Compare commits

..

7 Commits

Author SHA1 Message Date
Kerollmops
1c77117d02 Make Clippy happy 2023-05-29 16:02:54 +02:00
Kerollmops
26dc415d9e Replace the BTreeMap by an IndexMap to return values in order 2023-05-29 15:47:45 +02:00
Kerollmops
89a4e7cee4 Expose a sortFacetValuesBy parameter to the user 2023-05-29 15:32:09 +02:00
Kerollmops
f2040e50b2 Clean and make the facet order configurable internally 2023-05-29 15:09:41 +02:00
Kerollmops
2b62e85622 Make the search to always return the facets ordered by count 2023-05-29 11:52:57 +02:00
Kerollmops
c13e3d5c8a First to-test version of the algorithm 2023-05-25 12:28:26 +02:00
Kerollmops
73a8018eb1 Rename facet distribution to be explicit on the order to find them 2023-05-25 10:59:04 +02:00
66 changed files with 1859 additions and 3192 deletions

View File

@@ -2,3 +2,4 @@ target
Dockerfile
.dockerignore
.gitignore
**/.git

View File

@@ -35,7 +35,7 @@ jobs:
- name: Build deb package
run: cargo deb -p meilisearch -o target/debian/meilisearch.deb
- name: Upload debian pkg to release
uses: svenstaro/upload-release-action@2.6.1
uses: svenstaro/upload-release-action@2.5.0
with:
repo_token: ${{ secrets.MEILI_BOT_GH_PAT }}
file: target/debian/meilisearch.deb

View File

@@ -54,7 +54,7 @@ jobs:
# No need to upload binaries for dry run (cron)
- name: Upload binaries to release
if: github.event_name == 'release'
uses: svenstaro/upload-release-action@2.6.1
uses: svenstaro/upload-release-action@2.5.0
with:
repo_token: ${{ secrets.MEILI_BOT_GH_PAT }}
file: target/release/meilisearch
@@ -87,7 +87,7 @@ jobs:
# No need to upload binaries for dry run (cron)
- name: Upload binaries to release
if: github.event_name == 'release'
uses: svenstaro/upload-release-action@2.6.1
uses: svenstaro/upload-release-action@2.5.0
with:
repo_token: ${{ secrets.MEILI_BOT_GH_PAT }}
file: target/release/${{ matrix.artifact_name }}
@@ -121,7 +121,7 @@ jobs:
- name: Upload the binary to release
# No need to upload binaries for dry run (cron)
if: github.event_name == 'release'
uses: svenstaro/upload-release-action@2.6.1
uses: svenstaro/upload-release-action@2.5.0
with:
repo_token: ${{ secrets.MEILI_BOT_GH_PAT }}
file: target/${{ matrix.target }}/release/meilisearch
@@ -183,7 +183,7 @@ jobs:
- name: Upload the binary to release
# No need to upload binaries for dry run (cron)
if: github.event_name == 'release'
uses: svenstaro/upload-release-action@2.6.1
uses: svenstaro/upload-release-action@2.5.0
with:
repo_token: ${{ secrets.MEILI_BOT_GH_PAT }}
file: target/${{ matrix.target }}/release/meilisearch

View File

@@ -58,9 +58,13 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
with:
platforms: linux/amd64,linux/arm64
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
platforms: linux/amd64,linux/arm64
- name: Login to Docker Hub
uses: docker/login-action@v2
@@ -88,10 +92,13 @@ jobs:
push: true
platforms: linux/amd64,linux/arm64
tags: ${{ steps.meta.outputs.tags }}
builder: ${{ steps.buildx.outputs.name }}
build-args: |
COMMIT_SHA=${{ github.sha }}
COMMIT_DATE=${{ steps.build-metadata.outputs.date }}
GIT_TAG=${{ github.ref_name }}
cache-from: type=gha
cache-to: type=gha,mode=max
# /!\ Don't touch this without checking with Cloud team
- name: Send CI information to Cloud team

View File

@@ -3,11 +3,6 @@ name: SDKs tests
on:
workflow_dispatch:
inputs:
docker_image:
description: 'The Meilisearch Docker image used'
required: false
default: nightly
schedule:
- cron: "0 6 * * MON" # Every Monday at 6:00AM
@@ -22,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -56,7 +51,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -82,7 +77,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -112,7 +107,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -136,7 +131,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -144,7 +139,7 @@ jobs:
- '7700:7700'
steps:
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v3
with:
go-version: stable
- uses: actions/checkout@v3
@@ -165,7 +160,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}
@@ -189,7 +184,7 @@ jobs:
runs-on: ubuntu-latest
services:
meilisearch:
image: getmeili/meilisearch:${{ github.event.inputs.docker_image }}
image: getmeili/meilisearch:nightly
env:
MEILI_MASTER_KEY: ${{ env.MEILI_MASTER_KEY }}
MEILI_NO_ANALYTICS: ${{ env.MEILI_NO_ANALYTICS }}

View File

@@ -43,7 +43,7 @@ jobs:
toolchain: nightly
override: true
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.4.0
uses: Swatinem/rust-cache@v2.2.1
- name: Run cargo check without any default features
uses: actions-rs/cargo@v1
with:
@@ -65,7 +65,7 @@ jobs:
steps:
- uses: actions/checkout@v3
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.4.0
uses: Swatinem/rust-cache@v2.2.1
- name: Run cargo check without any default features
uses: actions-rs/cargo@v1
with:
@@ -105,29 +105,6 @@ jobs:
command: test
args: --workspace --locked --release --all-features
test-disabled-tokenization:
name: Test disabled tokenization
runs-on: ubuntu-latest
container:
image: ubuntu:18.04
if: github.event_name == 'schedule'
steps:
- uses: actions/checkout@v3
- name: Install needed dependencies
run: |
apt-get update
apt-get install --assume-yes build-essential curl
- uses: actions-rs/toolchain@v1
with:
toolchain: stable
override: true
- name: Run cargo tree without default features and check lindera is not present
run: |
cargo tree -f '{p} {f}' -e normal --no-default-features | grep lindera -vqz
- name: Run cargo tree with default features and check lindera is pressent
run: |
cargo tree -f '{p} {f}' -e normal | grep lindera -qz
# We run tests in debug also, to make sure that the debug_assertions are hit
test-debug:
name: Run tests in debug
@@ -146,7 +123,7 @@ jobs:
toolchain: stable
override: true
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.4.0
uses: Swatinem/rust-cache@v2.2.1
- name: Run tests in debug
uses: actions-rs/cargo@v1
with:
@@ -165,7 +142,7 @@ jobs:
override: true
components: clippy
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.4.0
uses: Swatinem/rust-cache@v2.2.1
- name: Run cargo clippy
uses: actions-rs/cargo@v1
with:
@@ -184,7 +161,7 @@ jobs:
override: true
components: rustfmt
- name: Cache dependencies
uses: Swatinem/rust-cache@v2.4.0
uses: Swatinem/rust-cache@v2.2.1
- name: Run cargo fmt
# Since we never ran the `build.rs` script in the benchmark directory we are missing one auto-generated import file.
# Since we want to trigger (and fail) this action as fast as possible, instead of building the benchmark crate

1
Cargo.lock generated
View File

@@ -2730,6 +2730,7 @@ dependencies = [
"geoutils",
"grenad",
"heed",
"indexmap",
"insta",
"itertools",
"json-depth-checker",

View File

@@ -1,3 +1,4 @@
# syntax=docker/dockerfile:1.4
# Compile
FROM rust:alpine3.16 AS compiler
@@ -11,7 +12,7 @@ ARG GIT_TAG
ENV VERGEN_GIT_SHA=${COMMIT_SHA} VERGEN_GIT_COMMIT_TIMESTAMP=${COMMIT_DATE} VERGEN_GIT_SEMVER_LIGHTWEIGHT=${GIT_TAG}
ENV RUSTFLAGS="-C target-feature=-crt-static"
COPY . .
COPY --link . .
RUN set -eux; \
apkArch="$(apk --print-arch)"; \
if [ "$apkArch" = "aarch64" ]; then \
@@ -30,7 +31,7 @@ RUN apk update --quiet \
# add meilisearch to the `/bin` so you can run it from anywhere and it's easy
# to find.
COPY --from=compiler /meilisearch/target/release/meilisearch /bin/meilisearch
COPY --from=compiler --link /meilisearch/target/release/meilisearch /bin/meilisearch
# To stay compatible with the older version of the container (pre v0.27.0) we're
# going to symlink the meilisearch binary in the path to `/meilisearch`
RUN ln -s /bin/meilisearch /meilisearch

File diff suppressed because it is too large Load Diff

View File

@@ -1,19 +0,0 @@
global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.
# Attach these labels to any time series or alerts when communicating with
# external systems (federation, remote storage, Alertmanager).
external_labels:
monitor: 'codelab-monitor'
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'meilisearch'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:7700']

View File

@@ -1,131 +1,131 @@
# This file shows the default configuration of Meilisearch.
# All variables are defined here: https://www.meilisearch.com/docs/learn/configuration/instance_options#environment-variables
db_path = "./data.ms"
# Designates the location where database files will be created and retrieved.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#database-path
db_path = "./data.ms"
env = "development"
# Configures the instance's environment. Value must be either `production` or `development`.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#environment
env = "development"
# The address on which the HTTP server will listen.
http_addr = "localhost:7700"
# The address on which the HTTP server will listen.
# master_key = "YOUR_MASTER_KEY_VALUE"
# Sets the instance's master key, automatically protecting all routes except GET /health.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#master-key
# master_key = "YOUR_MASTER_KEY_VALUE"
# no_analytics = true
# Deactivates Meilisearch's built-in telemetry when provided.
# Meilisearch automatically collects data from all instances that do not opt out using this flag.
# All gathered data is used solely for the purpose of improving Meilisearch, and can be deleted at any time.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#disable-analytics
# no_analytics = true
http_payload_size_limit = "100 MB"
# Sets the maximum size of accepted payloads.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#payload-limit-size
http_payload_size_limit = "100 MB"
log_level = "INFO"
# Defines how much detail should be present in Meilisearch's logs.
# Meilisearch currently supports six log levels, listed in order of increasing verbosity: `OFF`, `ERROR`, `WARN`, `INFO`, `DEBUG`, `TRACE`
# https://www.meilisearch.com/docs/learn/configuration/instance_options#log-level
log_level = "INFO"
# max_indexing_memory = "2 GiB"
# Sets the maximum amount of RAM Meilisearch can use when indexing.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#max-indexing-memory
# max_indexing_memory = "2 GiB"
# max_indexing_threads = 4
# Sets the maximum number of threads Meilisearch can use during indexing.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#max-indexing-threads
# max_indexing_threads = 4
#############
### DUMPS ###
#############
dump_dir = "dumps/"
# Sets the directory where Meilisearch will create dump files.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#dump-directory
dump_dir = "dumps/"
# import_dump = "./path/to/my/file.dump"
# Imports the dump file located at the specified path. Path must point to a .dump file.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#import-dump
# import_dump = "./path/to/my/file.dump"
ignore_missing_dump = false
# Prevents Meilisearch from throwing an error when `import_dump` does not point to a valid dump file.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ignore-missing-dump
ignore_missing_dump = false
ignore_dump_if_db_exists = false
# Prevents a Meilisearch instance with an existing database from throwing an error when using `import_dump`.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ignore-dump-if-db-exists
ignore_dump_if_db_exists = false
#################
### SNAPSHOTS ###
#################
schedule_snapshot = false
# Enables scheduled snapshots when true, disable when false (the default).
# If the value is given as an integer, then enables the scheduled snapshot with the passed value as the interval
# between each snapshot, in seconds.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#schedule-snapshot-creation
schedule_snapshot = false
snapshot_dir = "snapshots/"
# Sets the directory where Meilisearch will store snapshots.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#snapshot-destination
snapshot_dir = "snapshots/"
# import_snapshot = "./path/to/my/snapshot"
# Launches Meilisearch after importing a previously-generated snapshot at the given filepath.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#import-snapshot
# import_snapshot = "./path/to/my/snapshot"
ignore_missing_snapshot = false
# Prevents a Meilisearch instance from throwing an error when `import_snapshot` does not point to a valid snapshot file.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ignore-missing-snapshot
ignore_missing_snapshot = false
ignore_snapshot_if_db_exists = false
# Prevents a Meilisearch instance with an existing database from throwing an error when using `import_snapshot`.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ignore-snapshot-if-db-exists
ignore_snapshot_if_db_exists = false
###########
### SSL ###
###########
# ssl_auth_path = "./path/to/root"
# Enables client authentication in the specified path.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-authentication-path
# ssl_auth_path = "./path/to/root"
# ssl_cert_path = "./path/to/certfile"
# Sets the server's SSL certificates.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-certificates-path
# ssl_cert_path = "./path/to/certfile"
# ssl_key_path = "./path/to/private-key"
# Sets the server's SSL key files.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-key-path
# ssl_key_path = "./path/to/private-key"
# ssl_ocsp_path = "./path/to/ocsp-file"
# Sets the server's OCSP file.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-ocsp-path
# ssl_ocsp_path = "./path/to/ocsp-file"
ssl_require_auth = false
# Makes SSL authentication mandatory.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-require-auth
ssl_require_auth = false
ssl_resumption = false
# Activates SSL session resumption.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-resumption
ssl_resumption = false
ssl_tickets = false
# Activates SSL tickets.
# https://www.meilisearch.com/docs/learn/configuration/instance_options#ssl-tickets
ssl_tickets = false
#############################
### Experimental features ###
#############################
experimental_enable_metrics = false
# Experimental metrics feature. For more information, see: <https://github.com/meilisearch/meilisearch/discussions/3518>
# Enables the Prometheus metrics on the `GET /metrics` endpoint.
experimental_enable_metrics = false
# Experimental RAM reduction during indexing, do not use in production, see: <https://github.com/meilisearch/product/discussions/652>
experimental_reduce_indexing_memory_usage = false
# Experimental RAM reduction during indexing, do not use in production, see: <https://github.com/meilisearch/product/discussions/652>

File diff suppressed because it is too large Load Diff

View File

@@ -90,17 +90,8 @@ pub enum IndexStatus {
pub struct IndexStats {
/// Number of documents in the index.
pub number_of_documents: u64,
/// Size taken up by the index' DB, in bytes.
///
/// This includes the size taken by both the used and free pages of the DB, and as the free pages
/// are not returned to the disk after a deletion, this number is typically larger than
/// `used_database_size` that only includes the size of the used pages.
/// Size of the index' DB, in bytes.
pub database_size: u64,
/// Size taken by the used pages of the index' DB, in bytes.
///
/// As the DB backend does not return to the disk the pages that are not currently used by the DB,
/// this value is typically smaller than `database_size`.
pub used_database_size: u64,
/// Association of every field name with the number of times it occurs in the documents.
pub field_distribution: FieldDistribution,
/// Creation date of the index.
@@ -116,10 +107,10 @@ impl IndexStats {
///
/// - rtxn: a RO transaction for the index, obtained from `Index::read_txn()`.
pub fn new(index: &Index, rtxn: &RoTxn) -> Result<Self> {
let database_size = index.on_disk_size()?;
Ok(IndexStats {
number_of_documents: index.number_of_documents(rtxn)?,
database_size: index.on_disk_size()?,
used_database_size: index.used_size()?,
database_size,
field_distribution: index.field_distribution(rtxn)?,
created_at: index.created_at(rtxn)?,
updated_at: index.updated_at(rtxn)?,

View File

@@ -31,7 +31,7 @@ mod uuid_codec;
pub type Result<T> = std::result::Result<T, Error>;
pub type TaskId = u32;
use std::collections::{BTreeMap, HashMap};
use std::collections::HashMap;
use std::ops::{Bound, RangeBounds};
use std::path::{Path, PathBuf};
use std::sync::atomic::AtomicBool;
@@ -573,16 +573,10 @@ impl IndexScheduler {
&self.index_mapper.indexer_config
}
/// Return the real database size (i.e.: The size **with** the free pages)
pub fn size(&self) -> Result<u64> {
Ok(self.env.real_disk_size()?)
}
/// Return the used database size (i.e.: The size **without** the free pages)
pub fn used_size(&self) -> Result<u64> {
Ok(self.env.non_free_pages_size()?)
}
/// Return the index corresponding to the name.
///
/// * If the index wasn't opened before, the index will be opened.
@@ -762,38 +756,6 @@ impl IndexScheduler {
Ok(tasks)
}
/// The returned structure contains:
/// 1. The name of the property being observed can be `statuses`, `types`, or `indexes`.
/// 2. The name of the specific data related to the property can be `enqueued` for the `statuses`, `settingsUpdate` for the `types`, or the name of the index for the `indexes`, for example.
/// 3. The number of times the properties appeared.
pub fn get_stats(&self) -> Result<BTreeMap<String, BTreeMap<String, u64>>> {
let rtxn = self.read_txn()?;
let mut res = BTreeMap::new();
res.insert(
"statuses".to_string(),
enum_iterator::all::<Status>()
.map(|s| Ok((s.to_string(), self.get_status(&rtxn, s)?.len())))
.collect::<Result<BTreeMap<String, u64>>>()?,
);
res.insert(
"types".to_string(),
enum_iterator::all::<Kind>()
.map(|s| Ok((s.to_string(), self.get_kind(&rtxn, s)?.len())))
.collect::<Result<BTreeMap<String, u64>>>()?,
);
res.insert(
"indexes".to_string(),
self.index_tasks
.iter(&rtxn)?
.map(|res| Ok(res.map(|(name, bitmap)| (name.to_string(), bitmap.len()))?))
.collect::<Result<BTreeMap<String, u64>>>()?,
);
Ok(res)
}
/// Return true iff there is at least one task associated with this index
/// that is processing.
pub fn is_index_processing(&self, index: &str) -> Result<bool> {

View File

@@ -466,7 +466,7 @@ impl IndexScheduler {
}
}
Details::DocumentDeletionByFilter { deleted_documents, original_filter: _ } => {
assert_eq!(kind.as_kind(), Kind::DocumentDeletion);
assert_eq!(kind.as_kind(), Kind::DocumentDeletionByFilter);
let (index_uid, _) = if let KindWithContent::DocumentDeletionByFilter {
ref index_uid,
ref filter_expr,

View File

@@ -45,11 +45,6 @@ impl AuthController {
self.store.size()
}
/// Return the used size of the `AuthController` database in bytes.
pub fn used_size(&self) -> Result<u64> {
self.store.used_size()
}
pub fn create_key(&self, create_key: CreateApiKey) -> Result<Key> {
match self.store.get_api_key(create_key.uid)? {
Some(_) => Err(AuthControllerError::ApiKeyAlreadyExists(create_key.uid.to_string())),

View File

@@ -75,11 +75,6 @@ impl HeedAuthStore {
Ok(self.env.real_disk_size()?)
}
/// Return the number of bytes actually used in the database
pub fn used_size(&self) -> Result<u64> {
Ok(self.env.non_free_pages_size()?)
}
pub fn set_drop_on_close(&mut self, v: bool) {
self.should_close_on_drop = v;
}

View File

@@ -236,13 +236,10 @@ InvalidSearchHighlightPreTag , InvalidRequest , BAD_REQUEST ;
InvalidSearchHitsPerPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchLimit , InvalidRequest , BAD_REQUEST ;
InvalidSearchMatchingStrategy , InvalidRequest , BAD_REQUEST ;
InvalidMultiSearchMergeStrategy , InvalidRequest , BAD_REQUEST ;
InvalidSearchOffset , InvalidRequest , BAD_REQUEST ;
InvalidSearchPage , InvalidRequest , BAD_REQUEST ;
InvalidSearchQ , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowMatchesPosition , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScore , InvalidRequest , BAD_REQUEST ;
InvalidSearchShowRankingScoreDetails , InvalidRequest , BAD_REQUEST ;
InvalidSearchSort , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDisplayedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDistinctAttribute , InvalidRequest , BAD_REQUEST ;

View File

@@ -395,6 +395,7 @@ impl std::error::Error for ParseTaskStatusError {}
pub enum Kind {
DocumentAdditionOrUpdate,
DocumentDeletion,
DocumentDeletionByFilter,
SettingsUpdate,
IndexCreation,
IndexDeletion,
@@ -411,6 +412,7 @@ impl Kind {
match self {
Kind::DocumentAdditionOrUpdate
| Kind::DocumentDeletion
| Kind::DocumentDeletionByFilter
| Kind::SettingsUpdate
| Kind::IndexCreation
| Kind::IndexDeletion
@@ -428,6 +430,7 @@ impl Display for Kind {
match self {
Kind::DocumentAdditionOrUpdate => write!(f, "documentAdditionOrUpdate"),
Kind::DocumentDeletion => write!(f, "documentDeletion"),
Kind::DocumentDeletionByFilter => write!(f, "documentDeletionByFilter"),
Kind::SettingsUpdate => write!(f, "settingsUpdate"),
Kind::IndexCreation => write!(f, "indexCreation"),
Kind::IndexDeletion => write!(f, "indexDeletion"),

View File

@@ -14,14 +14,27 @@ default-run = "meilisearch"
[dependencies]
actix-cors = "0.6.4"
actix-http = { version = "3.3.1", default-features = false, features = ["compress-brotli", "compress-gzip", "rustls"] }
actix-web = { version = "4.3.1", default-features = false, features = ["macros", "compress-brotli", "compress-gzip", "cookies", "rustls"] }
actix-http = { version = "3.3.1", default-features = false, features = [
"compress-brotli",
"compress-gzip",
"rustls",
] }
actix-web = { version = "4.3.1", default-features = false, features = [
"macros",
"compress-brotli",
"compress-gzip",
"cookies",
"rustls",
] }
actix-web-static-files = { git = "https://github.com/kilork/actix-web-static-files.git", rev = "2d3b6160", optional = true }
anyhow = { version = "1.0.70", features = ["backtrace"] }
async-stream = "0.3.5"
async-trait = "0.1.68"
bstr = "1.4.0"
byte-unit = { version = "4.0.19", default-features = false, features = ["std", "serde"] }
byte-unit = { version = "4.0.19", default-features = false, features = [
"std",
"serde",
] }
bytes = "1.4.0"
clap = { version = "4.2.1", features = ["derive", "env"] }
crossbeam-channel = "0.5.8"
@@ -56,7 +69,10 @@ prometheus = { version = "0.13.3", features = ["process"] }
rand = "0.8.5"
rayon = "1.7.0"
regex = "1.7.3"
reqwest = { version = "0.11.16", features = ["rustls-tls", "json"], default-features = false }
reqwest = { version = "0.11.16", features = [
"rustls-tls",
"json",
], default-features = false }
rustls = "0.20.8"
rustls-pemfile = "1.0.2"
segment = { version = "0.2.2", optional = true }
@@ -70,7 +86,12 @@ sysinfo = "0.28.4"
tar = "0.4.38"
tempfile = "3.5.0"
thiserror = "1.0.40"
time = { version = "0.3.20", features = ["serde-well-known", "formatting", "parsing", "macros"] }
time = { version = "0.3.20", features = [
"serde-well-known",
"formatting",
"parsing",
"macros",
] }
tokio = { version = "1.27.0", features = ["full"] }
tokio-stream = "0.1.12"
toml = "0.7.3"
@@ -89,7 +110,7 @@ brotli = "3.3.4"
insta = "1.29.0"
manifest-dir-macros = "0.1.16"
maplit = "1.0.2"
meili-snap = {path = "../meili-snap"}
meili-snap = { path = "../meili-snap" }
temp-env = "0.3.3"
urlencoding = "2.1.2"
yaup = "0.2.1"
@@ -98,7 +119,10 @@ yaup = "0.2.1"
anyhow = { version = "1.0.70", optional = true }
cargo_toml = { version = "0.15.2", optional = true }
hex = { version = "0.4.3", optional = true }
reqwest = { version = "0.11.16", features = ["blocking", "rustls-tls"], default-features = false, optional = true }
reqwest = { version = "0.11.16", features = [
"blocking",
"rustls-tls",
], default-features = false, optional = true }
sha-1 = { version = "0.10.1", optional = true }
static-files = { version = "0.2.3", optional = true }
tempfile = { version = "3.5.0", optional = true }
@@ -108,7 +132,17 @@ zip = { version = "0.6.4", optional = true }
[features]
default = ["analytics", "meilisearch-types/all-tokenizations", "mini-dashboard"]
analytics = ["segment"]
mini-dashboard = ["actix-web-static-files", "static-files", "anyhow", "cargo_toml", "hex", "reqwest", "sha-1", "tempfile", "zip"]
mini-dashboard = [
"actix-web-static-files",
"static-files",
"anyhow",
"cargo_toml",
"hex",
"reqwest",
"sha-1",
"tempfile",
"zip",
]
chinese = ["meilisearch-types/chinese"]
hebrew = ["meilisearch-types/hebrew"]
japanese = ["meilisearch-types/japanese"]

View File

@@ -4,32 +4,20 @@ use prometheus::{
register_int_gauge_vec, HistogramVec, IntCounterVec, IntGauge, IntGaugeVec,
};
/// Create evenly distributed buckets
fn create_buckets() -> [f64; 29] {
(0..10)
.chain((10..100).step_by(10))
.chain((100..=1000).step_by(100))
.map(|i| i as f64 / 1000.)
.collect::<Vec<_>>()
.try_into()
.unwrap()
}
const HTTP_RESPONSE_TIME_CUSTOM_BUCKETS: &[f64; 14] = &[
0.0005, 0.0008, 0.00085, 0.0009, 0.00095, 0.001, 0.00105, 0.0011, 0.00115, 0.0012, 0.0015,
0.002, 0.003, 1.0,
];
lazy_static! {
pub static ref HTTP_RESPONSE_TIME_CUSTOM_BUCKETS: [f64; 29] = create_buckets();
pub static ref MEILISEARCH_HTTP_REQUESTS_TOTAL: IntCounterVec = register_int_counter_vec!(
opts!("meilisearch_http_requests_total", "Meilisearch HTTP requests total"),
pub static ref HTTP_REQUESTS_TOTAL: IntCounterVec = register_int_counter_vec!(
opts!("http_requests_total", "HTTP requests total"),
&["method", "path"]
)
.expect("Can't create a metric");
pub static ref MEILISEARCH_DB_SIZE_BYTES: IntGauge =
register_int_gauge!(opts!("meilisearch_db_size_bytes", "Meilisearch DB Size In Bytes"))
register_int_gauge!(opts!("meilisearch_db_size_bytes", "Meilisearch Db Size In Bytes"))
.expect("Can't create a metric");
pub static ref MEILISEARCH_USED_DB_SIZE_BYTES: IntGauge = register_int_gauge!(opts!(
"meilisearch_used_db_size_bytes",
"Meilisearch Used DB Size In Bytes"
))
.expect("Can't create a metric");
pub static ref MEILISEARCH_INDEX_COUNT: IntGauge =
register_int_gauge!(opts!("meilisearch_index_count", "Meilisearch Index Count"))
.expect("Can't create a metric");
@@ -38,16 +26,11 @@ lazy_static! {
&["index"]
)
.expect("Can't create a metric");
pub static ref MEILISEARCH_HTTP_RESPONSE_TIME_SECONDS: HistogramVec = register_histogram_vec!(
pub static ref HTTP_RESPONSE_TIME_SECONDS: HistogramVec = register_histogram_vec!(
"http_response_time_seconds",
"HTTP response times",
&["method", "path"],
HTTP_RESPONSE_TIME_CUSTOM_BUCKETS.to_vec()
)
.expect("Can't create a metric");
pub static ref MEILISEARCH_NB_TASKS: IntGaugeVec = register_int_gauge_vec!(
opts!("meilisearch_nb_tasks", "Meilisearch Number of tasks"),
&["kind", "value"]
)
.expect("Can't create a metric");
}

View File

@@ -52,11 +52,11 @@ where
if is_registered_resource {
let request_method = req.method().to_string();
histogram_timer = Some(
crate::metrics::MEILISEARCH_HTTP_RESPONSE_TIME_SECONDS
crate::metrics::HTTP_RESPONSE_TIME_SECONDS
.with_label_values(&[&request_method, request_path])
.start_timer(),
);
crate::metrics::MEILISEARCH_HTTP_REQUESTS_TOTAL
crate::metrics::HTTP_REQUESTS_TOTAL
.with_label_values(&[&request_method, request_path])
.inc();
}

View File

@@ -16,9 +16,9 @@ use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_search, FacetValuesSort, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@@ -56,12 +56,10 @@ pub struct SearchQueryGet {
sort: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowMatchesPosition>)]
show_matches_position: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScore>)]
show_ranking_score: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchShowRankingScoreDetails>)]
show_ranking_score_details: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchFacets>)]
facets: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchFacets>)] // TODO
sort_facet_values_by: Option<FacetValuesSort>,
#[deserr( default = DEFAULT_HIGHLIGHT_PRE_TAG(), error = DeserrQueryParamError<InvalidSearchHighlightPreTag>)]
highlight_pre_tag: String,
#[deserr( default = DEFAULT_HIGHLIGHT_POST_TAG(), error = DeserrQueryParamError<InvalidSearchHighlightPostTag>)]
@@ -95,9 +93,8 @@ impl From<SearchQueryGet> for SearchQuery {
filter,
sort: other.sort.map(|attr| fix_sort_query_parameters(&attr)),
show_matches_position: other.show_matches_position.0,
show_ranking_score: other.show_ranking_score.0,
show_ranking_score_details: other.show_ranking_score_details.0,
facets: other.facets.map(|o| o.into_iter().collect()),
sort_facet_values_by: other.sort_facet_values_by,
highlight_pre_tag: other.highlight_pre_tag,
highlight_post_tag: other.highlight_post_tag,
crop_marker: other.crop_marker,

View File

@@ -17,7 +17,7 @@ pub fn configure(config: &mut web::ServiceConfig) {
pub async fn get_metrics(
index_scheduler: GuardedData<ActionPolicy<{ actions::METRICS_GET }>, Data<IndexScheduler>>,
auth_controller: Data<AuthController>,
auth_controller: GuardedData<ActionPolicy<{ actions::METRICS_GET }>, Data<AuthController>>,
) -> Result<HttpResponse, ResponseError> {
let auth_filters = index_scheduler.filters();
if !auth_filters.all_indexes_authorized() {
@@ -28,10 +28,10 @@ pub async fn get_metrics(
return Err(error);
}
let response = create_all_stats((*index_scheduler).clone(), auth_controller, auth_filters)?;
let response =
create_all_stats((*index_scheduler).clone(), (*auth_controller).clone(), auth_filters)?;
crate::metrics::MEILISEARCH_DB_SIZE_BYTES.set(response.database_size as i64);
crate::metrics::MEILISEARCH_USED_DB_SIZE_BYTES.set(response.used_database_size as i64);
crate::metrics::MEILISEARCH_INDEX_COUNT.set(response.indexes.len() as i64);
for (index, value) in response.indexes.iter() {
@@ -40,14 +40,6 @@ pub async fn get_metrics(
.set(value.number_of_documents as i64);
}
for (kind, value) in index_scheduler.get_stats()? {
for (value, count) in value {
crate::metrics::MEILISEARCH_NB_TASKS
.with_label_values(&[&kind, &value])
.set(count as i64);
}
}
let encoder = TextEncoder::new();
let mut buffer = vec![];
encoder.encode(&prometheus::gather(), &mut buffer).expect("Failed to encode metrics");

View File

@@ -231,8 +231,6 @@ pub async fn running() -> HttpResponse {
#[serde(rename_all = "camelCase")]
pub struct Stats {
pub database_size: u64,
#[serde(skip)]
pub used_database_size: u64,
#[serde(serialize_with = "time::serde::rfc3339::option::serialize")]
pub last_update: Option<OffsetDateTime>,
pub indexes: BTreeMap<String, indexes::IndexStats>,
@@ -261,7 +259,6 @@ pub fn create_all_stats(
let mut last_task: Option<OffsetDateTime> = None;
let mut indexes = BTreeMap::new();
let mut database_size = 0;
let mut used_database_size = 0;
for index_uid in index_scheduler.index_names()? {
// Accumulate the size of all indexes, even unauthorized ones, so
@@ -269,7 +266,6 @@ pub fn create_all_stats(
// See <https://github.com/meilisearch/meilisearch/pull/3541#discussion_r1126747643> for context.
let stats = index_scheduler.index_stats(&index_uid)?;
database_size += stats.inner_stats.database_size;
used_database_size += stats.inner_stats.used_database_size;
if !filters.is_index_authorized(&index_uid) {
continue;
@@ -282,14 +278,10 @@ pub fn create_all_stats(
}
database_size += index_scheduler.size()?;
used_database_size += index_scheduler.used_size()?;
database_size += auth_controller.size()?;
used_database_size += auth_controller.used_size()?;
let update_file_size = index_scheduler.compute_update_file_size()?;
database_size += update_file_size;
used_database_size += update_file_size;
database_size += index_scheduler.compute_update_file_size()?;
let stats = Stats { database_size, used_database_size, last_update: last_task, indexes };
let stats = Stats { database_size, last_update: last_task, indexes };
Ok(stats)
}

View File

@@ -1,26 +1,20 @@
use std::collections::HashMap;
use actix_http::StatusCode;
use actix_web::web::{self, Data};
use actix_web::{HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
use deserr::Deserr;
use index_scheduler::IndexScheduler;
use log::debug;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::InvalidMultiSearchMergeStrategy;
use meilisearch_types::error::ResponseError;
use meilisearch_types::keys::actions;
use meilisearch_types::milli::score_details::NotComparable;
use serde::Serialize;
use crate::analytics::{Analytics, MultiSearchAggregator};
use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler;
use crate::milli::score_details::ScoreDetails;
use crate::search::{
add_search_rules, perform_search, SearchHit, SearchQueryWithIndex, SearchResultWithIndex,
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@@ -29,34 +23,13 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
#[derive(Serialize)]
struct SearchResults {
#[serde(skip_serializing_if = "Option::is_none")]
aggregate_hits: Option<Vec<SearchHitWithIndex>>,
results: Vec<SearchResultWithIndex>,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
struct SearchHitWithIndex {
pub index_uid: String,
#[serde(flatten)]
pub hit: SearchHit,
}
#[derive(Debug, deserr::Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct SearchQueries {
queries: Vec<SearchQueryWithIndex>,
#[deserr(default, error = DeserrJsonError<InvalidMultiSearchMergeStrategy>, default)]
merge_strategy: MergeStrategy,
}
#[derive(Debug, Clone, PartialEq, Eq, Deserr, Default)]
#[deserr(rename_all = camelCase)]
pub enum MergeStrategy {
#[default]
None,
ByNormalizedScore,
ByScoreDetails,
}
pub async fn multi_search_with_post(
@@ -65,13 +38,7 @@ pub async fn multi_search_with_post(
req: HttpRequest,
analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let SearchQueries { queries, merge_strategy } = params.into_inner();
// FIXME: REMOVE UNWRAP
let max_hits = queries
.iter()
.map(|SearchQueryWithIndex { limit, hits_per_page, .. }| hits_per_page.unwrap_or(*limit))
.max()
.unwrap();
let queries = params.into_inner().queries;
let mut multi_aggregate = MultiSearchAggregator::from_queries(&queries, &req);
@@ -137,117 +104,7 @@ pub async fn multi_search_with_post(
debug!("returns: {:?}", search_results);
let aggregate_hits = match merge_strategy {
MergeStrategy::None => None,
MergeStrategy::ByScoreDetails => Some(merge_by_score_details(&search_results, max_hits)),
MergeStrategy::ByNormalizedScore => {
Some(merge_by_normalized_score(&search_results, max_hits))
}
};
Ok(HttpResponse::Ok().json(SearchResults { aggregate_hits, results: search_results }))
}
fn merge_by_score_details(
search_results: &[SearchResultWithIndex],
max_hits: usize,
) -> Vec<SearchHitWithIndex> {
let mut iterators: Vec<_> = search_results
.iter()
.filter_map(|SearchResultWithIndex { index_uid, result }| {
let mut it = result.hits.iter();
let next = it.next()?;
Some((index_uid, it, next))
})
.collect();
let mut hits = Vec::with_capacity(max_hits);
let mut inconsistent_indexes = HashMap::new();
for _ in 0..max_hits {
iterators.sort_by(|(left_uid, _, left_hit), (right_uid, _, right_hit)| {
let error = match ScoreDetails::partial_cmp_iter(
left_hit.ranking_score_raw.iter(),
right_hit.ranking_score_raw.iter(),
) {
Ok(ord) => return ord,
Err(NotComparable(incomparable_index)) => incomparable_index,
};
inconsistent_indexes.entry((left_uid.to_owned(), right_uid.to_owned())).or_insert_with(
|| {
format!(
"Detailed score {:?} is not comparable with {:?}: (left: {:#?}, right: {:#?})",
left_hit.ranking_score_raw.get(error),
right_hit.ranking_score_raw.get(error),
left_hit.ranking_score_raw,
right_hit.ranking_score_raw
)
},
);
std::cmp::Ordering::Less
});
if !inconsistent_indexes.is_empty() {
let mut s = String::new();
for ((left_uid, right_uid), error) in &inconsistent_indexes {
use std::fmt::Write;
writeln!(s, "Indexes {} and {} are inconsistent: {}", left_uid, right_uid, error)
.unwrap();
}
// Replace panic with proper error
panic!("{}", s);
}
let Some((index_uid, it, next)) = iterators.last_mut()
else {
break;
};
let hit = SearchHitWithIndex { index_uid: index_uid.clone(), hit: next.clone() };
if let Some(next_hit) = it.next() {
*next = next_hit;
} else {
iterators.pop();
}
hits.push(hit);
}
hits
}
fn merge_by_normalized_score(
search_results: &[SearchResultWithIndex],
max_hits: usize,
) -> Vec<SearchHitWithIndex> {
let mut iterators: Vec<_> = search_results
.iter()
.filter_map(|SearchResultWithIndex { index_uid, result }| {
let mut it = result.hits.iter();
let next = it.next()?;
Some((index_uid, it, next))
})
.collect();
let mut hits = Vec::with_capacity(max_hits);
for _ in 0..max_hits {
iterators.sort_by_key(|(_, _, hit)| {
ScoreDetails::global_score_linear_scale(hit.ranking_score_raw.iter())
});
let Some((index_uid, it, next)) = iterators.last_mut()
else {
break;
};
let hit = SearchHitWithIndex { index_uid: index_uid.clone(), hit: next.clone() };
if let Some(next_hit) = it.next() {
*next = next_hit;
} else {
iterators.pop();
}
hits.push(hit);
}
hits
Ok(HttpResponse::Ok().json(SearchResults { results: search_results }))
}
/// Local `Result` extension trait to avoid `map_err` boilerplate.

View File

@@ -730,7 +730,7 @@ mod tests {
let err = deserr_query_params::<TaskDeletionOrCancelationQuery>(params).unwrap_err();
snapshot!(meili_snap::json_string!(err), @r###"
{
"message": "Invalid value in parameter `types`: `createIndex` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"message": "Invalid value in parameter `types`: `createIndex` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `documentDeletionByFilter`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"code": "invalid_task_types",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_task_types"

View File

@@ -5,11 +5,12 @@ use std::time::Instant;
use deserr::Deserr;
use either::Either;
use indexmap::IndexMap;
use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::ScoreDetails;
use meilisearch_types::milli::OrderBy;
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
@@ -55,16 +56,14 @@ pub struct SearchQuery {
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchSort>)]
pub sort: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFacets>)]
pub facets: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFacets>)] // TODO
pub sort_facet_values_by: Option<FacetValuesSort>,
#[deserr(default, error = DeserrJsonError<InvalidSearchHighlightPreTag>, default = DEFAULT_HIGHLIGHT_PRE_TAG())]
pub highlight_pre_tag: String,
#[deserr(default, error = DeserrJsonError<InvalidSearchHighlightPostTag>, default = DEFAULT_HIGHLIGHT_POST_TAG())]
@@ -108,10 +107,6 @@ pub struct SearchQueryWithIndex {
pub crop_length: usize,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToHighlight>)]
pub attributes_to_highlight: Option<HashSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowMatchesPosition>, default)]
pub show_matches_position: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
@@ -120,6 +115,8 @@ pub struct SearchQueryWithIndex {
pub sort: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFacets>)]
pub facets: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFacets>)] // TODO
pub sort_facet_values_by: Option<FacetValuesSort>,
#[deserr(default, error = DeserrJsonError<InvalidSearchHighlightPreTag>, default = DEFAULT_HIGHLIGHT_PRE_TAG())]
pub highlight_pre_tag: String,
#[deserr(default, error = DeserrJsonError<InvalidSearchHighlightPostTag>, default = DEFAULT_HIGHLIGHT_POST_TAG())]
@@ -143,12 +140,11 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
facets,
sort_facet_values_by,
highlight_pre_tag,
highlight_post_tag,
crop_marker,
@@ -166,12 +162,11 @@ impl SearchQueryWithIndex {
attributes_to_crop,
crop_length,
attributes_to_highlight,
show_ranking_score,
show_ranking_score_details,
show_matches_position,
filter,
sort,
facets,
sort_facet_values_by,
highlight_pre_tag,
highlight_post_tag,
crop_marker,
@@ -207,7 +202,27 @@ impl From<MatchingStrategy> for TermsMatchingStrategy {
}
}
#[derive(Debug, Clone, Serialize, PartialEq)]
#[derive(Debug, Default, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum FacetValuesSort {
/// Facet values are sorted in alphabetical order, ascending from A to Z.
#[default]
Alpha,
/// Facet values are sorted by decreasing count.
/// The count is the number of records containing this facet value in the results of the query.
Count,
}
impl From<FacetValuesSort> for OrderBy {
fn from(val: FacetValuesSort) -> Self {
match val {
FacetValuesSort::Alpha => OrderBy::Lexicographic,
FacetValuesSort::Count => OrderBy::Count,
}
}
}
#[derive(Debug, Clone, Serialize, PartialEq, Eq)]
pub struct SearchHit {
#[serde(flatten)]
pub document: Document,
@@ -215,12 +230,6 @@ pub struct SearchHit {
pub formatted: Document,
#[serde(rename = "_matchesPosition", skip_serializing_if = "Option::is_none")]
pub matches_position: Option<MatchesPosition>,
#[serde(rename = "_rankingScore", skip_serializing_if = "Option::is_none")]
pub ranking_score: Option<u64>,
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
#[serde(skip)]
pub ranking_score_raw: Vec<ScoreDetails>,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
@@ -232,7 +241,7 @@ pub struct SearchResult {
#[serde(flatten)]
pub hits_info: HitsInfo,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_distribution: Option<BTreeMap<String, BTreeMap<String, u64>>>,
pub facet_distribution: Option<BTreeMap<String, IndexMap<String, u64>>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub facet_stats: Option<BTreeMap<String, FacetStats>>,
}
@@ -339,8 +348,7 @@ pub fn perform_search(
search.sort_criteria(sort);
}
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
search.execute()?;
let milli::SearchResult { documents_ids, matching_words, candidates, .. } = search.execute()?;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@@ -412,7 +420,7 @@ pub fn perform_search(
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
for (_id, obkv) in documents_iter {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
@@ -436,19 +444,7 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document);
}
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score_linear_scale(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted,
matches_position,
ranking_score_details,
ranking_score,
ranking_score_raw: score,
};
let hit = SearchHit { document, formatted, matches_position };
documents.push(hit);
}
@@ -483,7 +479,10 @@ pub fn perform_search(
if fields.iter().all(|f| f != "*") {
facet_distribution.facets(fields);
}
let distribution = facet_distribution.candidates(candidates).execute()?;
let distribution = facet_distribution
.candidates(candidates)
.order_by(query.sort_facet_values_by.map_or_else(Default::default, Into::into))
.execute()?;
let stats = facet_distribution.compute_stats()?;
(Some(distribution), Some(stats))
}

View File

@@ -1,4 +1,3 @@
use insta::{allow_duplicates, assert_json_snapshot};
use serde_json::json;
use super::*;
@@ -19,45 +18,30 @@ async fn formatted_contain_wildcard() {
|response, code|
{
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
},
"_rankingScore": "[score]"
}
"###);
}
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
"cattos": "<em>pésti</em>",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
})
);
})
.await;
@@ -66,30 +50,20 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToHighlight": ["id"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_matchesPosition": {
"cattos": [
{
"start": 0,
"length": 5
}
]
},
"_rankingScore": "[score]"
}
"###)
}
})
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
},
"_matchesPosition": {"cattos": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
index
@@ -97,21 +71,17 @@ async fn formatted_contain_wildcard() {
json!({ "q": "pésti", "attributesToRetrieve": ["*"], "attributesToCrop": ["*"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_rankingScore": "[score]"
}
"###);
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
},
)
.await;
@@ -119,21 +89,17 @@ async fn formatted_contain_wildcard() {
index
.search(json!({ "q": "pésti", "attributesToCrop": ["*"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"cattos": "pésti",
"_formatted": {
"id": "852",
"cattos": "pésti",
}
})
);
})
.await;
}
@@ -150,25 +116,21 @@ async fn format_nested() {
index
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby",
"age": 2
},
{
"name": "buddy",
"age": 4
}
],
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": 2,
},
{
"name": "buddy",
"age": 4,
},
],
})
);
})
.await;
@@ -177,23 +139,19 @@ async fn format_nested() {
json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
})
);
},
)
.await;
@@ -203,31 +161,20 @@ async fn format_nested() {
json!({ "q": "bobby", "attributesToRetrieve": ["doggos.name"], "showMatchesPosition": true }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_matchesPosition": {
"doggos.name": [
{
"start": 0,
"length": 5
}
]
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_matchesPosition": {"doggos.name": [{"start": 0, "length": 5}]},
})
);
}
)
.await;
@@ -236,25 +183,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -262,25 +205,21 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
]
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"name": "bobby",
},
{
"name": "buddy",
},
],
},
})
);
})
.await;
@@ -288,63 +227,55 @@ async fn format_nested() {
.search(json!({ "q": "pésti", "attributesToRetrieve": ["doggos.name"], "attributesToHighlight": ["doggos.age"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"doggos": [
{
"name": "bobby"
},
{
"name": "buddy"
}
],
"_formatted": {
assert_eq!(
response["hits"][0],
json!({
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
},
"_rankingScore": "[score]"
}
"###)
}
})
{
"name": "bobby",
},
{
"name": "buddy",
},
],
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
})
.await;
index
.search(json!({ "q": "pésti", "attributesToRetrieve": [], "attributesToHighlight": ["doggos.age"], "attributesToCrop": ["doggos.name"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"doggos": [
{
"_formatted": {
"doggos": [
{
"name": "bobby",
"age": "2"
},
{
"name": "buddy",
"age": "4"
}
]
},
"_rankingScore": "[score]"
}
"###)
}
"name": "bobby",
"age": "2",
},
{
"name": "buddy",
"age": "4",
},
],
},
})
);
}
)
.await;
@@ -366,70 +297,54 @@ async fn displayedattr_2_smol() {
.search(json!({ "attributesToRetrieve": ["father", "id"], "attributesToHighlight": ["mother"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToHighlight": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["id"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
})
.await;
@@ -438,19 +353,15 @@ async fn displayedattr_2_smol() {
json!({ "attributesToHighlight": ["id"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_formatted": {
"id": "852"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -458,47 +369,31 @@ async fn displayedattr_2_smol() {
index
.search(json!({ "attributesToHighlight": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToCrop": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"id": 852,
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"id": 852,
})
);
})
.await;
index
.search(json!({ "attributesToRetrieve": ["cattos"] }), |response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(response["hits"][0], json!({}));
})
.await;
@@ -507,15 +402,7 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["cattos"], "attributesToCrop": ["cattos"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(response["hits"][0], json!({}));
}
)
@@ -526,18 +413,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToHighlight": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;
@@ -547,18 +430,14 @@ async fn displayedattr_2_smol() {
json!({ "attributesToRetrieve": ["cattos"], "attributesToCrop": ["id"] }),
|response, code| {
assert_eq!(code, 200, "{}", response);
allow_duplicates! {
assert_json_snapshot!(response["hits"][0],
{ "._rankingScore" => "[score]" },
@r###"
{
"_formatted": {
"id": "852"
},
"_rankingScore": "[score]"
}
"###)
}
assert_eq!(
response["hits"][0],
json!({
"_formatted": {
"id": "852",
}
})
);
},
)
.await;

View File

@@ -65,15 +65,14 @@ async fn simple_search_single_index() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",
"hits": [
{
"title": "Gläss",
"id": "450465",
"_rankingScore": "[score]"
"id": "450465"
}
],
"query": "glass",
@@ -87,8 +86,7 @@ async fn simple_search_single_index() {
"hits": [
{
"title": "Captain Marvel",
"id": "299537",
"_rankingScore": "[score]"
"id": "299537"
}
],
"query": "captain",
@@ -172,15 +170,14 @@ async fn simple_search_two_indexes() {
]}))
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]", ".**._rankingScore" => "[score]" }, @r###"
insta::assert_json_snapshot!(response["results"], { "[].processingTimeMs" => "[time]" }, @r###"
[
{
"indexUid": "test",
"hits": [
{
"title": "Gläss",
"id": "450465",
"_rankingScore": "[score]"
"id": "450465"
}
],
"query": "glass",
@@ -206,8 +203,7 @@ async fn simple_search_two_indexes() {
"age": 4
}
],
"cattos": "pésti",
"_rankingScore": "[score]"
"cattos": "pésti"
},
{
"id": 654,
@@ -222,8 +218,7 @@ async fn simple_search_two_indexes() {
"cattos": [
"simba",
"pestiféré"
],
"_rankingScore": "[score]"
]
}
],
"query": "pésti",

View File

@@ -97,7 +97,7 @@ async fn task_bad_types() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `documentDeletionByFilter`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"code": "invalid_task_types",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_task_types"
@@ -108,7 +108,7 @@ async fn task_bad_types() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `documentDeletionByFilter`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"code": "invalid_task_types",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_task_types"
@@ -119,7 +119,7 @@ async fn task_bad_types() {
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"message": "Invalid value in parameter `types`: `doggo` is not a valid task type. Available types are `documentAdditionOrUpdate`, `documentDeletion`, `documentDeletionByFilter`, `settingsUpdate`, `indexCreation`, `indexDeletion`, `indexUpdate`, `indexSwap`, `taskCancelation`, `taskDeletion`, `dumpCreation`, `snapshotCreation`.",
"code": "invalid_task_types",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_task_types"

View File

@@ -32,6 +32,7 @@ heed = { git = "https://github.com/meilisearch/heed", tag = "v0.12.6", default-f
"lmdb",
"sync-read-txn",
] }
indexmap = { version = "1.9.3", features = ["serde"] }
json-depth-checker = { path = "../json-depth-checker" }
levenshtein_automata = { version = "0.2.1", features = ["fst_automaton"] }
memmap2 = "0.5.10"

View File

@@ -49,7 +49,7 @@ impl CboRoaringBitmapCodec {
} else {
// Otherwise, it means we used the classic RoaringBitmapCodec and
// that the header takes threshold integers.
RoaringBitmap::deserialize_unchecked_from(bytes)
RoaringBitmap::deserialize_from(bytes)
}
}
@@ -69,7 +69,7 @@ impl CboRoaringBitmapCodec {
vec.push(integer);
}
} else {
roaring |= RoaringBitmap::deserialize_unchecked_from(bytes.as_ref())?;
roaring |= RoaringBitmap::deserialize_from(bytes.as_ref())?;
}
}

View File

@@ -8,7 +8,7 @@ impl heed::BytesDecode<'_> for RoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode(bytes: &[u8]) -> Option<Self::DItem> {
RoaringBitmap::deserialize_unchecked_from(bytes).ok()
RoaringBitmap::deserialize_from(bytes).ok()
}
}

View File

@@ -21,9 +21,10 @@ use crate::heed_codec::facet::{
};
use crate::heed_codec::{ScriptLanguageCodec, StrBEU16Codec, StrRefCodec};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec,
Result, RoaringBitmapCodec, RoaringBitmapLenCodec, Search, U8StrStrCodec, BEU16, BEU32,
default_criteria, BEU32StrCodec, BoRoaringBitmapCodec, CboRoaringBitmapCodec, Criterion,
DocumentId, ExternalDocumentsIds, FacetDistribution, FieldDistribution, FieldId,
FieldIdWordCountCodec, GeoPoint, ObkvCodec, Result, RoaringBitmapCodec, RoaringBitmapLenCodec,
Search, U8StrStrCodec, BEU16, BEU32,
};
pub const DEFAULT_MIN_WORD_LEN_ONE_TYPO: u8 = 5;
@@ -110,6 +111,9 @@ pub struct Index {
/// A prefix of word and all the documents ids containing this prefix, from attributes for which typos are not allowed.
pub exact_word_prefix_docids: Database<Str, RoaringBitmapCodec>,
/// Maps a word and a document id (u32) to all the positions where the given word appears.
pub docid_word_positions: Database<BEU32StrCodec, BoRoaringBitmapCodec>,
/// Maps the proximity between a pair of words with all the docids where this relation appears.
pub word_pair_proximity_docids: Database<U8StrStrCodec, CboRoaringBitmapCodec>,
/// Maps the proximity between a pair of word and prefix with all the docids where this relation appears.
@@ -173,6 +177,7 @@ impl Index {
let word_prefix_docids = env.create_database(&mut wtxn, Some(WORD_PREFIX_DOCIDS))?;
let exact_word_prefix_docids =
env.create_database(&mut wtxn, Some(EXACT_WORD_PREFIX_DOCIDS))?;
let docid_word_positions = env.create_database(&mut wtxn, Some(DOCID_WORD_POSITIONS))?;
let word_pair_proximity_docids =
env.create_database(&mut wtxn, Some(WORD_PAIR_PROXIMITY_DOCIDS))?;
let script_language_docids =
@@ -215,6 +220,7 @@ impl Index {
exact_word_docids,
word_prefix_docids,
exact_word_prefix_docids,
docid_word_positions,
word_pair_proximity_docids,
script_language_docids,
word_prefix_pair_proximity_docids,
@@ -2488,12 +2494,8 @@ pub(crate) mod tests {
let rtxn = index.read_txn().unwrap();
let search = Search::new(&rtxn, &index);
let SearchResult {
matching_words: _,
candidates: _,
document_scores: _,
mut documents_ids,
} = search.execute().unwrap();
let SearchResult { matching_words: _, candidates: _, mut documents_ids } =
search.execute().unwrap();
let primary_key_id = index.fields_ids_map(&rtxn).unwrap().id("primary_key").unwrap();
documents_ids.sort_unstable();
let docs = index.documents(&rtxn, documents_ids).unwrap();

View File

@@ -5,6 +5,52 @@
#[global_allocator]
pub static ALLOC: mimalloc::MiMalloc = mimalloc::MiMalloc;
// #[cfg(test)]
// pub mod allocator {
// use std::alloc::{GlobalAlloc, System};
// use std::sync::atomic::{self, AtomicI64};
// #[global_allocator]
// pub static ALLOC: CountingAlloc = CountingAlloc {
// max_resident: AtomicI64::new(0),
// resident: AtomicI64::new(0),
// allocated: AtomicI64::new(0),
// };
// pub struct CountingAlloc {
// pub max_resident: AtomicI64,
// pub resident: AtomicI64,
// pub allocated: AtomicI64,
// }
// unsafe impl GlobalAlloc for CountingAlloc {
// unsafe fn alloc(&self, layout: std::alloc::Layout) -> *mut u8 {
// self.allocated.fetch_add(layout.size() as i64, atomic::Ordering::SeqCst);
// let old_resident =
// self.resident.fetch_add(layout.size() as i64, atomic::Ordering::SeqCst);
// let resident = old_resident + layout.size() as i64;
// self.max_resident.fetch_max(resident, atomic::Ordering::SeqCst);
// // if layout.size() > 1_000_000 {
// // eprintln!(
// // "allocating {} with new resident size: {resident}",
// // layout.size() / 1_000_000
// // );
// // // let trace = std::backtrace::Backtrace::capture();
// // // let t = trace.to_string();
// // // eprintln!("{t}");
// // }
// System.alloc(layout)
// }
// unsafe fn dealloc(&self, ptr: *mut u8, layout: std::alloc::Layout) {
// self.resident.fetch_sub(layout.size() as i64, atomic::Ordering::Relaxed);
// System.dealloc(ptr, layout)
// }
// }
// }
#[macro_use]
pub mod documents;
@@ -17,7 +63,6 @@ mod fields_ids_map;
pub mod heed_codec;
pub mod index;
pub mod proximity;
pub mod score_details;
mod search;
pub mod update;
@@ -54,8 +99,8 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, Search,
SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
Search, SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
};
pub type Result<T> = std::result::Result<T, error::Error>;

View File

@@ -1,544 +0,0 @@
use std::cmp::Ordering;
use serde::Serialize;
use crate::distance_between_two_points;
#[derive(Debug, Clone, PartialEq)]
pub enum ScoreDetails {
Words(Words),
Typo(Typo),
Proximity(Rank),
Fid(Rank),
Position(Rank),
ExactAttribute(ExactAttribute),
Exactness(Rank),
Sort(Sort),
GeoSort(GeoSort),
}
impl PartialOrd for ScoreDetails {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
use ScoreDetails::*;
match (self, other) {
// matching left and right hands => defer to sub impl
(Words(left), Words(right)) => left.partial_cmp(right),
(Typo(left), Typo(right)) => left.partial_cmp(right),
(Proximity(left), Proximity(right)) => left.partial_cmp(right),
(Fid(left), Fid(right)) => left.partial_cmp(right),
(Position(left), Position(right)) => left.partial_cmp(right),
(ExactAttribute(left), ExactAttribute(right)) => left.partial_cmp(right),
(Exactness(left), Exactness(right)) => left.partial_cmp(right),
(Sort(left), Sort(right)) => left.partial_cmp(right),
(GeoSort(left), GeoSort(right)) => left.partial_cmp(right),
// non matching left and right hands => None
// written this way rather than with a single `_` arm, so that adding a new variant
// still results in a compile error
(Words(_), _) => None,
(Typo(_), _) => None,
(Proximity(_), _) => None,
(Fid(_), _) => None,
(Position(_), _) => None,
(ExactAttribute(_), _) => None,
(Exactness(_), _) => None,
(Sort(_), _) => None,
(GeoSort(_), _) => None,
}
}
}
impl ScoreDetails {
pub fn local_score(&self) -> Option<f64> {
self.rank().map(Rank::local_score)
}
pub fn rank(&self) -> Option<Rank> {
match self {
ScoreDetails::Words(details) => Some(details.rank()),
ScoreDetails::Typo(details) => Some(details.rank()),
ScoreDetails::Proximity(details) => Some(*details),
ScoreDetails::Fid(details) => Some(*details),
ScoreDetails::Position(details) => Some(*details),
ScoreDetails::ExactAttribute(details) => Some(details.rank()),
ScoreDetails::Exactness(details) => Some(*details),
ScoreDetails::Sort(_) => None,
ScoreDetails::GeoSort(_) => None,
}
}
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self>) -> f64 {
Rank::global_score(details.filter_map(Self::rank))
}
pub fn global_score_linear_scale<'a>(details: impl Iterator<Item = &'a Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
/// Panics
///
/// - If Position is not preceded by Fid
/// - If Exactness is not preceded by ExactAttribute
/// - If a sort fid is not contained in the passed `fields_ids_map`.
pub fn to_json_map<'a>(
details: impl Iterator<Item = &'a Self>,
) -> serde_json::Map<String, serde_json::Value> {
let mut order = 0;
let mut details_map = serde_json::Map::default();
for details in details {
match details {
ScoreDetails::Words(words) => {
let words_details = serde_json::json!({
"order": order,
"matchingWords": words.matching_words,
"maxMatchingWords": words.max_matching_words,
"score": words.rank().local_score_linear_scale(),
});
details_map.insert("words".into(), words_details);
order += 1;
}
ScoreDetails::Typo(typo) => {
let typo_details = serde_json::json!({
"order": order,
"typoCount": typo.typo_count,
"maxTypoCount": typo.max_typo_count,
"score": typo.rank().local_score_linear_scale(),
});
details_map.insert("typo".into(), typo_details);
order += 1;
}
ScoreDetails::Proximity(proximity) => {
let proximity_details = serde_json::json!({
"order": order,
"score": proximity.local_score_linear_scale(),
});
details_map.insert("proximity".into(), proximity_details);
order += 1;
}
ScoreDetails::Fid(fid) => {
// For now, fid is a virtual rule always followed by the "position" rule
let fid_details = serde_json::json!({
"order": order,
"attributes_ranking_order": fid.local_score_linear_scale(),
});
details_map.insert("attribute".into(), fid_details);
order += 1;
}
ScoreDetails::Position(position) => {
// For now, position is a virtual rule always preceded by the "fid" rule
let attribute_details = details_map
.get_mut("attribute")
.expect("position not preceded by attribute");
let attribute_details = attribute_details
.as_object_mut()
.expect("attribute details was not an object");
attribute_details.insert(
"attributes_query_word_order".into(),
position.local_score_linear_scale().into(),
);
// do not update the order since this was already done by fid
}
ScoreDetails::ExactAttribute(exact_attribute) => {
let exactness_details = serde_json::json!({
"order": order,
"exactIn": exact_attribute,
"score": exact_attribute.rank().local_score_linear_scale(),
});
details_map.insert("exactness".into(), exactness_details);
order += 1;
}
ScoreDetails::Exactness(details) => {
// For now, exactness is a virtual rule always preceded by the "ExactAttribute" rule
let exactness_details = details_map
.get_mut("exactness")
.expect("Exactness not preceded by exactAttribute");
let exactness_details = exactness_details
.as_object_mut()
.expect("exactness details was not an object");
if exactness_details.get("exactIn").expect("missing 'exactIn'")
== &serde_json::json!(ExactAttribute::NoExactMatch)
{
let score = Rank::global_score_linear_scale(
[ExactAttribute::NoExactMatch.rank(), *details].iter().copied(),
);
*exactness_details.get_mut("score").expect("missing score") = score.into();
}
// do not update the order since this was already done by exactAttribute
}
ScoreDetails::Sort(details) => {
let sort = format!(
"{}:{}",
details.field_name,
if details.ascending { "asc" } else { "desc" }
);
let sort_details = serde_json::json!({
"order": order,
"value": details.value,
});
details_map.insert(sort, sort_details);
order += 1;
}
ScoreDetails::GeoSort(details) => {
let sort = format!(
"_geoPoint({}, {}):{}",
details.target_point[0],
details.target_point[1],
if details.ascending { "asc" } else { "desc" }
);
let point = if let Some(value) = details.value {
serde_json::json!({ "lat": value[0], "lng": value[1]})
} else {
serde_json::Value::Null
};
let sort_details = serde_json::json!({
"order": order,
"value": point,
"distance": details.distance(),
});
details_map.insert(sort, sort_details);
order += 1;
}
}
}
details_map
}
pub fn partial_cmp_iter<'a>(
mut left: impl Iterator<Item = &'a Self>,
mut right: impl Iterator<Item = &'a Self>,
) -> Result<Ordering, NotComparable> {
let mut index = 0;
let mut order = match (left.next(), right.next()) {
(Some(left), Some(right)) => left.partial_cmp(right).incomparable(index)?,
_ => return Ok(Ordering::Equal),
};
for (left, right) in left.zip(right) {
if order != Ordering::Equal {
return Ok(order);
};
index += 1;
order = left.partial_cmp(right).incomparable(index)?;
}
Ok(order)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct NotComparable(pub usize);
trait OptionToNotComparable<T> {
fn incomparable(self, index: usize) -> Result<T, NotComparable>;
}
impl<T> OptionToNotComparable<T> for Option<T> {
fn incomparable(self, index: usize) -> Result<T, NotComparable> {
match self {
Some(t) => Ok(t),
None => Err(NotComparable(index)),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Words {
pub matching_words: u32,
pub max_matching_words: u32,
}
impl PartialOrd for Words {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
(self.max_matching_words == other.max_matching_words)
.then(|| self.matching_words.cmp(&other.matching_words))
}
}
impl Words {
pub fn rank(&self) -> Rank {
Rank { rank: self.matching_words, max_rank: self.max_matching_words }
}
pub(crate) fn from_rank(rank: Rank) -> Words {
Words { matching_words: rank.rank, max_matching_words: rank.max_rank }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Typo {
pub typo_count: u32,
pub max_typo_count: u32,
}
impl PartialOrd for Typo {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
(self.max_typo_count == other.max_typo_count).then(|| {
// the order is reverted as having fewer typos gives a better score
self.typo_count.cmp(&other.typo_count).reverse()
})
}
}
impl Typo {
pub fn rank(&self) -> Rank {
Rank {
rank: self.max_typo_count - self.typo_count + 1,
max_rank: (self.max_typo_count + 1),
}
}
// max_rank = max_typo + 1
// max_typo = max_rank - 1
//
// rank = max_typo - typo + 1
// rank = max_rank - 1 - typo + 1
// rank + typo = max_rank
// typo = max_rank - rank
pub fn from_rank(rank: Rank) -> Typo {
Typo { typo_count: rank.max_rank - rank.rank, max_typo_count: rank.max_rank - 1 }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Rank {
/// The ordinal rank, such that `max_rank` is the first rank, and 0 is the last rank.
///
/// The higher the better. Documents with a rank of 0 have a score of 0 and are typically never returned
/// (they don't match the query).
pub rank: u32,
/// The maximum possible rank. Documents with this rank have a score of 1.
///
/// The max rank should not be 0.
pub max_rank: u32,
}
impl PartialOrd for Rank {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
(self.max_rank == other.max_rank).then(|| self.rank.cmp(&other.rank))
}
}
impl Rank {
pub fn local_score(self) -> f64 {
self.rank as f64 / self.max_rank as f64
}
pub fn local_score_linear_scale(self) -> u64 {
(self.local_score() * LINEAR_SCALE_FACTOR).round() as u64
}
pub fn global_score(details: impl Iterator<Item = Self>) -> f64 {
let mut rank = Rank { rank: 1, max_rank: 1 };
for inner_rank in details {
rank.rank -= 1;
rank.rank *= inner_rank.max_rank;
rank.max_rank *= inner_rank.max_rank;
rank.rank += inner_rank.rank;
}
rank.local_score()
}
pub fn global_score_linear_scale(details: impl Iterator<Item = Self>) -> u64 {
(Self::global_score(details) * LINEAR_SCALE_FACTOR).round() as u64
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum ExactAttribute {
// Do not reorder as the order is significant, from least relevant to most relevant
NoExactMatch,
MatchesStart,
MatchesFull,
}
impl ExactAttribute {
pub fn rank(&self) -> Rank {
let rank = match self {
ExactAttribute::MatchesFull => 3,
ExactAttribute::MatchesStart => 2,
ExactAttribute::NoExactMatch => 1,
};
Rank { rank, max_rank: 3 }
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Sort {
pub field_name: String,
pub ascending: bool,
pub value: serde_json::Value,
}
impl PartialOrd for Sort {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self.field_name != other.field_name {
return None;
}
if self.ascending != other.ascending {
return None;
}
match (&self.value, &other.value) {
(serde_json::Value::Null, serde_json::Value::Null) => Some(Ordering::Equal),
(serde_json::Value::Null, _) => Some(Ordering::Less),
(_, serde_json::Value::Null) => Some(Ordering::Greater),
// numbers are always before strings
(serde_json::Value::Number(_), serde_json::Value::String(_)) => Some(Ordering::Greater),
(serde_json::Value::String(_), serde_json::Value::Number(_)) => Some(Ordering::Less),
(serde_json::Value::Number(left), serde_json::Value::Number(right)) => {
//FIXME: unwrap permitted here?
let order = left.as_f64().unwrap().partial_cmp(&right.as_f64().unwrap())?;
// always reverted, as bigger is better
Some(if self.ascending { order.reverse() } else { order })
}
(serde_json::Value::String(left), serde_json::Value::String(right)) => {
let order = left.cmp(right);
Some(if self.ascending { order.reverse() } else { order })
}
_ => None,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct GeoSort {
pub target_point: [f64; 2],
pub ascending: bool,
pub value: Option<[f64; 2]>,
}
impl PartialOrd for GeoSort {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self.target_point != other.target_point {
return None;
}
if self.ascending != other.ascending {
return None;
}
Some(match (self.distance(), other.distance()) {
(None, None) => Ordering::Equal,
(None, Some(_)) => Ordering::Less,
(Some(_), None) => Ordering::Greater,
(Some(left), Some(right)) => {
let order = left.partial_cmp(&right)?;
if self.ascending {
// when ascending, the one with the smallest distance has the best score
order.reverse()
} else {
order
}
}
})
}
}
impl GeoSort {
pub fn distance(&self) -> Option<f64> {
self.value.map(|value| distance_between_two_points(&self.target_point, &value))
}
}
const LINEAR_SCALE_FACTOR: f64 = 1000.0;
#[cfg(test)]
mod test {
use super::*;
#[test]
fn compare() {
let left = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
ascending: true,
value: "Intel the Beagle".into(),
}),
];
let right = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
ascending: true,
value: "Max the Labrador".into(),
}),
];
assert_eq!(
Ok(Ordering::Greater),
ScoreDetails::partial_cmp_iter(left.iter(), right.iter())
);
// equal when all the common components are equal
assert_eq!(
Ok(Ordering::Equal),
ScoreDetails::partial_cmp_iter(left[0..1].iter(), right.iter())
);
let right = [
ScoreDetails::Words(Words { matching_words: 4, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
ascending: true,
value: "Max the Labrador".into(),
}),
];
assert_eq!(Ok(Ordering::Less), ScoreDetails::partial_cmp_iter(left.iter(), right.iter()));
}
#[test]
fn sort_not_comparable() {
let left = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
// not the same field name
field_name: "catto".into(),
ascending: true,
value: "Sylver the cat".into(),
}),
];
let right = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
ascending: true,
value: "Max the Labrador".into(),
}),
];
assert_eq!(
Err(NotComparable(1)),
ScoreDetails::partial_cmp_iter(left.iter(), right.iter())
);
let left = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
// Not the same order
ascending: false,
value: "Intel the Beagle".into(),
}),
];
let right = [
ScoreDetails::Words(Words { matching_words: 3, max_matching_words: 4 }),
ScoreDetails::Sort(Sort {
field_name: "doggo".into(),
ascending: true,
value: "Max the Labrador".into(),
}),
];
assert_eq!(
Err(NotComparable(1)),
ScoreDetails::partial_cmp_iter(left.iter(), right.iter())
);
}
#[test]
fn sort_behavior() {
let left = Sort { field_name: "price".into(), ascending: true, value: "5400".into() };
let right = Sort { field_name: "price".into(), ascending: true, value: 53.into() };
// number always better match than strings
assert_eq!(Some(Ordering::Less), left.partial_cmp(&right));
let left = Sort { field_name: "price".into(), ascending: false, value: "5400".into() };
let right = Sort { field_name: "price".into(), ascending: false, value: 53.into() };
// true regardless of the sort direction
assert_eq!(Some(Ordering::Less), left.partial_cmp(&right));
}
}

View File

@@ -4,16 +4,18 @@ use std::{fmt, mem};
use heed::types::ByteSlice;
use heed::BytesDecode;
use indexmap::IndexMap;
use roaring::RoaringBitmap;
use crate::error::UserError;
use crate::facet::FacetType;
use crate::heed_codec::facet::{
FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec,
OrderedF64Codec,
FacetGroupKeyCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec, OrderedF64Codec,
};
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
use crate::search::facet::facet_distribution_iter;
use crate::search::facet::facet_distribution_iter::{
count_iterate_over_facet_distribution, lexicographically_iterate_over_facet_distribution,
};
use crate::{FieldId, Index, Result};
/// The default number of values by facets that will
@@ -24,10 +26,21 @@ pub const DEFAULT_VALUES_PER_FACET: usize = 100;
/// the system to choose between one algorithm or another.
const CANDIDATES_THRESHOLD: u64 = 3000;
/// How should we fetch the facets?
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum OrderBy {
/// By lexicographic order...
#[default]
Lexicographic,
/// Or by number of docids in common?
Count,
}
pub struct FacetDistribution<'a> {
facets: Option<HashSet<String>>,
candidates: Option<RoaringBitmap>,
max_values_per_facet: usize,
order_by: OrderBy,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
}
@@ -38,6 +51,7 @@ impl<'a> FacetDistribution<'a> {
facets: None,
candidates: None,
max_values_per_facet: DEFAULT_VALUES_PER_FACET,
order_by: OrderBy::default(),
rtxn,
index,
}
@@ -53,6 +67,11 @@ impl<'a> FacetDistribution<'a> {
self
}
pub fn order_by(&mut self, order_by: OrderBy) -> &mut Self {
self.order_by = order_by;
self
}
pub fn candidates(&mut self, candidates: RoaringBitmap) -> &mut Self {
self.candidates = Some(candidates);
self
@@ -65,7 +84,7 @@ impl<'a> FacetDistribution<'a> {
field_id: FieldId,
facet_type: FacetType,
candidates: &RoaringBitmap,
distribution: &mut BTreeMap<String, u64>,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
match facet_type {
FacetType::Number => {
@@ -134,9 +153,15 @@ impl<'a> FacetDistribution<'a> {
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
distribution: &mut BTreeMap<String, u64>,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
facet_distribution_iter::iterate_over_facet_distribution(
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
self.rtxn,
self.index
.facet_id_f64_docids
@@ -159,9 +184,15 @@ impl<'a> FacetDistribution<'a> {
&self,
field_id: FieldId,
candidates: &RoaringBitmap,
distribution: &mut BTreeMap<String, u64>,
order_by: OrderBy,
distribution: &mut IndexMap<String, u64>,
) -> heed::Result<()> {
facet_distribution_iter::iterate_over_facet_distribution(
let search_function = match order_by {
OrderBy::Lexicographic => lexicographically_iterate_over_facet_distribution,
OrderBy::Count => count_iterate_over_facet_distribution,
};
search_function(
self.rtxn,
self.index
.facet_id_string_docids
@@ -189,93 +220,44 @@ impl<'a> FacetDistribution<'a> {
)
}
/// Placeholder search, a.k.a. no candidates were specified. We iterate throught the
/// facet values one by one and iterate on the facet level 0 for numbers.
fn facet_values_from_raw_facet_database(
&self,
field_id: FieldId,
) -> heed::Result<BTreeMap<String, u64>> {
let mut distribution = BTreeMap::new();
let db = self.index.facet_id_f64_docids;
let mut prefix = vec![];
prefix.extend_from_slice(&field_id.to_be_bytes());
prefix.push(0); // read values from level 0 only
let iter = db
.as_polymorph()
.prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())?
.remap_types::<FacetGroupKeyCodec<OrderedF64Codec>, FacetGroupValueCodec>();
for result in iter {
let (key, value) = result?;
distribution.insert(key.left_bound.to_string(), value.bitmap.len());
if distribution.len() == self.max_values_per_facet {
break;
}
}
let iter = self
.index
.facet_id_string_docids
.as_polymorph()
.prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())?
.remap_types::<FacetGroupKeyCodec<StrRefCodec>, FacetGroupValueCodec>();
for result in iter {
let (key, value) = result?;
let docid = value.bitmap.iter().next().unwrap();
let key: (FieldId, _, &'a str) = (field_id, docid, key.left_bound);
let original_string =
self.index.field_id_docid_facet_strings.get(self.rtxn, &key)?.unwrap().to_owned();
distribution.insert(original_string, value.bitmap.len());
if distribution.len() == self.max_values_per_facet {
break;
}
}
Ok(distribution)
}
fn facet_values(&self, field_id: FieldId) -> heed::Result<BTreeMap<String, u64>> {
fn facet_values(&self, field_id: FieldId) -> heed::Result<IndexMap<String, u64>> {
use FacetType::{Number, String};
match self.candidates {
Some(ref candidates) => {
let mut distribution = IndexMap::new();
match (self.order_by, &self.candidates) {
(OrderBy::Lexicographic, Some(cnd)) if cnd.len() <= CANDIDATES_THRESHOLD => {
// Classic search, candidates were specified, we must return facet values only related
// to those candidates. We also enter here for facet strings for performance reasons.
let mut distribution = BTreeMap::new();
if candidates.len() <= CANDIDATES_THRESHOLD {
self.facet_distribution_from_documents(
field_id,
Number,
candidates,
&mut distribution,
)?;
self.facet_distribution_from_documents(
field_id,
String,
candidates,
&mut distribution,
)?;
} else {
self.facet_numbers_distribution_from_facet_levels(
field_id,
candidates,
&mut distribution,
)?;
self.facet_strings_distribution_from_facet_levels(
field_id,
candidates,
&mut distribution,
)?;
}
Ok(distribution)
self.facet_distribution_from_documents(field_id, Number, cnd, &mut distribution)?;
self.facet_distribution_from_documents(field_id, String, cnd, &mut distribution)?;
}
None => self.facet_values_from_raw_facet_database(field_id),
}
_ => {
let universe;
let candidates;
match &self.candidates {
Some(cnd) => candidates = cnd,
None => {
universe = self.index.documents_ids(self.rtxn)?;
candidates = &universe;
}
}
self.facet_numbers_distribution_from_facet_levels(
field_id,
candidates,
self.order_by,
&mut distribution,
)?;
self.facet_strings_distribution_from_facet_levels(
field_id,
candidates,
self.order_by,
&mut distribution,
)?;
}
};
Ok(distribution)
}
pub fn compute_stats(&self) -> Result<BTreeMap<String, (f64, f64)>> {
@@ -337,7 +319,7 @@ impl<'a> FacetDistribution<'a> {
Ok(distribution)
}
pub fn execute(&self) -> Result<BTreeMap<String, BTreeMap<String, u64>>> {
pub fn execute(&self) -> Result<BTreeMap<String, IndexMap<String, u64>>> {
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
@@ -374,13 +356,20 @@ impl<'a> FacetDistribution<'a> {
impl fmt::Debug for FacetDistribution<'_> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let FacetDistribution { facets, candidates, max_values_per_facet, rtxn: _, index: _ } =
self;
let FacetDistribution {
facets,
candidates,
max_values_per_facet,
order_by,
rtxn: _,
index: _,
} = self;
f.debug_struct("FacetDistribution")
.field("facets", facets)
.field("candidates", candidates)
.field("max_values_per_facet", max_values_per_facet)
.field("order_by", order_by)
.finish()
}
}

View File

@@ -1,3 +1,5 @@
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::ops::ControlFlow;
use heed::Result;
@@ -19,7 +21,7 @@ use crate::DocumentId;
///
/// The return value of the closure is a `ControlFlow<()>` which indicates whether we should
/// keep iterating over the different facet values or stop.
pub fn iterate_over_facet_distribution<'t, CB>(
pub fn lexicographically_iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
field_id: u16,
@@ -29,7 +31,7 @@ pub fn iterate_over_facet_distribution<'t, CB>(
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
let mut fd = FacetDistribution { rtxn, db, field_id, callback };
let mut fd = LexicographicFacetDistribution { rtxn, db, field_id, callback };
let highest_level = get_highest_level(
rtxn,
db.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
@@ -44,7 +46,99 @@ where
}
}
struct FacetDistribution<'t, CB>
pub fn count_iterate_over_facet_distribution<'t, CB>(
rtxn: &'t heed::RoTxn<'t>,
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
field_id: u16,
candidates: &RoaringBitmap,
mut callback: CB,
) -> Result<()>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
#[derive(Debug, PartialOrd, Ord, PartialEq, Eq)]
struct LevelEntry<'t> {
/// The number of candidates in this entry.
count: u64,
/// The key level of the entry.
level: Reverse<u8>,
/// The left bound key.
left_bound: &'t [u8],
/// The number of keys we must look for after `left_bound`.
group_size: u8,
/// Any docid in the set of matching documents. Used to find the original facet string.
any_docid: u32,
}
// Represents the list of keys that we must explore.
let mut heap = BinaryHeap::new();
let highest_level = get_highest_level(
rtxn,
db.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
field_id,
)?;
if let Some(first_bound) = get_first_facet_value::<ByteSliceRefCodec>(rtxn, db, field_id)? {
// We first fill the heap with values from the highest level
let starting_key =
FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
for el in db.range(rtxn, &(&starting_key..)).unwrap().take(usize::MAX) {
let (key, value) = el.unwrap();
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = value.bitmap & candidates;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
while let Some(LevelEntry { count, level, left_bound, group_size, any_docid }) = heap.pop()
{
if let Reverse(0) = level {
match (callback)(left_bound, count, any_docid)? {
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(()),
}
} else {
let starting_key = FacetGroupKey { field_id, level: level.0 - 1, left_bound };
for el in db.range(rtxn, &(&starting_key..)).unwrap().take(group_size as usize) {
let (key, value) = el.unwrap();
// The range is unbounded on the right and the group size for the highest level is MAX,
// so we need to check that we are not iterating over the next field id
if key.field_id != field_id {
break;
}
let intersection = value.bitmap & candidates;
let count = intersection.len();
if count != 0 {
heap.push(LevelEntry {
count,
level: Reverse(key.level),
left_bound: key.left_bound,
group_size: value.size,
any_docid: intersection.min().unwrap(),
});
}
}
}
}
}
Ok(())
}
/// Iterate over the facets values by lexicographic order.
struct LexicographicFacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
@@ -54,7 +148,7 @@ where
callback: CB,
}
impl<'t, CB> FacetDistribution<'t, CB>
impl<'t, CB> LexicographicFacetDistribution<'t, CB>
where
CB: FnMut(&'t [u8], u64, DocumentId) -> Result<ControlFlow<()>>,
{
@@ -86,6 +180,7 @@ where
}
Ok(ControlFlow::Continue(()))
}
fn iterate(
&mut self,
candidates: &RoaringBitmap,
@@ -116,7 +211,7 @@ where
value.size as usize,
)?;
match cf {
ControlFlow::Continue(_) => {}
ControlFlow::Continue(_) => (),
ControlFlow::Break(_) => return Ok(ControlFlow::Break(())),
}
}
@@ -132,7 +227,7 @@ mod tests {
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::iterate_over_facet_distribution;
use super::lexicographically_iterate_over_facet_distribution;
use crate::heed_codec::facet::OrderedF64Codec;
use crate::milli_snap;
use crate::search::facet::tests::{get_random_looking_index, get_simple_index};
@@ -144,7 +239,7 @@ mod tests {
let txn = index.env.read_txn().unwrap();
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
iterate_over_facet_distribution(
lexicographically_iterate_over_facet_distribution(
&txn,
index.content,
0,
@@ -161,6 +256,7 @@ mod tests {
txn.commit().unwrap();
}
}
#[test]
fn filter_distribution_all_stop_early() {
let indexes = [get_simple_index(), get_random_looking_index()];
@@ -169,7 +265,7 @@ mod tests {
let candidates = (0..=255).collect::<RoaringBitmap>();
let mut results = String::new();
let mut nbr_facets = 0;
iterate_over_facet_distribution(
lexicographically_iterate_over_facet_distribution(
&txn,
index.content,
0,

View File

@@ -4,7 +4,7 @@ use heed::types::{ByteSlice, DecodeIgnore};
use heed::{BytesDecode, RoTxn};
use roaring::RoaringBitmap;
pub use self::facet_distribution::{FacetDistribution, DEFAULT_VALUES_PER_FACET};
pub use self::facet_distribution::{FacetDistribution, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::filter::{BadGeoError, Filter};
use crate::heed_codec::facet::{FacetGroupKeyCodec, FacetGroupValueCodec, OrderedF64Codec};
use crate::heed_codec::ByteSliceRefCodec;

View File

@@ -4,10 +4,9 @@ use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
use once_cell::sync::Lazy;
use roaring::bitmap::RoaringBitmap;
pub use self::facet::{FacetDistribution, Filter, DEFAULT_VALUES_PER_FACET};
pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET};
pub use self::new::matches::{FormatOptions, MatchBounds, Matcher, MatcherBuilder, MatchingWords};
use self::new::PartialSearchResult;
use crate::score_details::ScoreDetails;
use crate::{
execute_search, AscDesc, DefaultSearchLogger, DocumentId, Index, Result, SearchContext,
};
@@ -94,7 +93,7 @@ impl<'a> Search<'a> {
self
}
/// Forces the search to exhaustively compute the number of candidates,
/// Force the search to exhastivelly compute the number of candidates,
/// this will increase the search time but allows finite pagination.
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
self.exhaustive_number_hits = exhaustive_number_hits;
@@ -103,7 +102,7 @@ impl<'a> Search<'a> {
pub fn execute(&self) -> Result<SearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
let PartialSearchResult { located_query_terms, candidates, documents_ids, document_scores } =
let PartialSearchResult { located_query_terms, candidates, documents_ids } =
execute_search(
&mut ctx,
&self.query,
@@ -125,7 +124,7 @@ impl<'a> Search<'a> {
None => MatchingWords::default(),
};
Ok(SearchResult { matching_words, candidates, document_scores, documents_ids })
Ok(SearchResult { matching_words, candidates, documents_ids })
}
}
@@ -161,8 +160,8 @@ impl fmt::Debug for Search<'_> {
pub struct SearchResult {
pub matching_words: MatchingWords,
pub candidates: RoaringBitmap,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]

View File

@@ -3,13 +3,11 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
use super::SearchContext;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput};
use crate::Result;
pub struct BucketSortOutput {
pub docids: Vec<u32>,
pub scores: Vec<Vec<ScoreDetails>>,
pub all_candidates: RoaringBitmap,
}
@@ -33,11 +31,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
};
if universe.len() < from as u64 {
return Ok(BucketSortOutput {
docids: vec![],
scores: vec![],
all_candidates: universe.clone(),
});
return Ok(BucketSortOutput { docids: vec![], all_candidates: universe.clone() });
}
if ranking_rules.is_empty() {
if let Some(distinct_fid) = distinct_fid {
@@ -55,32 +49,22 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
}
let mut all_candidates = universe - excluded;
all_candidates.extend(results.iter().copied());
return Ok(BucketSortOutput {
scores: vec![Default::default(); results.len()],
docids: results,
all_candidates,
});
return Ok(BucketSortOutput { docids: results, all_candidates });
} else {
let docids: Vec<u32> = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput {
scores: vec![Default::default(); docids.len()],
docids,
all_candidates: universe.clone(),
});
let docids = universe.iter().skip(from).take(length).collect();
return Ok(BucketSortOutput { docids, all_candidates: universe.clone() });
};
}
let ranking_rules_len = ranking_rules.len();
logger.start_iteration_ranking_rule(0, ranking_rules[0].as_ref(), query, universe);
ranking_rules[0].start_iteration(ctx, logger, universe, query)?;
let mut ranking_rule_scores: Vec<ScoreDetails> = vec![];
let mut ranking_rule_universes: Vec<RoaringBitmap> =
vec![RoaringBitmap::default(); ranking_rules_len];
ranking_rule_universes[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
/// Finish iterating over the current ranking rule, yielding
@@ -105,16 +89,11 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
} else {
cur_ranking_rule_index -= 1;
}
// FIXME: check off by one
if ranking_rule_scores.len() > cur_ranking_rule_index {
ranking_rule_scores.pop();
}
};
}
let mut all_candidates = universe.clone();
let mut valid_docids = vec![];
let mut valid_scores = vec![];
let mut cur_offset = 0usize;
macro_rules! maybe_add_to_results {
@@ -125,23 +104,23 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
length,
logger,
&mut valid_docids,
&mut valid_scores,
&mut all_candidates,
&mut ranking_rule_universes,
&mut ranking_rules,
cur_ranking_rule_index,
&mut cur_offset,
distinct_fid,
&ranking_rule_scores,
$candidates,
)?;
};
}
while valid_docids.len() < length {
// The universe for this bucket is zero, so we don't need to sort
// anything, just go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].is_empty() {
// The universe for this bucket is zero or one element, so we don't need to sort
// anything, just extend the results and go back to the parent ranking rule.
if ranking_rule_universes[cur_ranking_rule_index].len() <= 1 {
let bucket = std::mem::take(&mut ranking_rule_universes[cur_ranking_rule_index]);
maybe_add_to_results!(bucket);
back!();
continue;
}
@@ -151,8 +130,6 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
continue;
};
ranking_rule_scores.push(next_bucket.score);
logger.next_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index].as_ref(),
@@ -166,11 +143,10 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
ranking_rule_universes[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1
|| next_bucket.candidates.len() <= 1
|| cur_offset + (next_bucket.candidates.len() as usize) < from
{
maybe_add_to_results!(next_bucket.candidates);
// FIXME: use index based logic like all the other rules so that you don't have to maintain the pop/push?
ranking_rule_scores.pop();
continue;
}
@@ -190,7 +166,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
)?;
}
Ok(BucketSortOutput { docids: valid_docids, scores: valid_scores, all_candidates })
Ok(BucketSortOutput { docids: valid_docids, all_candidates })
}
/// Add the candidates to the results. Take `distinct`, `from`, `length`, and `cur_offset`
@@ -203,18 +179,14 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
logger: &mut dyn SearchLogger<Q>,
valid_docids: &mut Vec<u32>,
valid_scores: &mut Vec<Vec<ScoreDetails>>,
all_candidates: &mut RoaringBitmap,
ranking_rule_universes: &mut [RoaringBitmap],
ranking_rules: &mut [BoxRankingRule<'ctx, Q>],
cur_ranking_rule_index: usize,
cur_offset: &mut usize,
distinct_fid: Option<u16>,
ranking_rule_scores: &[ScoreDetails],
candidates: RoaringBitmap,
) -> Result<()> {
// First apply the distinct rule on the candidates, reducing the universes if necessary
@@ -259,17 +231,13 @@ fn maybe_add_to_results<'ctx, Q: RankingRuleQueryTrait>(
let candidates =
candidates.iter().take(length - valid_docids.len()).copied().collect::<Vec<_>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
} else {
// if we have passed the offset already, add some of the documents (up to the limit)
let candidates = candidates.iter().take(length - valid_docids.len()).collect::<Vec<u32>>();
logger.add_to_results(&candidates);
valid_docids.extend_from_slice(&candidates);
valid_scores
.extend(std::iter::repeat(ranking_rule_scores.to_owned()).take(candidates.len()));
valid_docids.extend(&candidates);
}
*cur_offset += candidates.len() as usize;

View File

@@ -2,7 +2,6 @@ use roaring::{MultiOps, RoaringBitmap};
use super::query_graph::QueryGraph;
use super::ranking_rules::{RankingRule, RankingRuleOutput};
use crate::score_details::{self, ScoreDetails};
use crate::search::new::query_graph::QueryNodeData;
use crate::search::new::query_term::ExactTerm;
use crate::{Result, SearchContext, SearchLogger};
@@ -245,13 +244,7 @@ impl State {
candidates &= universe;
(
State::AttributeStarts(query_graph.clone(), candidates_per_attribute),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesFull,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::AttributeStarts(query_graph, candidates_per_attribute) => {
@@ -264,24 +257,12 @@ impl State {
candidates &= universe;
(
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates,
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::MatchesStart,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates }),
)
}
State::Empty(query_graph) => (
State::Empty(query_graph.clone()),
Some(RankingRuleOutput {
query: query_graph,
candidates: universe.clone(),
score: ScoreDetails::ExactAttribute(
score_details::ExactAttribute::NoExactMatch,
),
}),
Some(RankingRuleOutput { query: query_graph, candidates: universe.clone() }),
),
};
(state, output)

View File

@@ -8,7 +8,6 @@ use rstar::RTree;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::heed_codec::facet::{FieldDocIdFacetCodec, OrderedF64Codec};
use crate::score_details::{self, ScoreDetails};
use crate::{
distance_between_two_points, lat_lng_to_xyz, GeoPoint, Index, Result, SearchContext,
SearchLogger,
@@ -81,7 +80,7 @@ pub struct GeoSort<Q: RankingRuleQueryTrait> {
field_ids: Option<[u16; 2]>,
rtree: Option<RTree<GeoPoint>>,
cached_sorted_docids: VecDeque<(u32, [f64; 2])>,
cached_sorted_docids: VecDeque<u32>,
geo_candidates: RoaringBitmap,
}
@@ -131,7 +130,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&self.point);
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_back(point.data);
self.cached_sorted_docids.push_back(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -143,7 +142,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
let point = lat_lng_to_xyz(&opposite_of(self.point));
for point in rtree.nearest_neighbor_iter(&point) {
if self.geo_candidates.contains(point.data.0) {
self.cached_sorted_docids.push_front(point.data);
self.cached_sorted_docids.push_front(point.data.0);
if self.cached_sorted_docids.len() >= cache_size {
break;
}
@@ -178,7 +177,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
// computing the distance between two points is expensive thus we cache the result
documents
.sort_by_cached_key(|(_, p)| distance_between_two_points(&self.point, p) as usize);
self.cached_sorted_docids.extend(documents.into_iter());
self.cached_sorted_docids.extend(documents.into_iter().map(|(doc_id, _)| doc_id));
};
Ok(())
@@ -221,19 +220,12 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
logger: &mut dyn SearchLogger<Q>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Q>>> {
assert!(universe.len() > 1);
let query = self.query.as_ref().unwrap().clone();
self.geo_candidates &= universe;
if self.geo_candidates.is_empty() {
return Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: None,
}),
}));
return Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }));
}
let ascending = self.ascending;
@@ -244,16 +236,11 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
cache.pop_back()
}
};
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
while let Some(id) = next(&mut self.cached_sorted_docids) {
if self.geo_candidates.contains(id) {
return Ok(Some(RankingRuleOutput {
query,
candidates: RoaringBitmap::from_iter([id]),
score: ScoreDetails::GeoSort(score_details::GeoSort {
target_point: self.point,
ascending: self.ascending,
value: Some(point),
}),
}));
}
}

View File

@@ -50,7 +50,6 @@ use super::ranking_rule_graph::{
};
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
use crate::score_details::Rank;
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::PathVisitor;
use crate::{Result, TermsMatchingStrategy};
@@ -119,8 +118,6 @@ pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
all_costs: MappedInterner<QueryNode, Vec<u64>>,
/// An index in the first element of `all_distances`, giving the cost of the next bucket
cur_cost: u64,
/// One above the highest possible cost for this rule
next_max_cost: u64,
}
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
@@ -142,12 +139,13 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
let mut forbidden_nodes =
SmallBitmap::for_interned_values_in(&query_graph.nodes);
let mut costs = query_graph.nodes.map(|_| None);
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
let mut cost = 100;
for ns in removal_order {
for n in ns.iter() {
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
*costs.get_mut(n) = Some((cost, forbidden_nodes.clone()));
}
forbidden_nodes.union(&ns);
cost += 100;
}
costs
}
@@ -164,16 +162,12 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
// Then pre-compute the cost of all paths from each node to the end node
let all_costs = graph.find_all_costs_to_end();
let next_max_cost =
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0) + 1;
let state = GraphBasedRankingRuleState {
graph,
conditions_cache: condition_docids_cache,
dead_ends_cache,
all_costs,
cur_cost: 0,
next_max_cost,
};
self.state = Some(state);
@@ -187,13 +181,17 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
logger: &mut dyn SearchLogger<QueryGraph>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
// If universe.len() <= 1, the bucket sort algorithm
// should not have called this function.
assert!(universe.len() > 1);
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
// should never happen
let mut state = self.state.take().unwrap();
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
// Retrieve the cost of the paths to compute
let Some(&cost) = all_costs
let Some(&cost) = state
.all_costs
.get(state.graph.query_graph.root_node)
.iter()
.find(|c| **c >= state.cur_cost) else {
self.state = None;
@@ -209,12 +207,8 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
dead_ends_cache,
all_costs,
cur_cost: _,
next_max_cost,
} = &mut state;
let rank = *next_max_cost - cost;
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
let mut universe = universe.clone();
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
@@ -331,7 +325,7 @@ impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBase
self.state = Some(state);
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket }))
}
fn end_iteration(

View File

@@ -44,7 +44,6 @@ use self::geo_sort::GeoSort;
pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use crate::score_details::ScoreDetails;
use crate::search::new::distinct::apply_distinct_rule;
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
@@ -427,15 +426,13 @@ pub fn execute_search(
)?
};
let BucketSortOutput { docids, scores, mut all_candidates } = bucket_sort_output;
let fields_ids_map = ctx.index.fields_ids_map(ctx.txn)?;
let BucketSortOutput { docids, mut all_candidates } = bucket_sort_output;
// The candidates is the universe unless the exhaustive number of hits
// is requested and a distinct attribute is set.
if exhaustive_number_hits {
if let Some(f) = ctx.index.distinct_field(ctx.txn)? {
if let Some(distinct_fid) = fields_ids_map.id(f) {
if let Some(distinct_fid) = ctx.index.fields_ids_map(ctx.txn)?.id(f) {
all_candidates = apply_distinct_rule(ctx, distinct_fid, &all_candidates)?.remaining;
}
}
@@ -443,7 +440,6 @@ pub fn execute_search(
Ok(PartialSearchResult {
candidates: all_candidates,
document_scores: scores,
documents_ids: docids,
located_query_terms,
})
@@ -495,5 +491,4 @@ pub struct PartialSearchResult {
pub located_query_terms: Option<Vec<LocatedQueryTerm>>,
pub candidates: RoaringBitmap,
pub documents_ids: Vec<DocumentId>,
pub document_scores: Vec<Vec<ScoreDetails>>,
}

View File

@@ -77,9 +77,13 @@ pub fn located_query_terms_from_tokens(
}
}
TokenKind::Separator(separator_kind) => {
// add penalty for hard separators
if let SeparatorKind::Hard = separator_kind {
position = position.wrapping_add(7);
match separator_kind {
SeparatorKind::Hard => {
position += 1;
}
SeparatorKind::Soft => {
position += 0;
}
}
phrase = 'phrase: {
@@ -284,36 +288,3 @@ impl PhraseBuilder {
})
}
}
#[cfg(test)]
mod tests {
use charabia::TokenizerBuilder;
use super::*;
use crate::index::tests::TempIndex;
fn temp_index_with_documents() -> TempIndex {
let temp_index = TempIndex::new();
temp_index
.add_documents(documents!([
{ "id": 1, "name": "split this world westfali westfalia the Ŵôřlḑôle" },
{ "id": 2, "name": "Westfália" },
{ "id": 3, "name": "Ŵôřlḑôle" },
]))
.unwrap();
temp_index
}
#[test]
fn start_with_hard_separator() -> Result<()> {
let tokenizer = TokenizerBuilder::new().build();
let tokens = tokenizer.tokenize(".");
let index = temp_index_with_documents();
let rtxn = index.read_txn()?;
let mut ctx = SearchContext::new(&index, &rtxn);
// panics with `attempt to add with overflow` before <https://github.com/meilisearch/meilisearch/issues/3785>
let located_query_terms = located_query_terms_from_tokens(&mut ctx, tokens, None)?;
assert!(located_query_terms.is_empty());
Ok(())
}
}

View File

@@ -49,15 +49,10 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
if let Some((cost_of_ignoring, forbidden_nodes)) =
cost_of_ignoring_node.get(dest_idx)
{
let dest = graph_nodes.get(dest_idx);
let dest_size = match &dest.data {
QueryNodeData::Term(term) => term.term_ids.len(),
_ => panic!(),
};
let new_edge_id = edges_store.insert(Some(Edge {
source_node: source_id,
dest_node: dest_idx,
cost: *cost_of_ignoring * dest_size as u32,
cost: *cost_of_ignoring,
condition: None,
nodes_to_skip: forbidden_nodes.clone(),
}));

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::{ExactTerm, LocatedQueryTermSubset};
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -85,8 +84,4 @@ impl RankingRuleGraphTrait for ExactnessGraph {
Ok(vec![(0, exact_condition), (dest_node.term_ids.len() as u32, skip_condition)])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Exactness(rank)
}
}

View File

@@ -2,7 +2,6 @@ use fxhash::FxHashSet;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_field_id;
@@ -69,7 +68,7 @@ impl RankingRuleGraphTrait for FidGraph {
}
let mut edges = vec![];
for fid in all_fields.iter().copied() {
for fid in all_fields {
// TODO: We can improve performances and relevancy by storing
// the term subsets associated to each field ids fetched.
edges.push((
@@ -81,35 +80,6 @@ impl RankingRuleGraphTrait for FidGraph {
));
}
// always lookup the max_fid if we don't already and add an artificial condition for max scoring
let max_fid: Option<u16> = {
if let Some(max_fid) = ctx
.index
.searchable_fields_ids(ctx.txn)?
.map(|field_ids| field_ids.into_iter().max())
{
max_fid
} else {
ctx.index.fields_ids_map(ctx.txn)?.ids().max()
}
};
if let Some(max_fid) = max_fid {
if !all_fields.contains(&max_fid) {
edges.push((
max_fid as u32 * term.term_ids.len() as u32, // TODO improve the fid score i.e. fid^10.
conditions_interner.insert(FidCondition {
term: term.clone(), // TODO remove this ugly clone
fid: max_fid,
}),
));
}
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Fid(rank)
}
}

View File

@@ -41,7 +41,6 @@ use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner
use super::query_term::LocatedQueryTermSubset;
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, QueryNode, SearchContext};
use crate::score_details::{Rank, ScoreDetails};
use crate::Result;
pub struct ComputedCondition {
@@ -111,9 +110,6 @@ pub trait RankingRuleGraphTrait: Sized + 'static {
source_node: Option<&LocatedQueryTermSubset>,
dest_node: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>>;
/// Convert the rank of a path to its corresponding score for the ranking rule
fn rank_to_score(rank: Rank) -> ScoreDetails;
}
/// The graph used by graph-based ranking rules.

View File

@@ -2,7 +2,6 @@ use fxhash::{FxHashMap, FxHashSet};
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_position;
@@ -106,20 +105,8 @@ impl RankingRuleGraphTrait for PositionGraph {
));
}
// artificial empty condition for computing max cost
let max_cost = term.term_ids.len() as u32 * 10;
edges.push((
max_cost,
conditions_interner
.insert(PositionCondition { term: term.clone(), positions: Vec::default() }),
));
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Position(rank)
}
}
fn cost_from_position(sum_positions: u32) -> u32 {

View File

@@ -4,7 +4,6 @@ pub mod compute_docids;
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::SearchContext;
@@ -37,8 +36,4 @@ impl RankingRuleGraphTrait for ProximityGraph {
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
build::build_edges(ctx, conditions_interner, source_term, dest_term)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Proximity(rank)
}
}

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -76,8 +75,4 @@ impl RankingRuleGraphTrait for TypoGraph {
}
Ok(edges)
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Typo(score_details::Typo::from_rank(rank))
}
}

View File

@@ -1,7 +1,6 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::score_details::{self, Rank, ScoreDetails};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
@@ -42,10 +41,9 @@ impl RankingRuleGraphTrait for WordsGraph {
_from: Option<&LocatedQueryTermSubset>,
to_term: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
Ok(vec![(0, conditions_interner.insert(WordsCondition { term: to_term.clone() }))])
}
fn rank_to_score(rank: Rank) -> ScoreDetails {
ScoreDetails::Words(score_details::Words::from_rank(rank))
Ok(vec![(
to_term.term_ids.len() as u32,
conditions_interner.insert(WordsCondition { term: to_term.clone() }),
)])
}
}

View File

@@ -2,7 +2,6 @@ use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{QueryGraph, SearchContext};
use crate::score_details::ScoreDetails;
use crate::Result;
/// An internal trait implemented by only [`PlaceholderQuery`] and [`QueryGraph`]
@@ -67,6 +66,4 @@ pub struct RankingRuleOutput<Q> {
pub query: Q,
/// The allowed candidates for the child ranking rule
pub candidates: RoaringBitmap,
/// The score for the candidates of the current bucket
pub score: ScoreDetails,
}

View File

@@ -1,11 +1,9 @@
use heed::BytesDecode;
use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait, SearchContext};
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
use crate::heed_codec::{ByteSliceRefCodec, StrRefCodec};
use crate::score_details::{self, ScoreDetails};
use crate::heed_codec::facet::FacetGroupKeyCodec;
use crate::heed_codec::ByteSliceRefCodec;
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
use crate::{FieldId, Index, Result};
@@ -69,7 +67,7 @@ impl<'ctx, Query> Sort<'ctx, Query> {
impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx, Query> {
fn id(&self) -> String {
let Self { field_name, is_ascending, .. } = self;
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc" })
format!("{field_name}:{}", if *is_ascending { "asc" } else { "desc " })
}
fn start_iteration(
&mut self,
@@ -120,43 +118,12 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
};
let number_iter = number_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::Number(
serde_json::Number::from_f64(
OrderedF64Codec::bytes_decode(bytes).expect("some number"),
)
.expect("too big float"),
),
))
});
let string_iter = string_iter.map(|r| -> Result<_> {
let (docids, bytes) = r?;
Ok((
docids,
serde_json::Value::String(
StrRefCodec::bytes_decode(bytes).expect("some string").to_owned(),
),
))
});
let query_graph = parent_query.clone();
let ascending = self.is_ascending;
let field_name = self.field_name.clone();
RankingRuleOutputIterWrapper::new(Box::new(number_iter.chain(string_iter).map(
move |r| {
let (docids, value) = r?;
Ok(RankingRuleOutput {
query: query_graph.clone(),
candidates: docids,
score: ScoreDetails::Sort(score_details::Sort {
field_name: field_name.clone(),
ascending,
value,
}),
})
let (docids, _) = r?;
Ok(RankingRuleOutput { query: query_graph.clone(), candidates: docids })
},
)))
}
@@ -183,15 +150,7 @@ impl<'ctx, Query: RankingRuleQueryTrait> RankingRule<'ctx, Query> for Sort<'ctx,
Ok(Some(bucket))
} else {
let query = self.original_query.as_ref().unwrap().clone();
Ok(Some(RankingRuleOutput {
query,
candidates: universe.clone(),
score: ScoreDetails::Sort(score_details::Sort {
field_name: self.field_name.clone(),
ascending: self.is_ascending,
value: serde_json::Value::Null,
}),
}))
Ok(Some(RankingRuleOutput { query, candidates: universe.clone() }))
}
}

View File

@@ -89,6 +89,7 @@ Create a snapshot test of the given database.
- `exact_word_docids`
- `word_prefix_docids`
- `exact_word_prefix_docids`
- `docid_word_positions`
- `word_pair_proximity_docids`
- `word_prefix_pair_proximity_docids`
- `word_position_docids`
@@ -216,6 +217,11 @@ pub fn snap_exact_word_prefix_docids(index: &Index) -> String {
&format!("{s:<16} {}", display_bitmap(&b))
})
}
pub fn snap_docid_word_positions(index: &Index) -> String {
make_db_snap_from_iter!(index, docid_word_positions, |((idx, s), b)| {
&format!("{idx:<6} {s:<16} {}", display_bitmap(&b))
})
}
pub fn snap_word_pair_proximity_docids(index: &Index) -> String {
make_db_snap_from_iter!(index, word_pair_proximity_docids, |((proximity, word1, word2), b)| {
&format!("{proximity:<2} {word1:<16} {word2:<16} {}", display_bitmap(&b))
@@ -471,6 +477,9 @@ macro_rules! full_snap_of_db {
($index:ident, exact_word_prefix_docids) => {{
$crate::snapshot_tests::snap_exact_word_prefix_docids(&$index)
}};
($index:ident, docid_word_positions) => {{
$crate::snapshot_tests::snap_docid_word_positions(&$index)
}};
($index:ident, word_pair_proximity_docids) => {{
$crate::snapshot_tests::snap_word_pair_proximity_docids(&$index)
}};

View File

@@ -23,6 +23,7 @@ impl<'t, 'u, 'i> ClearDocuments<'t, 'u, 'i> {
exact_word_docids,
word_prefix_docids,
exact_word_prefix_docids,
docid_word_positions,
word_pair_proximity_docids,
word_prefix_pair_proximity_docids,
prefix_word_pair_proximity_docids,
@@ -79,6 +80,7 @@ impl<'t, 'u, 'i> ClearDocuments<'t, 'u, 'i> {
exact_word_docids.clear(self.wtxn)?;
word_prefix_docids.clear(self.wtxn)?;
exact_word_prefix_docids.clear(self.wtxn)?;
docid_word_positions.clear(self.wtxn)?;
word_pair_proximity_docids.clear(self.wtxn)?;
word_prefix_pair_proximity_docids.clear(self.wtxn)?;
prefix_word_pair_proximity_docids.clear(self.wtxn)?;
@@ -139,6 +141,7 @@ mod tests {
assert!(index.word_docids.is_empty(&rtxn).unwrap());
assert!(index.word_prefix_docids.is_empty(&rtxn).unwrap());
assert!(index.docid_word_positions.is_empty(&rtxn).unwrap());
assert!(index.word_pair_proximity_docids.is_empty(&rtxn).unwrap());
assert!(index.field_id_word_count_docids.is_empty(&rtxn).unwrap());
assert!(index.word_prefix_pair_proximity_docids.is_empty(&rtxn).unwrap());

View File

@@ -1,5 +1,5 @@
use std::collections::btree_map::Entry;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::collections::{HashMap, HashSet};
use fst::IntoStreamer;
use heed::types::{ByteSlice, DecodeIgnore, Str, UnalignedSlice};
@@ -15,7 +15,8 @@ use crate::facet::FacetType;
use crate::heed_codec::facet::FieldDocIdFacetCodec;
use crate::heed_codec::CboRoaringBitmapCodec;
use crate::{
ExternalDocumentsIds, FieldId, FieldIdMapMissingEntry, Index, Result, RoaringBitmapCodec, BEU32,
ExternalDocumentsIds, FieldId, FieldIdMapMissingEntry, Index, Result, RoaringBitmapCodec,
SmallString32, BEU32,
};
pub struct DeleteDocuments<'t, 'u, 'i> {
@@ -231,6 +232,7 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
exact_word_docids,
word_prefix_docids,
exact_word_prefix_docids,
docid_word_positions,
word_pair_proximity_docids,
field_id_word_count_docids,
word_prefix_pair_proximity_docids,
@@ -249,9 +251,23 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
facet_id_is_empty_docids,
documents,
} = self.index;
// Remove from the documents database
// Retrieve the words contained in the documents.
let mut words = Vec::new();
for docid in &self.to_delete_docids {
documents.delete(self.wtxn, &BEU32::new(docid))?;
// We iterate through the words positions of the document id, retrieve the word and delete the positions.
// We create an iterator to be able to get the content and delete the key-value itself.
// It's faster to acquire a cursor to get and delete, as we avoid traversing the LMDB B-Tree two times but only once.
let mut iter = docid_word_positions.prefix_iter_mut(self.wtxn, &(docid, ""))?;
while let Some(result) = iter.next() {
let ((_docid, word), _positions) = result?;
// This boolean will indicate if we must remove this word from the words FST.
words.push((SmallString32::from(word), false));
// safety: we don't keep references from inside the LMDB database.
unsafe { iter.del_current()? };
}
}
// We acquire the current external documents ids map...
// Note that its soft-deleted document ids field will be equal to the `to_delete_docids`
@@ -262,27 +278,42 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
let new_external_documents_ids = new_external_documents_ids.into_static();
self.index.put_external_documents_ids(self.wtxn, &new_external_documents_ids)?;
let mut words_to_keep = BTreeSet::default();
let mut words_to_delete = BTreeSet::default();
// Maybe we can improve the get performance of the words
// if we sort the words first, keeping the LMDB pages in cache.
words.sort_unstable();
// We iterate over the words and delete the documents ids
// from the word docids database.
remove_from_word_docids(
self.wtxn,
word_docids,
&self.to_delete_docids,
&mut words_to_keep,
&mut words_to_delete,
)?;
remove_from_word_docids(
self.wtxn,
exact_word_docids,
&self.to_delete_docids,
&mut words_to_keep,
&mut words_to_delete,
)?;
for (word, must_remove) in &mut words {
remove_from_word_docids(
self.wtxn,
word_docids,
word.as_str(),
must_remove,
&self.to_delete_docids,
)?;
remove_from_word_docids(
self.wtxn,
exact_word_docids,
word.as_str(),
must_remove,
&self.to_delete_docids,
)?;
}
// We construct an FST set that contains the words to delete from the words FST.
let words_to_delete = fst::Set::from_iter(words_to_delete.difference(&words_to_keep))?;
let words_to_delete =
words.iter().filter_map(
|(word, must_remove)| {
if *must_remove {
Some(word.as_str())
} else {
None
}
},
);
let words_to_delete = fst::Set::from_iter(words_to_delete)?;
let new_words_fst = {
// We retrieve the current words FST from the database.
@@ -501,24 +532,23 @@ fn remove_from_word_prefix_docids(
fn remove_from_word_docids(
txn: &mut heed::RwTxn,
db: &heed::Database<Str, RoaringBitmapCodec>,
word: &str,
must_remove: &mut bool,
to_remove: &RoaringBitmap,
words_to_keep: &mut BTreeSet<String>,
words_to_remove: &mut BTreeSet<String>,
) -> Result<()> {
// We create an iterator to be able to get the content and delete the word docids.
// It's faster to acquire a cursor to get and delete or put, as we avoid traversing
// the LMDB B-Tree two times but only once.
let mut iter = db.iter_mut(txn)?;
while let Some((key, mut docids)) = iter.next().transpose()? {
let previous_len = docids.len();
docids -= to_remove;
if docids.is_empty() {
// safety: we don't keep references from inside the LMDB database.
unsafe { iter.del_current()? };
words_to_remove.insert(key.to_owned());
} else {
words_to_keep.insert(key.to_owned());
if docids.len() != previous_len {
let mut iter = db.prefix_iter_mut(txn, word)?;
if let Some((key, mut docids)) = iter.next().transpose()? {
if key == word {
let previous_len = docids.len();
docids -= to_remove;
if docids.is_empty() {
// safety: we don't keep references from inside the LMDB database.
unsafe { iter.del_current()? };
*must_remove = true;
} else if docids.len() != previous_len {
let key = key.to_owned();
// safety: we don't keep references from inside the LMDB database.
unsafe { iter.put_current(&key, &docids)? };
@@ -597,7 +627,7 @@ mod tests {
use super::*;
use crate::index::tests::TempIndex;
use crate::{db_snap, Filter, Search};
use crate::{db_snap, Filter};
fn delete_documents<'t>(
wtxn: &mut RwTxn<'t, '_>,
@@ -1169,52 +1199,4 @@ mod tests {
DeletionStrategy::AlwaysSoft,
);
}
#[test]
fn delete_words_exact_attributes() {
let index = TempIndex::new();
index
.update_settings(|settings| {
settings.set_primary_key(S("id"));
settings.set_searchable_fields(vec![S("text"), S("exact")]);
settings.set_exact_attributes(vec![S("exact")].into_iter().collect());
})
.unwrap();
index
.add_documents(documents!([
{ "id": 0, "text": "hello" },
{ "id": 1, "exact": "hello"}
]))
.unwrap();
db_snap!(index, word_docids, 1, @r###"
hello [0, ]
"###);
db_snap!(index, exact_word_docids, 1, @r###"
hello [1, ]
"###);
db_snap!(index, words_fst, 1, @"300000000000000001084cfcfc2ce1000000016000000090ea47f");
let mut wtxn = index.write_txn().unwrap();
let deleted_internal_ids =
delete_documents(&mut wtxn, &index, &["1"], DeletionStrategy::AlwaysHard);
wtxn.commit().unwrap();
db_snap!(index, word_docids, 2, @r###"
hello [0, ]
"###);
db_snap!(index, exact_word_docids, 2, @"");
db_snap!(index, words_fst, 2, @"300000000000000001084cfcfc2ce1000000016000000090ea47f");
insta::assert_snapshot!(format!("{deleted_internal_ids:?}"), @"[1]");
let txn = index.read_txn().unwrap();
let words = index.words_fst(&txn).unwrap().into_stream().into_strs().unwrap();
insta::assert_snapshot!(format!("{words:?}"), @r###"["hello"]"###);
let mut s = Search::new(&txn, &index);
s.query("hello");
let crate::SearchResult { documents_ids, .. } = s.execute().unwrap();
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[0]");
}
}

View File

@@ -1,6 +1,6 @@
use std::collections::HashMap;
use std::fs::File;
use std::io;
use std::{cmp, io};
use grenad::Sorter;
@@ -54,10 +54,11 @@ pub fn extract_fid_word_count_docids<R: io::Read + io::Seek>(
}
for position in read_u32_ne_bytes(value) {
let (field_id, _) = relative_from_absolute_position(position);
let (field_id, position) = relative_from_absolute_position(position);
let word_count = position as u32 + 1;
let value = document_fid_wordcount.entry(field_id as FieldId).or_insert(0);
*value += 1;
*value = cmp::max(*value, word_count);
}
}
@@ -82,7 +83,7 @@ fn drain_document_fid_wordcount_into_sorter(
let mut key_buffer = Vec::new();
for (fid, count) in document_fid_wordcount.drain() {
if count <= 30 {
if count <= 10 {
key_buffer.clear();
key_buffer.extend_from_slice(&fid.to_be_bytes());
key_buffer.push(count as u8);

View File

@@ -325,6 +325,8 @@ fn send_and_extract_flattened_documents_data(
// send docid_word_positions_chunk to DB writer
let docid_word_positions_chunk =
unsafe { as_cloneable_grenad(&docid_word_positions_chunk)? };
let _ = lmdb_writer_sx
.send(Ok(TypedChunk::DocidWordPositions(docid_word_positions_chunk.clone())));
let _ =
lmdb_writer_sx.send(Ok(TypedChunk::ScriptLanguageDocids(script_language_pair)));

View File

@@ -4,6 +4,7 @@ use std::result::Result as StdResult;
use roaring::RoaringBitmap;
use super::read_u32_ne_bytes;
use crate::heed_codec::CboRoaringBitmapCodec;
use crate::update::index_documents::transform::Operation;
use crate::Result;
@@ -21,6 +22,10 @@ pub fn concat_u32s_array<'a>(_key: &[u8], values: &[Cow<'a, [u8]>]) -> Result<Co
}
}
pub fn roaring_bitmap_from_u32s_array(slice: &[u8]) -> RoaringBitmap {
read_u32_ne_bytes(slice).collect()
}
pub fn serialize_roaring_bitmap(bitmap: &RoaringBitmap, buffer: &mut Vec<u8>) -> io::Result<()> {
buffer.clear();
buffer.reserve(bitmap.serialized_size());

View File

@@ -14,8 +14,8 @@ pub use grenad_helpers::{
};
pub use merge_functions::{
concat_u32s_array, keep_first, keep_latest_obkv, merge_cbo_roaring_bitmaps,
merge_obkvs_and_operations, merge_roaring_bitmaps, merge_two_obkvs, serialize_roaring_bitmap,
MergeFn,
merge_obkvs_and_operations, merge_roaring_bitmaps, merge_two_obkvs,
roaring_bitmap_from_u32s_array, serialize_roaring_bitmap, MergeFn,
};
use crate::MAX_WORD_LENGTH;

View File

@@ -2471,11 +2471,11 @@ mod tests {
{
"id": 3,
"text": "a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a "
}
]))
@@ -2513,5 +2513,6 @@ mod tests {
db_snap!(index, word_fid_docids, 3, @"4c2e2a1832e5802796edc1638136d933");
db_snap!(index, word_position_docids, 3, @"74f556b91d161d997a89468b4da1cb8f");
db_snap!(index, docid_word_positions, 3, @"5287245332627675740b28bd46e1cde1");
}
}

View File

@@ -7,19 +7,24 @@ use std::io;
use charabia::{Language, Script};
use grenad::MergerBuilder;
use heed::types::ByteSlice;
use heed::RwTxn;
use heed::{BytesDecode, RwTxn};
use roaring::RoaringBitmap;
use super::helpers::{
self, merge_ignore_values, serialize_roaring_bitmap, valid_lmdb_key, CursorClonableMmap,
self, merge_ignore_values, roaring_bitmap_from_u32s_array, serialize_roaring_bitmap,
valid_lmdb_key, CursorClonableMmap,
};
use super::{ClonableMmap, MergeFn};
use crate::facet::FacetType;
use crate::update::facet::FacetsUpdate;
use crate::update::index_documents::helpers::as_cloneable_grenad;
use crate::{lat_lng_to_xyz, CboRoaringBitmapCodec, DocumentId, GeoPoint, Index, Result};
use crate::{
lat_lng_to_xyz, BoRoaringBitmapCodec, CboRoaringBitmapCodec, DocumentId, GeoPoint, Index,
Result,
};
pub(crate) enum TypedChunk {
DocidWordPositions(grenad::Reader<CursorClonableMmap>),
FieldIdDocidFacetStrings(grenad::Reader<CursorClonableMmap>),
FieldIdDocidFacetNumbers(grenad::Reader<CursorClonableMmap>),
Documents(grenad::Reader<CursorClonableMmap>),
@@ -51,6 +56,29 @@ pub(crate) fn write_typed_chunk_into_index(
) -> Result<(RoaringBitmap, bool)> {
let mut is_merged_database = false;
match typed_chunk {
TypedChunk::DocidWordPositions(docid_word_positions_iter) => {
write_entries_into_database(
docid_word_positions_iter,
&index.docid_word_positions,
wtxn,
index_is_empty,
|value, buffer| {
// ensure that values are unique and ordered
let positions = roaring_bitmap_from_u32s_array(value);
BoRoaringBitmapCodec::serialize_into(&positions, buffer);
Ok(buffer)
},
|new_values, db_values, buffer| {
let new_values = roaring_bitmap_from_u32s_array(new_values);
let positions = match BoRoaringBitmapCodec::bytes_decode(db_values) {
Some(db_values) => new_values | db_values,
None => new_values, // should not happen
};
BoRoaringBitmapCodec::serialize_into(&positions, buffer);
Ok(())
},
)?;
}
TypedChunk::Documents(obkv_documents_iter) => {
let mut cursor = obkv_documents_iter.into_cursor()?;
while let Some((key, value)) = cursor.move_on_next()? {