)
}
}
/// Visits a conditional edge.
///
/// Returns ControlFlow::Break if the path finding algorithm should stop.
/// Returns whether a valid path was found from this node otherwise.
fn visit_condition(
&mut self,
condition: Interned<G::Condition>,
@ -234,7 +159,7 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
assert!(dest_node != ctx.graph.query_graph.end_node);
if self.forbidden_conditions.contains(condition)
|| self.nodes_to_skip.contains(dest_node)
|| self.forbidden_conditions_to_nodes.contains(dest_node)
|| edge_new_nodes_to_skip.intersects(&self.visited_nodes)
{
return Ok(ControlFlow::Continue(false));
@ -255,19 +180,19 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
self.visited_nodes.insert(dest_node);
self.visited_conditions.insert(condition);
let old_forb_cond = self.forbidden_conditions.clone();
let old_fc = self.forbidden_conditions.clone();
if let Some(next_forbidden) =
ctx.dead_ends_cache.forbidden_conditions_after_prefix(self.path.iter().copied())
{
self.forbidden_conditions.union(&next_forbidden);
}
let old_nodes_to_skip = self.nodes_to_skip.clone();
self.nodes_to_skip.union(edge_new_nodes_to_skip);
let old_fctn = self.forbidden_conditions_to_nodes.clone();
self.forbidden_conditions_to_nodes.union(edge_new_nodes_to_skip);
let cf = self.visit_node(dest_node, visit, ctx)?;
self.nodes_to_skip = old_nodes_to_skip;
self.forbidden_conditions = old_forb_cond;
self.forbidden_conditions_to_nodes = old_fctn;
self.forbidden_conditions = old_fc;
self.visited_conditions.remove(condition);
self.visited_nodes.remove(dest_node);

View File

@ -9,8 +9,12 @@ use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::SearchContext;
use crate::Result;
// TODO: give a generation to each universe, then be able to get the exact
// delta of docids between two universes of different generations!
/// A cache storing the document ids associated with each ranking rule edge
pub struct ConditionDocIdsCache<G: RankingRuleGraphTrait> {
// TOOD: should be a mapped interner?
pub cache: FxHashMap<Interned<G::Condition>, ComputedCondition>,
_phantom: PhantomData<G>,
}
@ -50,7 +54,7 @@ impl<G: RankingRuleGraphTrait> ConditionDocIdsCache<G> {
}
let condition = graph.conditions_interner.get_mut(interned_condition);
let computed = G::resolve_condition(ctx, condition, universe)?;
// Can we put an assert here for computed.universe_len == universe.len() ?
// TODO: if computed.universe_len != universe.len() ?
let _ = self.cache.insert(interned_condition, computed);
let computed = &self.cache[&interned_condition];
Ok(computed)

View File

@ -2,7 +2,6 @@ use crate::search::new::interner::{FixedSizeInterner, Interned};
use crate::search::new::small_bitmap::SmallBitmap;
pub struct DeadEndsCache<T> {
// conditions and next could/should be part of the same vector
conditions: Vec<Interned<T>>,
next: Vec<Self>,
pub forbidden: SmallBitmap<T>,
@ -28,7 +27,7 @@ impl<T> DeadEndsCache<T> {
self.forbidden.insert(condition);
}
fn advance(&mut self, condition: Interned<T>) -> Option<&mut Self> {
pub fn advance(&mut self, condition: Interned<T>) -> Option<&mut Self> {
if let Some(idx) = self.conditions.iter().position(|c| *c == condition) {
Some(&mut self.next[idx])
} else {

View File

@ -1,6 +1,7 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::{ExactTerm, LocatedQueryTermSubset};
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@ -84,4 +85,8 @@ impl RankingRuleGraphTrait for ExactnessGraph {
Ok(vec![(0, exact_condition), (dest_node.term_ids.len() as u32, skip_condition)])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Exactness(rank)
}
}

View File

@ -2,6 +2,7 @@ use fxhash::FxHashSet;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_field_id;
@ -68,13 +69,47 @@ impl RankingRuleGraphTrait for FidGraph {
}
let mut edges = vec![];
for fid in all_fields {
for fid in all_fields.iter().copied() {
// TODO: We can improve performances and relevancy by storing
// the term subsets associated to each field ids fetched.
edges.push((
fid as u32 * term.term_ids.len() as u32,
conditions_interner.insert(FidCondition { term: term.clone(), fid }),
fid as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
conditions_interner.insert(FidCondition {
term: term.clone(), // TODO remove this ugly clone
fid,
}),
));
}
// always lookup the max_fid if we don't already and add an artificial condition for max scoring
let max_fid: Option<u16> = {
if let Some(max_fid) = ctx
.index
.searchable_fields_ids(ctx.txn)?
.map(|field_ids| field_ids.into_iter().max())
{
max_fid
} else {
ctx.index.fields_ids_map(ctx.txn)?.ids().max()
}
};
if let Some(max_fid) = max_fid {
if !all_fields.contains(&max_fid) {
edges.push((
max_fid as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
conditions_interner.insert(FidCondition {
term: term.clone(), // TODO remove this ugly clone
fid: max_fid,
}),
));
}
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Fid(rank)
}
}

View File

@ -41,6 +41,7 @@ use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner
use super::query_term::LocatedQueryTermSubset;
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, QueryNode, SearchContext};
use crate::score_details::{Rank, ScoreDetails};
use crate::Result;
pub struct ComputedCondition {
@ -110,6 +111,9 @@ pub trait RankingRuleGraphTrait: Sized + 'static {
source_node: Option<&LocatedQueryTermSubset>,
dest_node: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>>;
/// Convert the rank of a path to its corresponding score for the ranking rule
fn rank_to_score(rank: Rank) -> ScoreDetails;
}
/// The graph used by graph-based ranking rules.

View File

@ -2,6 +2,7 @@ use fxhash::{FxHashMap, FxHashSet};
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_position;
@ -94,14 +95,31 @@ impl RankingRuleGraphTrait for PositionGraph {
let mut edges = vec![];
for (cost, positions) in positions_for_costs {
// TODO: We can improve performances and relevancy by storing
// the term subsets associated to each position fetched
edges.push((
cost,
conditions_interner.insert(PositionCondition { term: term.clone(), positions }),
conditions_interner.insert(PositionCondition {
term: term.clone(), // TODO remove this ugly clone
positions,
}),
));
}
// artificial empty condition for computing max cost
let max_cost = term.term_ids.len() as u32 * 10;
edges.push((
max_cost,
conditions_interner
.insert(PositionCondition { term: term.clone(), positions: Vec::default() }),
));
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Position(rank)
}
}
fn cost_from_position(sum_positions: u32) -> u32 {

View File

@ -65,6 +65,13 @@ pub fn compute_docids(
}
}
// TODO: add safeguard in case the cartesian product is too large!
// even if we restrict the word derivations to a maximum of 100, the size of the
// caterisan product could reach a maximum of 10_000 derivations, which is way too much.
// Maybe prioritise the product of zero typo derivations, then the product of zero-typo/one-typo
// + one-typo/zero-typo, then one-typo/one-typo, then ... until an arbitrary limit has been
// reached
for (left_phrase, left_word) in last_words_of_term_derivations(ctx, &left_term.term_subset)? {
// Before computing the edges, check that the left word and left phrase
// aren't disjoint with the universe, but only do it if there is more than
@ -104,6 +111,8 @@ pub fn compute_docids(
Ok(ComputedCondition {
docids,
universe_len: universe.len(),
// TODO: think about whether we want to reduce the subset,
// we probably should!
start_term_subset: Some(left_term.clone()),
end_term_subset: right_term.clone(),
})
@ -194,7 +203,12 @@ fn compute_non_prefix_edges(
*docids |= new_docids;
}
}
if backward_proximity >= 1 && left_phrase.is_none() && right_phrase.is_none() {
if backward_proximity >= 1
// TODO: for now, we don't do any swapping when either term is a phrase
// but maybe we should. We'd need to look at the first/last word of the phrase
// depending on the context.
&& left_phrase.is_none() && right_phrase.is_none()
{
if let Some(new_docids) =
ctx.get_db_word_pair_proximity_docids(word2, word1, backward_proximity)?
{

View File

@ -4,6 +4,7 @@ pub mod compute_docids;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::SearchContext;
@ -36,4 +37,8 @@ impl RankingRuleGraphTrait for ProximityGraph {
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
build::build_edges(ctx, conditions_interner, source_term, dest_term)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Proximity(rank)
}
}

View File

@ -1,6 +1,7 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@ -75,4 +76,8 @@ impl RankingRuleGraphTrait for TypoGraph {
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Typo(score_details::Typo::from_rank(rank))
}
}

View File

@ -1,6 +1,7 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@ -41,9 +42,10 @@ impl RankingRuleGraphTrait for WordsGraph {
_from: Option<&LocatedQueryTermSubset>,
to_term: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
Ok(vec![(
to_term.term_ids.len() as u32,
conditions_interner.insert(WordsCondition { term: to_term.clone() }),
)])
Ok(vec![(0, conditions_interner.insert(WordsCondition { term: to_term.clone() }))])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Words(score_details::Words::from_rank(rank))
}
}

View File

@ -2,6 +2,7 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{QueryGraph, SearchContext};
use crate::score_details::ScoreDetails;
use crate::Result;
/// An internal trait implemented by only [`PlaceholderQuery`] and [`QueryGraph`]
@ -66,4 +67,6 @@ pub struct RankingRuleOutput<Q> {
pub query: Q,
/// The allowed candidates for the child ranking rule
pub candidates: RoaringBitmap,
/// The score for the candidates of the current bucket
pub score: ScoreDetails,
}

View File

@ -33,6 +33,8 @@ pub fn compute_query_term_subset_docids(
ctx: &mut SearchContext,
term: &QueryTermSubset,
) -> Result<RoaringBitmap> {
// TODO Use the roaring::MultiOps trait
let mut docids = RoaringBitmap::new();
for word in term.all_single_words_except_prefix_db(ctx)? {
if let Some(word_docids) = ctx.word_docids(word)? {
@ -57,6 +59,8 @@ pub fn compute_query_term_subset_docids_within_field_id(
term: &QueryTermSubset,
fid: u16,
) -> Result<RoaringBitmap> {
// TODO Use the roaring::MultiOps trait
let mut docids = RoaringBitmap::new();
for word in term.all_single_words_except_prefix_db(ctx)? {
if let Some(word_fid_docids) = ctx.get_db_word_fid_docids(word.interned(), fid)? {
@ -67,6 +71,7 @@ pub fn compute_query_term_subset_docids_within_field_id(
for phrase in term.all_phrases(ctx)? {
// There may be false positives when resolving a phrase, so we're not
// guaranteed that all of its words are within a single fid.
// TODO: fix this?
if let Some(word) = phrase.words(ctx).iter().flatten().next() {
if let Some(word_fid_docids) = ctx.get_db_word_fid_docids(*word, fid)? {
docids |= ctx.get_phrase_docids(phrase)? & word_fid_docids;
@ -90,6 +95,7 @@ pub fn compute_query_term_subset_docids_within_position(
term: &QueryTermSubset,
position: u16,
) -> Result<RoaringBitmap> {
// TODO Use the roaring::MultiOps trait
let mut docids = RoaringBitmap::new();
for word in term.all_single_words_except_prefix_db(ctx)? {
if let Some(word_position_docids) =
@ -102,6 +108,7 @@ pub fn compute_query_term_subset_docids_within_position(
for phrase in term.all_phrases(ctx)? {
// It's difficult to know the expected position of the words in the phrase,
// so instead we just check the first one.
// TODO: fix this?
if let Some(word) = phrase.words(ctx).iter().flatten().next() {
if let Some(word_position_docids) = ctx.get_db_word_position_docids(*word, position)? {
docids |= ctx.get_phrase_docids(phrase)? & word_position_docids
@ -125,6 +132,9 @@ pub fn compute_query_graph_docids(
q: &QueryGraph,
universe: &RoaringBitmap,
) -> Result<RoaringBitmap> {
// TODO: there must be a faster way to compute this big
// roaring bitmap expression
let mut nodes_resolved = SmallBitmap::for_interned_values_in(&q.nodes);
let mut path_nodes_docids = q.nodes.map(|_| RoaringBitmap::new());

View File

@ -1,9 +1,11 @@
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait, SearchContext};
use crate::heed_codec::facet::FacetGroupKeyCodec;
use crate::heed_codec::ByteSliceRefCodec;
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
use crate::score_details::{self, ScoreDetails};
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
use crate::{FieldId, Index, Result};
@ -67,7 +69,7 @@ impl<'ctx, Query> Sort<'ctx, Query> {
impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx, Query> {
fn id(&self) -> String {
let Self { field_name, is_ascending, .. } = self;
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc " })
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc" })
}
fn start_iteration(
&mut self,
@ -118,12 +120,43 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
};
let number_iter = number_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::Number(
serde_json::Number::from_f64(
OrderedF64Codec::bytes_decode(bytes).expect("some number"),
)
.expect("too big float"),
),
))
});
let string_iter = string_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::String(
StrRefCodec::bytes_decode(bytes).expect("some string").to_owned(),
),
))
});
let query_graph = parent_query.clone();
let ascending = self.is_ascending;
let field_name = self.field_name.clone();
RankingRuleOutputIterWrapper::new(Box::new(number_iter.chain(string_iter).map(
move |r| {
let (docids, _) = r?;
Ok(RankingRuleOutput { query: query_graph.clone(), candidates: docids })
let (docids, value) = r?;
Ok(RankingRuleOutput {
query: query_graph.clone(),
candidates: docids,
score: ScoreDetails::Sort(score_details::Sort {
field_name: field_name.clone(),
ascending,
value,
}),
})
},
)))
}
@ -141,12 +174,24 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Query>>> {
let iter = self.iter.as_mut().unwrap();
// TODO: we should make use of the universe in the function below
// good for correctness, but ideally iter.next_bucket would take the current universe into account,
// as right now it could return buckets that don't intersect with the universe, meaning we will make many
// unneeded calls.
if let Some(mut bucket) = iter.next_bucket()? {
bucket.candidates &= universe;
Ok(Some(bucket))
} else {
let query = self.original_query.as_ref().unwrap().clone();
Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }))
Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::Sort(score_details::Sort {
field_name: self.field_name.clone(),
ascending: self.is_ascending,
value: serde_json::Value::Null,
}),
}))
}
}

View File

@ -527,7 +527,7 @@ fn test_distinct_all_candidates() {
let SearchResult { documents_ids, candidates, .. } = s.execute().unwrap();
let candidates = candidates.iter().collect::<Vec<_>>();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[14, 26, 4, 7, 17, 23, 1, 19, 25, 8, 20, 24]");
// This is incorrect, but unfortunately impossible to do better efficiently.
// TODO: this is incorrect!
insta::assert_snapshot!(format!("{candidates:?}"), @"[1, 4, 7, 8, 14, 17, 19, 20, 23, 24, 25, 26]");
}

View File

@ -122,11 +122,11 @@ fn create_edge_cases_index() -> TempIndex {
sta stb stc ste stf stg sth sti stj stk stl stm stn sto stp stq str stst stt stu stv stw stx sty stz
"
},
// The next 5 documents lay out a trap with the split word, phrase search, or synonym `sun flower`.
// If the search query is "sunflower", the split word "Sun Flower" will match some documents.
// The next 5 documents lay out a trap with the split word, phrase search, or synonym `sun flower`.
// If the search query is "sunflower", the split word "Sun Flower" will match some documents.
// If the query is `sunflower wilting`, then we should make sure that
// the proximity condition `flower wilting: sprx N` also comes with the condition
// `sun wilting: sprx N+1`, but this is not the exact condition we use for now.
// the sprximity condition `flower wilting: sprx N` also comes with the condition
// `sun wilting: sprx N+1`. TODO: this is not the exact condition we use for now.
// We only check that the phrase `sun flower` exists and `flower wilting: sprx N`, which
// is better than nothing but not the best.
{
@ -139,7 +139,7 @@ fn create_edge_cases_index() -> TempIndex {
},
{
"id": 3,
// This document matches the query `sunflower wilting`, but the sprximity condition
// This document matches the query `sunflower wilting`, but the sprximity condition
// between `sunflower` and `wilting` cannot be through the split-word `Sun Flower`
// which would reduce to only `flower` and `wilting` being in sprximity.
"text": "A flower wilting under the sun, unlike a sunflower"
@ -299,7 +299,7 @@ fn test_proximity_split_word() {
let SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 4, 5, 1, 3]");
let texts = collect_field_values(&index, &txn, "text", &documents_ids);
// "2" and "4" should be swapped ideally
// TODO: "2" and "4" should be swapped ideally
insta::assert_debug_snapshot!(texts, @r###"
[
"\"Sun Flower sounds like the title of a painting, maybe about a flower wilting under the heat.\"",
@ -316,7 +316,7 @@ fn test_proximity_split_word() {
let SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 4, 1]");
let texts = collect_field_values(&index, &txn, "text", &documents_ids);
// "2" and "4" should be swapped ideally
// TODO: "2" and "4" should be swapped ideally
insta::assert_debug_snapshot!(texts, @r###"
[
"\"Sun Flower sounds like the title of a painting, maybe about a flower wilting under the heat.\"",
@ -341,7 +341,7 @@ fn test_proximity_split_word() {
let SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 4, 1]");
let texts = collect_field_values(&index, &txn, "text", &documents_ids);
// "2" and "4" should be swapped ideally
// TODO: "2" and "4" should be swapped ideally
insta::assert_debug_snapshot!(texts, @r###"
[
"\"Sun Flower sounds like the title of a painting, maybe about a flower wilting under the heat.\"",

View File

@ -2,8 +2,9 @@
This module tests the interactions between the proximity and typo ranking rules.
The proximity ranking rule should transform the query graph such that it
only contains the word pairs that it used to compute its bucket, but this is not currently
implemented.
only contains the word pairs that it used to compute its bucket.
TODO: This is not currently implemented.
*/
use crate::index::tests::TempIndex;
@ -63,7 +64,7 @@ fn test_trap_basic() {
let SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[0, 1]");
let texts = collect_field_values(&index, &txn, "text", &documents_ids);
// This is incorrect, 1 should come before 0
// TODO: this is incorrect, 1 should come before 0
insta::assert_debug_snapshot!(texts, @r###"
[
"\"summer. holiday. sommer holidty\"",

View File

@ -571,8 +571,8 @@ fn test_typo_synonyms() {
s.terms_matching_strategy(TermsMatchingStrategy::All);
s.query("the fast brownish fox jumps over the lackadaisical dog");
// The interaction of ngrams + synonyms means that the multi-word synonyms end up having a typo cost.
// This is probably not what we want.
// TODO: is this correct? interaction of ngrams + synonyms means that the
// multi-word synonyms end up having a typo cost. This is probably not what we want.
let SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[21, 0, 22]");
let texts = collect_field_values(&index, &txn, "text", &documents_ids);

View File

@ -318,7 +318,7 @@ pub fn snap_field_distributions(index: &Index) -> String {
let rtxn = index.read_txn().unwrap();
let mut snap = String::new();
for (field, count) in index.field_distribution(&rtxn).unwrap() {
writeln!(&mut snap, "{field:<16} {count:<6} |").unwrap();
writeln!(&mut snap, "{field:<16} {count:<6}").unwrap();
}
snap
}
@ -328,7 +328,7 @@ pub fn snap_fields_ids_map(index: &Index) -> String {
let mut snap = String::new();
for field_id in fields_ids_map.ids() {
let name = fields_ids_map.name(field_id).unwrap();
writeln!(&mut snap, "{field_id:<3} {name:<16} |").unwrap();
writeln!(&mut snap, "{field_id:<3} {name:<16}").unwrap();
}
snap
}

View File

@ -1,7 +1,7 @@
---
source: milli/src/index.rs
---
age 1 |
id 2 |
name 2 |
age 1
id 2
name 2

View File

@ -1,7 +1,7 @@
---
source: milli/src/index.rs
---
age 1 |
id 2 |
name 2 |
age 1
id 2
name 2

View File

@ -71,6 +71,7 @@ impl std::fmt::Display for DeletionStrategy {
pub(crate) struct DetailedDocumentDeletionResult {
pub deleted_documents: u64,
pub remaining_documents: u64,
pub soft_deletion_used: bool,
}
impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
@ -107,8 +108,11 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
Some(docid)
}
pub fn execute(self) -> Result<DocumentDeletionResult> {
let DetailedDocumentDeletionResult { deleted_documents, remaining_documents } =
self.execute_inner()?;
let DetailedDocumentDeletionResult {
deleted_documents,
remaining_documents,
soft_deletion_used: _,
} = self.execute_inner()?;
Ok(DocumentDeletionResult { deleted_documents, remaining_documents })
}
@ -129,6 +133,7 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
return Ok(DetailedDocumentDeletionResult {
deleted_documents: 0,
remaining_documents: 0,
soft_deletion_used: false,
});
}
@ -144,6 +149,7 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
return Ok(DetailedDocumentDeletionResult {
deleted_documents: current_documents_ids_len,
remaining_documents,
soft_deletion_used: false,
});
}
@ -212,6 +218,7 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
return Ok(DetailedDocumentDeletionResult {
deleted_documents: self.to_delete_docids.len(),
remaining_documents: documents_ids.len(),
soft_deletion_used: true,
});
}
@ -434,6 +441,7 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
Ok(DetailedDocumentDeletionResult {
deleted_documents: self.to_delete_docids.len(),
remaining_documents: documents_ids.len(),
soft_deletion_used: false,
})
}

View File

@ -2,7 +2,7 @@ use std::sync::Arc;
use memmap2::Mmap;
/// Wrapper around Mmap allowing to virtually clone grenad-chunks
/// Wrapper around Mmap allowing to virtualy clone grenad-chunks
/// in a parallel process like the indexing.
#[derive(Debug, Clone)]
pub struct ClonableMmap {

View File

@ -236,7 +236,7 @@ where
primary_key,
fields_ids_map,
field_distribution,
new_external_documents_ids,
mut external_documents_ids,
new_documents_ids,
replaced_documents_ids,
documents_count,
@ -363,6 +363,9 @@ where
deletion_builder.delete_documents(&replaced_documents_ids);
let deleted_documents_result = deletion_builder.execute_inner()?;
debug!("{} documents actually deleted", deleted_documents_result.deleted_documents);
if !deleted_documents_result.soft_deletion_used {
external_documents_ids.delete_soft_deleted_documents_ids_from_fsts()?;
}
}
let index_documents_ids = self.index.documents_ids(self.wtxn)?;
@ -442,9 +445,6 @@ where
self.index.put_primary_key(self.wtxn, &primary_key)?;
// We write the external documents ids into the main database.
let mut external_documents_ids = self.index.external_documents_ids(self.wtxn)?;
external_documents_ids.insert_ids(&new_external_documents_ids)?;
let external_documents_ids = external_documents_ids.into_static();
self.index.put_external_documents_ids(self.wtxn, &external_documents_ids)?;
let all_documents_ids = index_documents_ids | new_documents_ids;
@ -2514,170 +2514,4 @@ mod tests {
db_snap!(index, word_fid_docids, 3, @"4c2e2a1832e5802796edc1638136d933");
db_snap!(index, word_position_docids, 3, @"74f556b91d161d997a89468b4da1cb8f");
}
#[test]
fn reproduce_the_bug() {
/*
[milli/examples/fuzz.rs:69] &batches = [
Batch(
[
AddDoc(
{ "id": 1, "doggo": "bernese" }, => internal 0
),
],
),
Batch(
[
DeleteDoc(
1, => delete internal 0
),
AddDoc(
{ "id": 0, "catto": "jorts" }, => internal 1
),
],
),
Batch(
[
AddDoc(
{ "id": 1, "catto": "jorts" }, => internal 2
),
],
),
]
*/
let mut index = TempIndex::new();
index.index_documents_config.deletion_strategy = DeletionStrategy::AlwaysHard;
// START OF BATCH
println!("--- ENTERING BATCH 1");
let mut wtxn = index.write_txn().unwrap();
let builder = IndexDocuments::new(
&mut wtxn,
&index,
&index.indexer_config,
index.index_documents_config.clone(),
|_| (),
|| false,
)
.unwrap();
// OP
let documents = documents!([
{ "id": 1, "doggo": "bernese" },
]);
let (builder, added) = builder.add_documents(documents).unwrap();
insta::assert_display_snapshot!(added.unwrap(), @"1");
// FINISHING
let addition = builder.execute().unwrap();
insta::assert_debug_snapshot!(addition, @r###"
DocumentAdditionResult {
indexed_documents: 1,
number_of_documents: 1,
}
"###);
wtxn.commit().unwrap();
db_snap!(index, documents, @r###"
{"id":1,"doggo":"bernese"}
"###);
db_snap!(index, external_documents_ids, @r###"
soft:
hard:
1 0
"###);
// A first batch of documents has been inserted
// BATCH 2
println!("--- ENTERING BATCH 2");
let mut wtxn = index.write_txn().unwrap();
let builder = IndexDocuments::new(
&mut wtxn,
&index,
&index.indexer_config,
index.index_documents_config.clone(),
|_| (),
|| false,
)
.unwrap();
let (builder, removed) = builder.remove_documents(vec![S("1")]).unwrap();
insta::assert_display_snapshot!(removed.unwrap(), @"1");
let documents = documents!([
{ "id": 0, "catto": "jorts" },
]);
let (builder, added) = builder.add_documents(documents).unwrap();
insta::assert_display_snapshot!(added.unwrap(), @"1");
let addition = builder.execute().unwrap();
insta::assert_debug_snapshot!(addition, @r###"
DocumentAdditionResult {
indexed_documents: 1,
number_of_documents: 1,
}
"###);
wtxn.commit().unwrap();
db_snap!(index, documents, @r###"
{"id":0,"catto":"jorts"}
"###);
db_snap!(index, external_documents_ids, @r###"
soft:
hard:
0 1
"###);
db_snap!(index, soft_deleted_documents_ids, @"[]");
// BATCH 3
println!("--- ENTERING BATCH 3");
let mut wtxn = index.write_txn().unwrap();
let builder = IndexDocuments::new(
&mut wtxn,
&index,
&index.indexer_config,
index.index_documents_config.clone(),
|_| (),
|| false,
)
.unwrap();
let documents = documents!([
{ "id": 1, "catto": "jorts" },
]);
let (builder, added) = builder.add_documents(documents).unwrap();
insta::assert_display_snapshot!(added.unwrap(), @"1");
let addition = builder.execute().unwrap();
insta::assert_debug_snapshot!(addition, @r###"
DocumentAdditionResult {
indexed_documents: 1,
number_of_documents: 2,
}
"###);
wtxn.commit().unwrap();
db_snap!(index, documents, @r###"
{"id":1,"catto":"jorts"}
{"id":0,"catto":"jorts"}
"###);
// Ensuring all the returned IDs actually exists
let rtxn = index.read_txn().unwrap();
let res = index.search(&rtxn).execute().unwrap();
index.documents(&rtxn, res.documents_ids).unwrap();
}
}

View File

@ -21,14 +21,15 @@ use crate::error::{Error, InternalError, UserError};
use crate::index::{db_name, main_key};
use crate::update::{AvailableDocumentsIds, ClearDocuments, UpdateIndexingStep};
use crate::{
FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldsIdsMap, Index, Result, BEU32,
ExternalDocumentsIds, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldsIdsMap, Index,
Result, BEU32,
};
pub struct TransformOutput {
pub primary_key: String,
pub fields_ids_map: FieldsIdsMap,
pub field_distribution: FieldDistribution,
pub new_external_documents_ids: fst::Map<Cow<'static, [u8]>>,
pub external_documents_ids: ExternalDocumentsIds<'static>,
pub new_documents_ids: RoaringBitmap,
pub replaced_documents_ids: RoaringBitmap,
pub documents_count: usize,
@ -567,6 +568,8 @@ impl<'a, 'i> Transform<'a, 'i> {
}))?
.to_string();
let mut external_documents_ids = self.index.external_documents_ids(wtxn)?;
// We create a final writer to write the new documents in order from the sorter.
let mut writer = create_writer(
self.indexer_settings.chunk_compression_type,
@ -648,12 +651,13 @@ impl<'a, 'i> Transform<'a, 'i> {
fst_new_external_documents_ids_builder.insert(key, value)
})?;
let new_external_documents_ids = fst_new_external_documents_ids_builder.into_map();
external_documents_ids.insert_ids(&new_external_documents_ids)?;
Ok(TransformOutput {
primary_key,
fields_ids_map: self.fields_ids_map,
field_distribution,
new_external_documents_ids: new_external_documents_ids.map_data(Cow::Owned).unwrap(),
external_documents_ids: external_documents_ids.into_static(),
new_documents_ids: self.new_documents_ids,
replaced_documents_ids: self.replaced_documents_ids,
documents_count: self.documents_count,
@ -687,8 +691,7 @@ impl<'a, 'i> Transform<'a, 'i> {
let new_external_documents_ids = {
let mut external_documents_ids = self.index.external_documents_ids(wtxn)?;
external_documents_ids.delete_soft_deleted_documents_ids_from_fsts()?;
// This call should be free and can't fail since the previous method merged both fsts.
external_documents_ids.into_static().to_fst()?.into_owned()
external_documents_ids
};
let documents_ids = self.index.documents_ids(wtxn)?;
@ -773,7 +776,7 @@ impl<'a, 'i> Transform<'a, 'i> {
primary_key,
fields_ids_map: new_fields_ids_map,
field_distribution,
new_external_documents_ids,
external_documents_ids: new_external_documents_ids.into_static(),
new_documents_ids: documents_ids,
replaced_documents_ids: RoaringBitmap::default(),
documents_count,